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The structure of biological communities is conventionally de-
scribed as profiles of taxonomic units, whose ecological functions
are assumed to be known or, at least, predictable. In environmen-
tal microbiology, however, the functions of a majority of micro-
organisms are unknown and expected to be highly dynamic and
collectively redundant, obscuring the link between taxonomic
structure and ecosystem functioning. Although genetic trait-
based approaches at the community level might overcome this
problem, no obvious choice of gene categories can be identified as
appropriate descriptive units in a general ecological context. We
used 247 microbial metagenomes from 18 biomes to determine
which set of genes better characterizes the differences among
biomes on the global scale. We show that profiles of oxidoreduc-
tase genes support the highest biome differentiation compared
with profiles of other categories of enzymes, general protein-coding
genes, transporter genes, and taxonomic gene markers. Based on
oxidoreductases’ description of microbial communities, the role of
energetics in differentiation and particular ecosystem function
of different biomes become readily apparent. We also show that
taxonomic diversity is decoupled from functional diversity, e.g.,
grasslands and rhizospheres were the most diverse biomes in oxi-
doreductases but not in taxonomy. Considering that microbes un-
derpin biogeochemical processes and nutrient recycling through
oxidoreductases, this functional diversity should be relevant for a
better understanding of the stability and conservation of biomes.
Consequently, this approach might help to quantify the impact of
environmental stressors on microbial ecosystems in the context of
the global-scale biome crisis that our planet currently faces.
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Biological communities are conventionally described as as-
semblages of species whose ecological roles are known or

predictable from their observable morphological characteristics.
In the early twentieth century, Lotka and Volterra pioneered the
development of theoretical ecology using species numbers as the
master variable in differential equations that describe the inter-
actions and complexity of ecological systems (1). Since then,
most theoretical ecologists have used species numbers as the
ecological unit for developing an extensive body of theory, which
includes elaborate mathematical models to explain the dynamics
of populations and communities (1). In practice, this approach
requires the categorization of every observed individual into a
taxonomic unit—which is not a trivial task in some cases (2), and
it is definitively a problem in microbial ecology (3–5). In the
latter context, microbial ecologists face three main problems.
First, observable morphological attributes do not provide suffi-
cient discriminatory or functional characterization. Second, the
isolation of microbial species to assess their physiology and
ecological function is rarely possible, a phenomenon that is re-
lated to the so-called Great Plate Count Anomaly (6). Third,
prokaryotic genomes are highly dynamic, mainly due to pervasive
horizontal gene transfers and the effect of mobile DNA elements

and phages (7). Microbial ecologists have employed molecular
taxonomic markers, primarily the small subunit ribosomal RNA
gene, to address the first and second problems, thereby operation-
ally defining species and estimating their abundances and taxo-
nomic diversity (8). This taxonomic approach has been used to
explain and predict the microbial dynamics in diverse environments
(9, 10). In such a context, the Earth Microbiome Project initiative
has recently reported microbial taxonomic diversity per biome on a
global scale with the use of standardized protocols to provide an
organized and complete catalog of microbes (11). However, several
studies have reported inconsistent taxonomical correlations under
apparently similar ecological scenarios, finding better consistency
only when using multiple protein-coding genes as traits and when
the whole community is analyzed as the ecological unit (12–16).
This has been performed in an attempt to address the third above-
mentioned problem. After all, it is the function, not the taxonomic
information, that has the actual ecological relevance (17). Un-
fortunately, the selection of the ecologically relevant categories of
protein-coding genes for use is not evident in the broad context of
planetary biomes (6, 18, 19). We analyzed 247 metagenomes from
18 biomes (Fig. 1) to tackle this issue and to determine under which
specific nonexclusive set of genes the differences between biomes
are the highest. These gene sets included protein-coding genes with
associated orthology in the KEGG database (a typical approach in
trait-based analyses), enzyme-coding genes, transporter-associated
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genes, and taxonomic marker genes (Fig. 1). We found that the set of
genes that were encoding enzymes better differentiated the bi-
omes than the other gene categories. In particular, the profiles
of genes that were encoding oxidoreductases composed the set
with the highest cohesion and separation of biome groups,
suggesting that they can better describe the association of the
microbial communities to their respective biomes. In addition,
we found no correspondence in biome maximum diversity between
the functional and the taxonomic approaches. An oxidoreductase-
based description of microbial communities also serves as a con-
venient proxy for an energetic description of ecosystems as these
proteins are responsible for redox reactions, which are the pro-
cesses by which every living organism uses energy from and modify
the chemical characteristics of the environment (20).

Results and Discussion
From an ecological point of view, the functions of communities
represent the most relevant information about an ecosystem. In
microbial ecology, when these functions are fine grained to

molecular processes through functional genes, it is natural to ask
whether all of them have the same ecological relevance to dif-
ferentiate one biome from another (Fig. 1). Our results show
that redox functions supported the highest statistical differenti-
ation among biomes when taxonomic and functional sets of
genes were compared (Table 1 and SI Appendix, Fig. S5 and
Table S2). The discriminatory power of oxidoreductase genes for
grouping biomes can be visualized in networks of correlations
using different gene categories with metagenomes as nodes
(microbial communities, colored according to biome origin) and
correlations as edges (Fig. 2A and SI Appendix, Figs. S3 and S4).
Metagenomes from different biomes were more separated in the
networks of oxidoreductases than in the network of taxonomic
markers, which is the visual expression of the better cohesion and
separation results as shown in Table 1. Hierarchical clusterings
of these profiles (Fig. 2B and SI Appendix, Figs. S1 and S2)
revealed the following three main groups of biomes: a group of
apparent anoxic or suboxic biomes (animal associated, some hot
springs, subterranean ecosystems, marine sediments, subseafloor,

B
C

rhizosphere

hot desert

mangrove
sediment solar saltern

forest soil

lake

river

grassland
subterraneum

hot spring

cold seep

hydrothermal
vent

marine
photic zone

marine
aphotic
zone

animal associated

benthic zone &
subsea floor

polar desertoxygen minimum
zone

subterraneum
hot spring

A

Fig. 1. Biomes and categories of genes. (A) Sketch
of the biomes from which metagenomes (as proxies
for microbial communities) were included in this
paper. The animal-associated biome includes meta-
genomes from terrestrial animals only. A complete
list and origin of these metagenomes can be found in
the SI Appendix, Table S1. (B) Organized list of the
biomes illustrated in A. The number of metagenomes
per biome is shown in parentheses besides the biome
name, which is displayed in the color code utilized in
the rest of the figures. (C) Categories of gene profiles
considered in the analyses. All protein orthologies
refer to the protein orthologies present in the KEGG
protein database. The fourth rank taxonomy typi-
cally corresponds to a phylum in the prokaryotic
taxonomy (see SI Appendix for details).

Table 1. Different profiles of genes separating metagenomes into biomes groups

Category PERMANOVA F statistic Cohesion Separation Cohesion + separation Profile size

All KEGG protein orthologies 10.66858 0.59033 −0.33468 0.25565 6,789
All enzymes 10.64720 0.69027 −0.43105 0.25922 1,826
Oxidoreductases 12.47645 0.69076 −0.42962 0.26113 484
Transferases 9.64637 0.76038 −0.52017 0.24021 541
Hydrolases 12.16139 0.70443 −0.45038 0.25405 423
Lyases 11.21940 0.75581 −0.51344 0.24237 211
Isomerases 7.80187 0.80306 −0.57657 0.22649 103
Ligases 9.97776 0.86361 −0.69899 0.16463 94
Transporters 7.23900 0.44584 −0.25863 0.18721 1,869
Taxonomy (species) 1.83457 0.13495 −0.06620 0.06875 4,011
Taxonomy (fourth rank) 2.81049 0.36668 −0.24392 0.12275 365

Different sets of profiles of relative gene abundances (with stabilized variances) were evaluated to determine under which of them
the separation of metagenomes (microbial communities) into biome groups was most significant. The PERMANOVA statistical test (all
P values < 0.001) indicates that gene profiles of oxidoreductases were the set of genes with higher statistically supported differences
between the biomes (the higher the F statistic, the more likely to reject the null hypothesis of no differences among groups). The
cohesion/separation of biomes groups confirmed that result (third, fourth, and fifth columns). The last column of this table indicates
the total number of subcategories that each category displayed in this paper. For example, considering all of the datasets analyzed, we
found 484 oxidoreductase genes and 4,011 species. To resolve the low differences among the F statistics of some enzyme categories,
additional analyses were required, and their results can be found in SI Appendix, Group Variances Analyses, Fig. S3, and Table S2.
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and mangrove sediments), a group of aquatic biomes (freshwater
and different types of marine ecosystems), and a group of soil-
associated biomes (grassland, forest, deserts, and rhizosphere).
Note that environments associated with oxygen minimum zones did
not cluster with the first above-mentioned group. The oxygen-
limited condition shared by these ecosystems is not reflected in
this clustering because the microorganisms in the pelagic low-
oxygen environments mainly exploit chemolitoautotrophic metab-
olisms instead of the anaerobic degradation of organic matter that
normally occurs in, for example, anoxic sediments. This analysis
also showed that metagenomes from extreme ecosystems, such as
acidic cave biofilms, some hot spring systems, and hypersaline en-
vironments, cluster outside of these three main groups.
The group of biomes with apparent anoxic conditions shared

distinctive oxidoreductase genes related to methanogenesis,
sulfide oxidation, denitrification, hydrogen oxidation, nitrogen
fixation, and aromatic aldehydes oxidation (Fig. 3). The animal-
associated metagenomes analyzed here were highly diverse, but
most of them were related to the digestive systems of animals,
making this group slightly biased toward the functional genes
that are represented more in these microbial communities. Thus,
the functions associated with these diverse biomes should be
interpreted with care as it is unlikely that, for example, the hu-
man tongue dorsum supports microbial communities exploiting
hydrogen oxidation processes. Indeed, hierarchical clusterings
separated the microbial communities associated with the parts at
the end of the digestive system of animals (cecum, gut, and stool)
from other animal-associated metagenomes (human oral mu-
cosa, tongue dorsum, supragingival plaque, anterior nares, and
posterior fornix; SI Appendix, Fig. S2). Although the latter sub-
group of microbial communities can also be associated with
potentially anoxic microhabitats, the former subgroup was found
to be functionally closer to the communities from the marine
sediments and subsea-floor ecosystems, mainly because of the
shared redox functionalities for the degradation of organic
matter under anoxic conditions. Notably, gut-associated micro-
biomes displayed nitrogen fixation capabilities too (Fig. 3), which
is consistent with the recent observations (21).
Marine microbial communities were best characterized by a

group of oxidoreductases that includes dimethylglycine de-
hydrogenase, sarcosine oxidase, and choline dehydrogenase (Fig.
3). These enzymes are involved in the synthesis and degradation
of glycine betaine, which is an effective and widely used com-
patible solute for coping with saline stress (22). Indeed, most
algae and some invertebrates produce and accumulate glycine
betaine as an intracellular osmolyte (22). Thus, marine micro-
organisms might take advantage of the availability of this sub-
strate in seawater and can convert it to formate, which can then

be used as an energy source or directed to one-carbon metabo-
lism for biosynthesis (23). A direct precursor of glycine betaine is
choline, which is also abundant in seawater, as it can represent
up to 0.39% of the dry weight of algae (24). A distinctive oxi-
doreductase gene present in marine microbial communities was
3-hydroxyisobutyrate dehydrogenase, which has been found to
play a role in amino acid catabolism (25), as a source of alter-
native substrates for respiration under metabolic stress situa-
tions. Another representative of oxidoreductase encoded in the
metagenomes of these microbial communities is aldehyde de-
hydrogenase NAD+. Polyunsaturated aldehydes are commonly
produced by diatoms as a chemical defense against grazers, and
their concentrations in seawater can potentially affect the bac-
terial community structure and diversity (26).
Microbial communities associated with soil were mainly char-

acterized by oxidoreductase genes related to the degradation of
aromatic compounds for the carbon source [alcohol dehydroge-
nase cytochrome c, isoquinoline 1-oxidoreductase, catechol 2,3-
dioxygenase, homogentisate 1,2-dioxygenase (27) and phenylacetyl-
CoA 1,2 epoxidase (28) (Fig. 3)]. This representation might be
explained by the fact that most primary production in soils is
returned to the environment as detritus (29), which can be rich in
aromatics as they constitute a significant part of lignin in higher
plants (27). Genes encoding betaine aldehyde dehydrogenase were
also distinctive in soil-associated microbial communities. This en-
zyme is involved in the biosynthesis of glycine betaine as a com-
patible solute for alkaline-saline stress (30). In fact, reports indicate
that many soil environments are highly alkaline, and transient
conditions, such as drought, can significantly increase the alkalinity
within cells (31). Additionally, plant root exudates can change the
soil chemistry, sometimes creating microhabitats of increased
alkalinity (30). Thus, soil microbial communities seem to be
genetically prepared to resist saline-alkaline stress by synthe-
sizing their cellular defenses, unlike marine microbial com-
munities that apparently rely more on the environmental
availability of glycine betaine or its direct precursors, such as
choline or sarcosine. Despite freshwater biome grouping with
the marine biomes, its associated microbial communities still
share similarities in the abundances of some oxidoreductase
genes with the soil biomes, such as in the case of betaine al-
dehyde dehydrogenase, carbon monoxide dehydrogenase (ac-
ceptor), and stearoyl-CoA 9-desaturase (Fig. 3). This observation
might be related to the results of a recent study that suggest that
freshwater ecosystems might connect the otherwise separated
microbial communities (32).
Although most biogeochemical processes are widely distrib-

uted across different environments (33), some oxidoreductase
genes associated with these processes appear to be unimportant

A B Fig. 2. Association of microbial metagenomes and bi-
omes. (A) Network representation of the microbial
metagenomes by profiles of oxidoreductase and taxo-
nomic gene ranks. The nodes correspond to meta-
genomes, colored according to their biome of origin
(Fig. 1). The edges represent maximal information co-
efficients (MICs). In the network associated with oxido-
reductases (Left), all MIC ≥ 0.5 are shown. The network
associated with taxonomic profiles (Right) was drawn
with all MIC ≥ 0.1 as in this case, and these values were
significantly lower. These taxonomic edge weights were
increased by 0.4 to give visual balance to the plot. The
differential clustering of biomes (colors) is explained by
the values of cohesion and separation from Table 1 (see
also SI Appendix, Figs. S3 and S4). (B) A simplified ver-
sion (topology only and grouped per biomes) of the
hierarchical clustering of the metagenomes based on
oxidoreductase gene profiles (SI Appendix, Fig. S1).
Support values higher than 90% are shown in the plot.
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for soil and aquatic biomes. This apparent conflict can be
explained by the fact that, frequently, the most abundant mi-
crobes in these environments are heterotrophs [e.g., members of
Acidobacteria in soils (34) and SAR11 clade in the ocean (35)].
Thus, although nitrification, denitrification, sulfur oxidation, and
carbon fixation also occur in terrestrial and aquatic ecosystems,
their genetic markers are significantly less abundant than the
oxidoreductase genes related to heterotrophic metabolisms (SI
Appendix, Table S4). On the other hand, the biomes from the
apparently anoxic group (typically harboring fewer heterotrophs)
appeared prominently in many of these processes, such as, for
example, methanogenesis, hydrogen oxidation, nitrogen fixation,
sulfur oxidation, nitrification, and denitrification (Fig. 4). In
addition, the oxidative phosphorylation process under suboxic
conditions (associated with Cbb3 oxidase, encoded by the ccoN
gene, Fig. 4) appeared to be best ranked in these biomes. De-
spite the pelagic low-oxygen marine biome was not clustered in
this group of biomes (Figs. 2B and 3 and SI Appendix, Figs. S1
and S2), their metagenomes displayed high genetic representa-
tion associated with some of these processes, such as nitrifica-
tion, denitrification, and sulfur oxidation (Fig. 4). This fact has
been described as the beginning of a progressive rerouting of the
energy flow into the microbial pathways as oxygen declines in
marine ecosystems in detriment of higher trophic levels (36–38).
Such progression ends in the extreme situation in which all
benthic energy is processed as hydrogen sulfide (36) with con-
comitant accumulation of nitrite in the intermediate case of the
anoxic marine zones (39). Low-oxygen areas in the ocean have
rapidly expanded in the past decades, and they are expected to
further increase as a consequence of global warming (36, 38).
This, in turn, can be affected by the greenhouse gases that are

emitted in marine low-oxygen zones as a by-product of anaerobic
microbial pathways (36, 38, 39).
The extraordinary dispersal potential of microbes is usually

expressed through the old tenet “everything is everywhere, but
the environment selects,” which a recent study extends to “every
gene is everywhere, but the environment selects” (32). This fact
suggests that measures of diversity for conducting large-scale
studies of biomes in microbial ecology should include not only
the richness, but also the evenness of the distribution of gene
categories. By using the inverse Simpson index, we found that
microbial taxonomic diversity does not correlate with microbial
functional diversity. In our analysis, microbial communities from
mangrove sediments were found to be the most taxonomically
diverse (Fig. 5A). This result is consistent with findings of the
recent studies that show that some sediment environments can
be more diverse than soils (40), which, in turn, have been tra-
ditionally considered to be the ecosystems with the highest mi-
crobial diversity (41). However, regarding oxidoreductase genes,
grassland soils and rhizospheres were found to be the most di-
verse biomes (Fig. 5A). This finding correlates with observations
in plant diversity that suggest that, in the fine grain, grasslands
are the most diverse soil biomes, harboring up to ∼90 different
plant species per square meter (42). It is noteworthy that the
temperate grasslands are currently among the biomes that face the
highest ecological risk due to the extensive habitat loss and under-
protection (43). To give a quantitative example of the microbial
diversity of oxidoreductase genes in grasslands, consider that, on
average, ∼130 of their most abundant categories were needed to
cover the 70% of the total abundance of these genes. The same
coverage percentage needed only ∼40 of the most abundant cate-
gories in the subterranean and acidic cave biofilms biomes (Fig. 5B).

Fig. 3. Distinctive oxidoreductase genes associated
with biomes. These genes were determined by sta-
tistically testing that the average of rankings of each
oxidoreductase gene within each biome was signifi-
cantly different from the average ranking in other
biomes. Dark and light shades in this figure refer to
relative abundances, high and low, respectively.
Thus, the rankings for this figure were reversed as a
low rank indicates high relative abundance. These
values were scaled for better visualization, which
means that color shades can only be compared hori-
zontally. Some of these distinctive genes encode oxi-
doreductases considered associated with important
biogeochemical and biochemical processes. For exam-
ple, CoB-CoM heterodisulfide reductase (methano-
genesis), sulfide:quinone reductase (sulfide oxidation),
nitrite reductase NADH (denitrification), hydrogenase
(hydrogen oxidation), nitrogenase (nitrogen fixation),
and aldehyde ferredoxin oxidoreductase (aromatic
aldehydes oxidation). Hierarchical clusterings using
these values were calculated for convenient grouping
of both biomes and oxidoreductase genes.
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The choice of relevant variables is a critical step in the analysis
of any complex system. In microbial ecology, the taxonomic
structure of communities has typically been considered a proxy
for the microbial ecosystem’s functioning, even though it is often
unable to resolve functional genetic traits (44). The need for
alternative trait-based approaches has been claimed for years
(45), but there has been no agreement on the selection of a
relevant set of genes necessary for its practical application (6, 18,
19). In this paper, we evaluated different sets of genes for this
purpose, finding that oxidoreductase genes are a convenient
choice. The set of transporter genes also has this potential, but
its power to differentiate biomes was found to be lower. This is
most likely as these genes also suffer from significant redundancy
(e.g., there are different transporters for the same substrate,
depending on their affinities). Other groups of enzyme genes,

such as those associated with hydrolases, also supported a proper
separation of biomes (Table 1 and SI Appendix, Fig. S4); how-
ever, they are slightly related to biogeochemical processes,
mainly through the carbon cycle. In contrast, oxidoreductases are
directly involved in most biogeochemical processes and nutrient
recycling in every environment. Thus, the diversity of these
functions should be relevant to better understand the stability
and conservation of biomes, affected by the high disparities be-
tween ecosystem conversion and conservation across biomes,
which has been recognized as comprising an ongoing biome crisis
(43). Indeed, conservation efforts have mainly focused on par-
ticular species or local macrocommunities (e.g., polar bears and
coral reefs, respectively) but not on the microbial ecological
functions that sustain trophic levels, biogeochemical cycles, and
the ecosystem services that are derived from them. This omission

Fig. 4. Biogeochemically relevant processes per bi-
ome by oxidoreductase genes relative abundances.
Oxidoreductase genes associated with biogeochemi-
cal processes and their top five biomes where they
were ranked the highest. The biomes per genes are
in clockwise order, starting from the biome where
the gene was best ranked. For example, the dissimi-
latory sulfite reductase gene (dsrA; involved in sulfur
oxidation and reduction) was found best ranked in
the following biomes in this order: hydrothermal
vents, subterranean habitats, mangrove sediments,
hot springs, and oxygen minimum zones.

A B

Fig. 5. Microbial diversity of biomes. (A) Heat map plot constructed with the inverse Simpson diversity index (true diversity with q = 2) of the taxonomic and
functional profiles for the metagenomes, averaged per biome. The dark color shades indicate high diversity. These average values were scaled per profile
category for homogenous contrast. Thus, the colors can only be compared along columns, i.e., by biome. For example, regarding oxidoreductase genes, the
grassland biome is the most diverse, and the rhizosphere is the second one. On the other hand, the subterranean biome is shown as the less diverse biome in
almost every gene category. Note that “All proteins” refer to all proteins with defined orthology in the KEGG database (see SI Appendix for details). (B)
Average number, per biome, of oxidoreductase genes (vertical axis) necessary to cover different percentages of total oxidoreductase genes, counted from the
most to less abundant. For example, the 60 most abundant oxidoreductase genes in grassland-associated datasets on average covered ca. 45% of the total
pool of oxidoreductase genes.
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is likely due to the difficulty of predicting microbial ecosystem
dysfunction from environmental stressors using microbial tax-
onomy information (46). We expect that an oxidoreductase-
based description of microbial communities should facilitate
this task and help to quantify in future developments the impact
of environmental changes on microbial ecosystem functions in
the context of the global-scale biome crisis that our planet
currently faces.

Materials and Methods
Data Collection and Sequence Analysis. The metagenomic datasets were col-
lected from metagenomic studies of diverse microbial communities in recent
years. The selection of metagenomes was guided by literature search, trying
to cover the biomes with at least three “whole genome amplified” meta-
genomes sequenced with 454 or Illumina technologies. This process resulted
in 247 metagenomes, grouped in 18 biomes (Fig. 1). The sources of these
datasets are listed in the SI Appendix, Table S1. The sequences of these
datasets were aligned against different protein sequence databases (SI Ap-
pendix, Fig. S6) using the BLASTX algorithm of the DIAMOND software with
a bit-score cutoff of 50. With these alignment results, the different profiles
listed in Fig. 1 and Table 1 were constructed.

Group Variances Analyses. The PERMANOVA statistical test was used to assess
and compare the degree of separation of metagenomes (microbial commu-
nities) into biome groups by using the data profiles (Table 1) with dissimilarity

matrices constructed with distances calculated based on nonparametric cor-
relations [MIC and Spearman].

Diversity Estimation. Each profile of categories, for all of the metagenomic
datasets (Fig. 1), was first resampled by a coverage percentage of 95%. True
diversity was calculated on the resampled datasets by using the inverse Simpson
index. The diversity per biome was calculated as the average of the diversities
of all metagenomic datasets from each biome (SI Appendix, Table S1).

Networks and Clustering. For each pair of profiles described above, a distance
between them was calculated as 1 correlation (correlation as the pairwise
maximal information coefficient between the profiles). The networks of
metagenomes (Fig. 2A) were constructed by writing the graph in the graph
exchange XML format and rendered using the Gephi software with the
OpenOrd network layout. The hierarchical clustering of biomes was com-
puted with the R package Pvclust with 104 permutations and with a distance
based on the Spearman correlation. The genes in Fig. 3 were selected as the
top three oxidoreductase genes from each biome whose average ranking
was lower than the total average. More details about all these procedures
can be found in the SI Appendix.
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