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Abstract: Osteosarcoma and Ewing sarcoma are the most prevalent bone pediatric tumors.
Despite intensive basic and medical research studies to discover new therapeutics and to improve
current treatments, almost 40% of osteosarcoma and Ewing sarcoma patients succumb to the disease.
Patients with poor prognosis are related to either the presence of metastases at diagnosis or resistance
to chemotherapy. Over the past ten years, considerable interest for the Hippo/YAP signaling pathway
has taken place within the cancer research community. This signaling pathway operates at different
steps of tumor progression: Primary tumor growth, angiogenesis, epithelial to mesenchymal transition,
and metastatic dissemination. This review discusses the current knowledge about the involvement of
the Hippo signaling pathway in cancer and specifically in paediatric bone sarcoma progression.
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1. Introduction: First Discoveries about the Hippo Signaling Pathway

The Hippo signaling pathway was discovered at the end of the 20st century, when it was first
described as a key regulator of tissue growth in Drosophila. In 1995, Noll and Bryant [1] in addition
to Stewart and Yu [2] demonstrated aberrant and strong tissue growth in Drosophila in response to
a loss of Wst (warts) protein expression. This was the start of many studies on the partner factors
of the Hippo signaling pathway. In the early 2000s, Sav (salvador), Hippo, and Mob (monopolar
spindle-one-binder) proteins were described [3–5]. A functional and biochemical characterization of
the Salvador-Warts-Hippo signaling pathway was thus established [6,7]. This corresponds to a cascade
of phosphorylation by protein kinases, in which Hpo phosphorylates and activates Wts, which in turn
represses the transcription of target genes via a transcription inhibitor unknown at that time. After these
studies, Yki (yorkie) was identified in 2003 by Pan and Coll and was defined as a transcription factor
coactivator and as a direct target of Wts [8–10].

The Hippo signaling pathway is highly conserved among animal species. The 1990s saw
discovery of homologues components of the Hippo signaling pathway in mammals such as YAP
(yes-associated transcription factor coactivator), even before the functional characterization of
the pathway in Drosophila [11]. Nevertheless, results obtained in Drosophila have been extended to
mammals, outlining the Hippo signaling pathway described by Duojia Pan and Coll in 2007 [8,12].

A decade of intense research has extended the Hippo phosphorylation cascade into a complex
signaling network that is linked to different extracellular signals such as cell adhesion, polarity or
mechanical stress. Recent studies have further implicated the Hippo pathway in various physiological
processes and other pathologies, such as the regulation of stem cell differentiation, tissue regeneration,
immunity, or cancer.
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2. Components of Hippo pathway in mammals

Schematically (Figure 1), the core component of the Hippo pathway is a cascade of kinases
in which the mammalian MST1/2 (STE20-like kinase 1/2) protein phosphorylates and activates LATS1/2
(large tumor suppressor 1/2) protein [2,13]. The purpose of this kinase cascade is to restrict the activity
of two transcriptional coactivators; YAP and TAZ (transcriptional coactivator with PDZ-binding motif).
When YAP or YAZ are not phosphorylated, they translocate into the nucleus to bind transcription
factors, including TEAD (transcriptional enhanced associate domain) proteins. This complex activates
the expression of several genes involved in many cellular processes such as cell proliferation, survival,
or migration [13–16].

Figure 1. The Hippo/yes-associated protein (YAP) signaling pathway in mammals. When the Hippo
signaling pathway is active, MST1/2 protein kinases (mammalian STE20-like kinase 1/2) are
phosphorylated by NF2 (neurofibromatosis type 2), KIBRA, or TAO1-3. MST1/2 activates LATS1/2 (large
tumor suppressor 1/2) proteins which are also stimulated by Sav1 (salvador) and Rassf (ras association
domain family) proteins. LATS1/2 then phosphorylates YAP protein which is retained in the cytoplasm
or is degraded by the proteasome. MOB1 (monopolar spindle-one-binder) and AMOT (angiomantin)
proteins favor LATS1/2 phosphorylation and activity. When the Hippo signaling pathway is inactive,
YAP is not phosphorylated and translocates to the nucleus where it can exert its transcriptional activity
by binding to TEAD (transcriptional enhanced associate domain). YAP thus regulates the expression
of specific targets such as CTGF (connective tissue growth factor), BIRC5 (baculoviral inhibitor of
apoptosis repeat-containing 5), or Cyr61 (cysteine-rich angiogenic inducer 61).

This cascade of phosphorylation is initiated by the phosphorylation of MST1/2 on threonine
183/180, resulting in MST1/2 activation [17,18]. It has been demonstrated that MST1/2 activation
can be achieved by auto phosphorylation and kinases such as TAO1. The MST1/2 protein forms
a homodimer at its C-terminal domain: Sav–Rassf–Hpo or SARAH domains. Each subunit of MST1/2
can activate the other subunit by phosphorylating the activation loop itself. The dimerization of
MST1/2 is modulated by two other proteins of the SARAH complex: SAV1 and RASSF. SAV1 promotes
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self-activation of MST1/2, unlike the proteins of the RASSF family which, by forming heterodimers
with MST1/2, prevents its activation [11,19,20].

The active MST1/2 protein phosphorylates SAV1 and MO1A/B (MOB kinase activator 1A and 1B),
which are two scaffold proteins. The exact role of SAV1 is still poorly described. It has been suggested
that SAV1 may facilitate the interaction between MST1/2 and LATS1/2 or may recruit MST1/2 to the cell
membrane. MO1A/B is better described. It promotes signaling by facilitating the kinase activity of
LATS1/2 and the phosphorylation of YAP/TAZ [21,22].

Another key player in this cascade of phosphorylation is NF2 (neurofibromatosis type 2), which
directly interacts with LATS1/2 and thus facilitates its phosphorylation by the MST1/2-SAV1 complex.
In turn, active LATS1/2 phosphorylates YAP and TAZ on the serine S127 and S381, resulting in their
inactivation. Transcription coactivators are sequestered in cytoplasm (14-3-3 binds) and forms a complex,
which leads to proteasomal degradation. When the Hippo pathway is weakly active, YAP translocates
to the nucleus and leads to increased target genes expression such as CTGF (connective tissue growth
factor) or CYR61 (cysteine-rich angiogenic inducer 61). However, since YAP does not have an intrinsic
DNA-binding domain, transcription factors are required to mediate transcriptional activity [18,23,24].

3. YAP and Solid Cancers

Given the crucial role of the Hippo pathway in the regulation of organ size and development,
it is not surprising that dysfunctions involving this signaling pathway lead to the development
of cancers.

Over the last decade, many authors have demonstrated the involvement of YAP/TAZ during
carcinogenesis and overall tumor growth. Schematically, tumor cells use the biological properties of
YAP/TAZ to promote their ability to proliferate, migrate, and invade. That ability also facilitates tumor
formation and progression. Immunohistochemical analyses of the biopsies of many human cancers
suggest an increase of YAP/TAZ activity compared to healthy tissues. In this context, meta-analyses of
more than 20 studies on more than 9000 tumors have indicated an activation of YAP/TAZ signaling
in ovarian, head, and neck cancers, for example. Gastro-intestinal and gynecological cancers are more
often associated with mutations in LATS1/2 and NF2 inhibitory kinases [3,25,26].

Overexpression of YAP, which is associated with a high level of TEAD, correlates
with poor prognosis and increases the resistance to chemotherapy in different cancers [27].
However, the mechanisms that underlie the amplification of YAP/TAZ or TEAD expression are
not yet known. Recent studies have suggested that there is cooperation between the Hippo pathway
and other factors such as chromatin remodeling or other signaling pathways. In 2017, Saladi and Coll
demonstrated that amplification of ACTL6A (actin-like protein 6A) and p63 increases the expression of
YAP. Other signaling pathways can interact with the Hippo/YAP/TAZ pathway [28]. Their involvement
in tumor development is often associated with the inhibition of YAP/TAZ inhibitory kinases, notably
PI3K (phosphoinositide 3-kinase), which inhibits LATS1/2. A loss of regulator activity upstream
the Hippo pathway may be responsible for the nuclear translocation of YAP to promote tumor cells
proliferation. YAP nuclear localization is strongly associated with NF2 tumor suppressor mutations
in nervous system cancers. In addition, genetic alterations and methylations on LATS1/2 tumor
suppressors have been observed in various cancers [29,30]. More rarely, deregulation of the Hippo
pathway involves the formation of fusion proteins, notably TAZ-CAMTA1 fusion protein, which is
found in 90% of vascular cancers. This fusion protein is constitutively active and is not regulated by
Hippo pathway components [31].

3.1. Primary Tumor Growth

The Hippo signaling pathway, first defined as a regulatory pathway that controls cell proliferation
and organ size, is widely involved in primary tumor growth. Many studies have described the role
of the YAP-associated transcription factor TEAD in this phenomenon. TEAD in association with
YAP leads to the transcription of target genes known to be involved in cell proliferation and tissue
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homeostasis. These genes include CYR61 and CTGF, Wnt5A, DKK1 (dickkopf WNT signaling pathway
inhibitor 1), TGFB2 (transforming growth factor beta-2), MYC, etc. [26,32,33].

The role of the Hippo pathway in the development of cancers is not limited to direct action on
tumor cells. It also affects their microenvironment, such as their vascular microenvironment.

3.2. Angiogenesis

Angiogenesis may be defined as the formation of new blood vessels from pre-existing vascularization.
Since angiogenesis is a highly regulated process during development, it is not surprising that

an imbalance in new vessel formation can lead to different pathologies, including cancers. Many studies
have demonstrated the impact of primary tumor growth and metastasis formation on neovascularization.
Usually, when a tumor reaches a size of about 2 mm in diameter, it can no longer grow without
the nutrients provided by neovascularization. Blood vessels are essential for tumor growth and allow
tumor cells to metastasize from the primary tumor. Tumor cells that reach the bloodstream migrate
and niche into other organs, which in turn induce new blood vessels formation. Many studies have
suggested that tumor angiogenesis is induced when primary tumor growth causes an imbalance of
the ratio between pro-angiogenic and anti-angiogenic compounds. Increasing the size of the primary
tumor reduces oxygen exchange between tumor cells and blood, resulting in the activation of hypoxic
pathways. HIF (hypoxia-inducible factor) expression is increased, resulting in the overexpression of
pro-angiogenic molecules such as VEGF (vascular endothelial growth factor), FGF (fibroblast growth
factor), and MMPs (matrix metalloproteinases) [34–36].

The cytokines VEGFs are well-known pro-angiogenic factors. Schematically, VEGFs can activate
signaling pathways involved in angiogenesis, for example by increasing the production of factors
that increase endothelial cell proliferation such as MMPS. It appears that the upstream signals of
pro-angiogenic factors are redundant with other signaling pathways such as those of FGFR (fibroblast
growth factor receptor) or PDGFR (platelet-derived growth factor receptor). Endothelial cells are
sensitive to two main factors: Hypoxia-inducible factor 1 (HIF-1), which is expressed when the oxygen
level is very low, and MMPs that cause ECM (extracellular matrix) degradation and release many
growth factors that impact endothelial cell migration. During the early stages of angiogenesis,
endothelial cells lose their junctions with adjacent cells and change their shape to increase their
motility. In 2000, Glienke and Coll demonstrated the ability of endothelial cells to form neo-vessels
in cultured matrigel [37]. They compared these tube-forming endothelial cells to naive endothelial cells
to demonstrate the key role of many compounds known to be transcriptional targets of YAP, including
CTGF, CYR61, and AMOT2 (angiomantin 2). Other research teams have therefore carried on studying
the roles of the Hippo pathway in angiogenesis, starting with proteins belonging to the AMOT family:
AMOT, AMOTL1, AMOTL2. These proteins regulate endothelial cell motility and are both known to
interact with YAP and to be transcriptional targets of YAP/TEAD complex [38–42].

The permeability and integrity of blood vessels are also regulated during angiogenesis due to
the CD44 marker located on endothelial cell surfaces [43]. CD44 can regulate the level of expression
and activity of MMPs. One study has associated CD44 marker with NF2, which is a regulator of
the Hippo pathway described above [44]. However, the consequences of CD44–Hippo interactions on
YAP/TAZ effectors are not yet fully understood.

The microenvironment of endothelial cells is an essential element in their regulation, notably
via ECM’s physical properties. High matrix stiffness normally leads to YAP cytoplasmic localization
in normal conditions [45,46]. Endothelial cells are sensitive to matrix stiffness modification. In 2017,
Mochizuki and Coll demonstrated that when endothelial cells are in a restricted space, YAP is
cytoplasmic. However, when cells are stretched, YAP is nuclear and leads to endothelial cell
proliferation [47,48].

Although the main signaling cascade that regulates angiogenesis is the VEGF/VEGFR pathway,
others can also be involved. For example, the TGF-β signaling pathway regulates endothelial cell
proliferation, differentiation, and migration [49–51]. TGF-β cytokines promote the gene transcription
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involved in angiogenesis mainly via its transcription factor Smad3. Numerous in vivo and in vitro
studies have thus demonstrated the importance of TGF-β in vessel formation. Interestingly, many
studies have demonstrated the functional interaction between Hippo/YAP and TGF-β signaling
pathways [52,53].

3.3. Metastatic Dissemination

Metastatic dissemination can be defined as the ability of tumor cells to migrate from the primary
site to distant sites. Metastatic dissemination is thus a critical step in cancer treatment and is
associated with a poor prognosis. Several studies have highlighted the Hippo pathway’s involvement
in various cancers, which led scientists to study its implication in metastasis development. A series of
studies conducted over the last 10 years has highlighted the importance of YAP in various molecular
mechanisms associated with metastasis dissemination.

In the late phases of tumorigenesis, tumor cells undergo modifications under the influence of
the microenvironment, resulting in an EMT (epithelial-mesenchymal transition) process. EMT is
an essential process for metastatic dissemination and involves epithelial cells losing their polarity and
their inter-cellular junction. During this process, cells acquire mesenchymal phenotypes, allowing
tumor cells to migrate, invade, and thus metastasize. These EMT events are initiated by the inhibition
of E-cadherin in response to signaling pathways such as the Wnt pathway and the TGF-β pathway.
These events are followed by increasing expression of mesenchymal proteins such as vimentin or
fibronectin, which is associated with the increasing expression of transcriptional factors such as snail,
slug, or twist. The loss of E-cadherin is associated with TGF-β activity in several cancers, although
several studies have demonstrated that other signaling pathways such as Wnt, sonic hedgehog, or
the Hippo signaling pathway cooperate with the TGF-β pathway during this process of EMT. Notably,
EMT is a reversible process; tumor cells can recover an epithelial phenotype that is more appropriate
to the development of secondary tumors [54,55].

Few studies have sought to explain how YAP induces EMT. Li and Coll have reported that TAZ
overexpression in mammary epithelial cells induces SOX2 (SRY-related HMG-box-2) expression and
initiates EMT [56]. Overholzer and Coll have demonstrated that YAP overexpression in mammary
epithelial cells results in a change of cell conformation associated with an expression profile related
to EMT [57]. This publication was followed by others with similar findings on cholangiocarcinoma
cells, mouse breast cells, pancreatic cancer cells, and other types of cancers [58]. TAZ leads
to the overexpression of essential EMT transcriptional factors such as snail, slug, twist, ZEB1
(zinc finger e-box binding homeobox 1), and FOX2 with increased expression of vimentin, N-cadherins,
and MMPs [58].

In addition, ZEB1 may interact directly with YAP to regulate the expression of target genes
involved in EMT, associated with poor prognosis and high risk of relapse1. Similarly, Snail and
Slug form a complex with YAP to regulate the differentiation and division of skeletal stem cells [59].
KRAS (Kirsten rat sarcoma viral oncogene homolog) stimulates the Fos-mediated transcriptional
activity of YAP in a mouse model of lung cancer and activates the expression of genes involved
in the EMT process [60]. Finally, a recent study has suggested a molecular mechanism by which YAP
controls EMT: First by suppressing the expression of E-cadherin through a WT1-dependent mechanism,
then by increasing Rac1 activity and promoting cell migration [61]. Significantly, YAP expression and
activity are regulated by the EMT, suggesting a feedback loop between EMT and YAP activity.

Following EMT, tumor cells acquire an elongated morphology and the ability to migrate and
invade. Deregulation of the Hippo pathway has been repeatedly associated with the regulation of
these two major mechanisms in the formation of metastases, particularly in breast cancer, glioma,
and colon cancer [62–65]. Most of the YAP/TAZ–TEAD transcriptional targets that potentially affect
migration have been identified, including CYR61 and CTGF. Most published studies have implicated
the TEAD transcription factor in the YAP-mediated migration process [66–72].
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Intravasation is a crucial process that allows tumor cells to reach the bloodstream. Two recently
published studies involved YAP in intravasation. The loss of LATS kinase activity induces intravasation
of mammary tumor cells via YAP; the same results were found in uveal melanoma with a mutation on
YAP activating GNAQ (G protein subunit alpha Q) [73,74]. However, the molecular mechanisms that
may explain the role of YAP in intravasation have not yet been described.

To survive in the blood circulation, tumor cells must resist mechanical stress, immune cell
monitoring, and apoptosis caused by the loss of junctions between cells and ECM. The Hippo pathway
is known to be involved in cell survival, especially because when YAP is active there is an inhibition of
apoptosis via the repression of the BCL2-like1 (B-cell lymphoma 2-like1) protein and via the stimulation
of the anti-apoptotic protein IAP (inhibitor of apoptosis) [75]. In 2012, Zhao and Coll suggested
the molecular mechanism by which YAP controls tumor cell survival: The kinases LATS1/2 regulate
YAP activation and thus its involvement in tumor cell survival [76].

Finally, extravasation allows tumor cells to leave the bloodstream to invade a secondary tissue.
In this context, Sharif and Coll have demonstrated in mice and zebrafish that inhibition of YAP signaling
decreases extravasation and colonization of secondary sites by mammary tumor cells [77].

All these studies suggest the role of YAP/TAZ in several steps during the metastatic process by
inducing EMT, intravasation, and tumor cell survival. However, the molecular mechanisms are still
poorly defined, and the level of scientific evidence in some studies remains weak.

4. Hippo Signaling Pathway in Bone Pediatric Tumors

Primary bone tumors are rare cancers that can be divided into two categories: Benign primary
bone tumors and malignant primary bone tumors, the latter of which includes osteosarcomas and
Ewing’s sarcoma (EWs). Primary bone tumors represent less than 1% of cancers and about 10% of
all childhood and young adult tumors (Figure 2).

Figure 2. Successive steps in paediatric bone tumour progression. Hypothetical implication of the YAP
signaling pathway. YAP (yes-associated transcription factor coactivator) plays a major role at various
crucial steps during tumor progression. In pediatric bone tumors, the Hippo signaling pathway
may be involved in primary tumor growth, tumor angiogenesis, epithelial-mesenchymal transition,
intravasation, extravasation, cell survival, and metastatic dissemination.
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4.1. Ewing Sarcoma

Ewing’s sarcoma is the second most common primary malignant bone tumor in children and young
adults after osteosarcoma. The annual incidence in the population is about three cases per million,
with a slight prevalence in young boys at a ratio of 1.5. Approximately 85% of EWs occur in bone, with
predominance in the diaphysis of long bones (femur, tibia, fibula, and humerus), but they can also be
localized in the pelvic bones and chest cavity. Approximately 25% of patients show lung metastases at
diagnosis. Ewing’s sarcoma is a very aggressive and osteolytic tumor that is characterized by rapid
growth and massive destruction of affected bones, which can lead to bone pain and fractures [78].
The tumor’s immunohistochemical analysis indicates small round cells that exhibit neuronal markers
such as NSE, S-100, and CD57. Ewing sarcoma’s cellular origin is not clearly established and remains
contested, with two hypotheses that suggest an origin of either primary cells from the neural crest
or MSC. Ewing’s sarcoma development is associated with a chromosomal translocation that results
in a specific fusion gene between EWS and an ETS family gene. The translocation t(11;22)(q24;q12)
between the FLI1 and EWS genes is the most common and occurs in 85% of cases, giving rise to
the transcription factor EWS-FLI1. In about 10% of cases, a translocation between ERG and EWS,
t(21;12)(22;12) is observed in about 10% of cases. The resultant EWS-FLI1 protein specifically recognizes
FLI1’s DNA binding domain and modulates the expression of target genes involved in cell proliferation
and metastatic dissemination [79].

There is scarce literature on the Hippo/YAP signaling pathway and EWs. Nevertheless, a first
study on EWs tumor samples has demonstrated that YAP expression in EWs tumors did not correlate
with patient survival [80]. In contrast, a more recent study conducted on a larger number of patients
demonstrated that a high expression of YAP is associated with a poor prognosis, which suggests that
the Hippo signaling pathway plays a key role in EWs progression. The study used the knockout
of YAP1/TAZ in EWs cells to demonstrate that the activity of YAP1/TAZ drives the cells’ ability to
proliferate and invade [81].

Regarding the role of EWS-FLI1 in regulating YAP signaling in EWs, He and Coll have
demonstrated that EWS-FLI1 oncoprotein enhances tenascin expression by directly binding to its
promoter region and that integrin α5β1-mediated YAP activation may be responsible for expression of
YAP targets’ genes that are implicated in EWs tumor progression [82]. A molecular study has revealed
that tenascin overexpression regulates YAP nuclear localization by decreasing its phosphorylation.
Interestingly, one study has proven the role of the Hippo signaling pathway in the switch between
a proliferative state and a migratory state of EWs cells associated with the fluctuation of EWS-FLI1
expression [83].

Furthermore, YAP seems to be able to regulate EWs progression via the regulation of oncogenes
expression. For example, in vitro study has demonstrated that YAP induces the expression of BMI-1
oncogene in EWs, resulting in the loss of contact inhibition and high cell proliferation [84].

4.2. Osteosarcoma

Osteosarcoma (OS) is the most common primary bone tumor in children and young adults with
an incidence of about four cases per million per year. This cancer accounts for about 35% of cases,
followed by chondrosarcoma (25% of cases), and EWs (16% of cases). OS can occur in any bone but
most commonly occurs in the metaphysis of long bones near the growth plate; epiphyses and diaphysis
are rarely affected. The most common sites are the femur (48% of cases), tibia (27%), and humerus
(15%). Less frequently, OS develops in the skull or facial bones (8% of cases) and pelvis (8%) [84–86].
Among pediatric cancers, OS ranks eighth after lymphomas and brain tumors. OS has two peaks of
occurrence; the first during adolescence and the second in adulthood. OS remains very rare in children
under five years of age at only 2% of cases. At diagnosis, about 20% of patients are present with
metastases, most commonly in their lungs, but bone and lymph node metastases can also exist [87–89].

Literature on OS is less scarce than on EWs. Aberrations in Hippo signaling pathway were
demonstrated in OS using immunochemistry approaches; this demonstrated a nuclear localization of
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YAP in OS patient tumor biopsies [90,91]. Interestingly, Bouvier and Coll have proven a correlation
between YAP nuclear localization and a poor prognosis, allowing for the establishment of a vital
prognostic at diagnosis [90].

The dysregulation of the Hippo signaling pathway seems to be associated with Sox-2 signaling
in OS [92,93]. Basilico and Coll have revealed that Sox2 blocks the Hippo pathway by repressing
the two Hippo activators—Nf2 (merlin) and WWC1 (kibra)—in OS. Repression of Nf2 and WWC1
stimulates YAP expression and enhances the tumorigenicity of OS. More recently, the same researcher
team validated their results using Sox2 CKO animals. The crucial role of Sox-2 in driven OS progression
was also demonstrated by using the PPARγ agonist thiazolidinedione (TZD) drugs. TZD affects OS
cell proliferation only in the high SOX-2 expressing cancer cell population, by YAP sequestration
in cytoplasm [92–94].

At transcriptional level, the transcriptional factor TEAD1 seems to be involved in YAP-driven
OS development. Indeed, studies have used knockdown approaches to demonstrate the crucial
role of TEAD in YAP-driven OS cell lines proliferation. The study’s use of knockdown approaches
thus identifies the YAP1/TEAD1 transcriptional complex as the main dysregulated pathway of
Hippo signaling in OS [95] (Figure 3). Interestingly, Hippo/YAP signaling was seen to interact
with TGF-β signaling pathway in mesothelial or skin epithelial cells at transcriptional level [96,97]
(Figure 3). Since several studies demonstrated the crucial role of the TGF-β to promote OS tumor
progression [98–100], we could formulate the hypothesis that unless it has the ability to interact with
TEAD, YAP would be able to interact with the TGF-β signaling pathway to promote OS development
specifically metastatic process.

Figure 3. Crosstalk between YAP signaling pathway and both TEAD and TGF-β pathways.
When the Hippo signaling pathway is inactive, MST1/2 (mammalian STE20-like kinase 1/2) activates
LATS1/2 (large tumor suppressor 1/2) proteins. LATS1/2 then phosphorylates YAP (yes-associated protein)
which is retained in the cytoplasm or is degraded by the proteasome. When the Hippo signaling pathway
is inactive, YAP is not phosphorylated and translocates to the nucleus where it can exert its transcriptional
activity by binding to TEAD (transcriptional enhanced associate domain). YAP regulates the expression of
specific targets involved in the cellular proliferation and thus in the primary tumor growth.
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YAP expression in OS could be regulated by post-transcriptional or post-transductional
modifications such as epigenetic or ubiquitination processes. In this context, recent studies have
demonstrated the oncogenic role of various miRs in OS by increasing the expression and activity of YAP.
For example, miR-375 increases the activity of YAP1, while miR-624-5p (which is overexpressed in OS)
induces cell proliferation, migration, and invasion by increasing the amount of nuclear YAP [101,102].
Furthermore, a recent study has reported that FAT10, a ubiquitin-like protein, stabilizes YAP expression
by regulating its ubiquitination and degradation [103].

TGF-β (transforming growth factor-β) dimers bind to TBRII receptor that induce the assembly of
TBRI and TBRII receptors into a complex in which TBRII phosphorylates and activates TBRI. Smad3 is
then phosphorylated and activated by TBRI. Activated Smad3 recruits Smad4 and this protein complex
is translocated into the nucleus to regulate target gene expression in association with cofactors such as
YAP. YAP thus could regulate the expression of specific targets involved in the cellular migration and
thus in metastatic development. Smad7 is able to block this signaling pathway.

4.3. YAP-Signaling Inhibitors

Considering the Hippo signaling pathway’s critical role in many pathologies, targeting that
pathway seems to be an interesting therapeutic approach, particularly in oncology (Figure 4).
Most inhibitors focus on the inhibition of YAP–TEAD interaction, but other compounds that inhibit
YAP upstream regulators have been tested [104].

Figure 4. YAP drug targets. Verteporfin blocks YAP (yes-associated protein) signaling pathway either
by decreasing YAP expression or by inhibiting YAP–TEAD (transcriptional enhanced associate domain)
interactions. Dasatinid decreases LATS1/2 (large tumor suppressor 1/2) phosphorylation and activity
driven by Src activity. JQ1 blocks YAP driven BRD4 (bromodomain-containing protein 4) activity by
inhibiting BRD4 association to chromatin (Ac: Acetylations).

The most used compound is verteporfin, a benzoporphyrin-derived molecule already in clinical use
in the treatment of age-related macular degeneration through photodynamic therapy. Liu-Chittenden
and Coll have identified 71 compounds that inhibit TEAD activity in HEK293. Among these
71 components, three molecules belonging to the porphyrin family have demonstrated a strong ability
to inhibit YAP–TEAD transcriptional activity. Verteporfin was selected among these three porphyrins
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to test the effects of YAP inhibition. Its efficacy has been established to inhibit liver growth after YAP
overexpression [105].

Since the discovery of verteporfin in 2014, several studies have used it as a pharmacological
inhibitor in vitro and in vivo. Verteporfin inhibits cell proliferation in vitro and in vivo in several
carcinoma models, notably by inhibiting the expression of oncogenic factors such as c-myc or some
cyclins [106,107]. Verteporfin decreases retinoblastoma cell cycling with an accumulation of cells
in the early G0/G1 phase [108]. It is also able to increase cell death by increasing the expression of
cleaved PARP-1 (poly [ADP-ribose] polymerase 1) or cleaved caspase-3, which are essential factors
in the apoptotic death process [107]. One study reported verteporfin’s efficacy in re-sensitizing
chemotherapy in resistant tumor cells [109]. At the transcriptional level, verteporfin decreases
the expression of Hippo pathway target genes such as Cyr61 and CTGF in many cell types [108,110,111].
Most publications have focused on the inhibition of the YAP–TEAD interaction; however, few studies
have demonstrated a decrease of YAP expression that is associated with cytoplasmic retention.
This latest research also highlights the nonspecific effects of verteporfin [112,113]. Regarding OS,
Zucchini and Coll demonstrated the ability of verteporfin to decrease YAP expression in SaOs2 OS
cells and their ability to proliferate and to migrate [114].

Other compounds have also been identified, notably dasatinib, a tyrosine kinase inhibitor used
in the treatment of certain types of chronic myeloid leukemia. Dasatinib inhibits Src kinase, which
disrupts the JNK (Jun N-terminal kinase)-LIMD1 (LIM domains containing-1)-LATS cascade and
therefore inhibits YAP nuclear translocation [115,116]. Currently, few studies have demonstrated
the essential role of the Src-YAP axis in tumor development, but induction of YAP phosphorylation is
a pharmacological approach that remains to be developed. Direct inhibition of YAP activity remains
a challenge in cancer research. Recently, a new inhibitor of topoisomerases, A35, has produced some
efficacy in YAP phosphorylation on serine 127, which blocks its nuclear translocation [117].

Piccolo and Coll have recently demonstrated the interaction between YAP and BRD4
(bromodomain-containing protein 4), a protein of the BET (bromo- and extra-terminal domain)
family. BRD4 binds to acetylated histones and recruits transcription factors to DNA. JQ1 is
a competitive inhibitor of BRD4 and decreases the amount of YAP-dependent transcribed genes [118].
In this context, Lamoureux and Coll, demonstrated that JQ1 significantly delays tumor growth
in MNNG/HOS osteosarcoma xenograft and POS-1 sarcoma syngeneic models and prolongs
cancer-specific survival [119].

The Hippo signaling pathway represents a real opportunity in cancer treatment. YAP activation
and overexpression are associated with both tumor cell development and cancer progression.
Unfortunately, there is no clinically available drug that targets the Hippo pathway. Identifying
new drugs that specifically targets the Hippo pathway, including YAP, remains a challenge for
pharmaceutical companies.

5. Conclusions and Future Direction

Accumulating evidence has demonstrated the rationale for targeting the Hippo signaling pathway
in EWs and OS. Targeting the Hippo signaling pathway could affect both the primary growth tumor
and the metastatic process. However, despite many improvements in OS and EWs treatments since
the 1970s, resistance to chemotherapy remains a major and unsolved problem that prevents the total
remission of some patients. Multiple cell survival mechanisms prevent current treatments from being
fully effective. In addition, responses to chemotherapy agents differ from one patient to another due to
OS and EWs tumor heterogeneity. Schematically, two types of resistance mechanisms to chemotherapy
can be described: Innate resistance that is intrinsic to the cell and acquired resistance that appears
after treatment. Different mechanisms may be involved in cells-resistance acquisition, such as ABC
transporters, amplification of therapeutic targets, appearance of mutations on therapeutic targets,
or activation of alternative survival signaling pathways [120–122]. Understanding and deciphering
the molecular mechanisms underlying this cells-resistance process is essential for adapting treatments
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and preventing relapse. In this context, several studies involve YAP activation in resistance to
chemotherapies, radiotherapies, and immunotherapies in many cancers. Interestingly, regarding OS,
Wang and Coll have demonstrated YAP-regulated chemoresistance in MG63 osteosarcoma cells [123].
Further studies should be performed to improve the specific role of Hippo/YAP in OS and EWs
tumor chemoresistance.
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