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Human motor learning is governed by a suite of interacting mechanisms each one
of which modifies behavior in distinct ways and rely on different neural circuits.
In recent years, much attention has been given to one type of motor learning,
called motor adaptation. Here, the field has generally focused on the interactions
of three mechanisms: sensory prediction error SPE-driven, explicit (strategy-based),
and reinforcement learning. Studies of these mechanisms have largely treated
them as modular, aiming to model how the outputs of each are combined in
the production of overt behavior. However, when examined closely the results of
some studies also suggest the existence of additional interactions between the
sub-components of each learning mechanism. In this perspective, we propose that
these sub-component interactions represent a critical means through which different
motor learning mechanisms are combined to produce movement; understanding
such interactions is critical to advancing our knowledge of how humans learn new
behaviors. We review current literature studying interactions between SPE-driven,
explicit, and reinforcement mechanisms of motor learning. We then present evidence
of sub-component interactions between SPE-driven and reinforcement learning as well
as between SPE-driven and explicit learning from studies of people with cerebellar
degeneration. Finally, we discuss the implications of interactions between learning
mechanism sub-components for future research in human motor learning.

Keywords: cerebellar degeneration, adaptation, reinforcement learning, explicit and implicit motor learning,
sensory prediction error

INTRODUCTION

The field of motor neuroscience has greatly advanced our understanding of how humans learn
to produce and control new movements. There are many contexts in which motor learning
occurs, such as when learning to perform movements de novo or learning the appropriate
sequence of movements necessary to execute a skilled action. Here, we focus on studies of
a third motor learning context, often termed motor adaptation, in which one must learn to
modify an existing movement pattern to account for persistent changes to the body, task, or
environmental dynamics (Krakauer et al., 2019). All types of motor learning likely rely on multiple
interacting mechanisms that, in turn, rely on different neural circuits. However, the mechanisms
underlying motor adaptation have received particular attention in recent years, with most literature
studying the interactions between three mechanisms: learning driven by sensory prediction errors
(SPEs, or the difference between the sensory outcome of a movement and a prediction of that
outcome), explicit (or strategy-based) learning, and reinforcement (or reward-based) learning.
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Studies of interactions between these mechanisms have largely
treated them as modular, focusing on how each mechanism’s
outputs are combined to produce overt learning behavior. To
isolate one or more learning mechanisms, studies have modified
the attentional cues and/or sensory feedback provided during
behavioral learning tasks. Intriguingly, these manipulations
have produced evidence of additional interactions between the
sub-components of the different learning mechanisms. Here, we
propose that understanding these sub-component interactions is
needed to advance our knowledge of how learning mechanisms
combine to produce overt behavior. We first summarize the
current literature studying interactions between SPE-driven,
explicit, and reinforcement mechanisms of motor learning. We
then present evidence of sub-component interactions between
SPE-driven and reinforcement learning, as well as between
SPE-driven and explicit learning, from studies of people with
cerebellar degeneration. We conclude with a discussion of
considerations for future research.

Motor Adaptation Results From the
Interaction of Multiple Mechanisms
While several mechanisms have been proposed to contribute
to motor learning, three have largely been assumed to account
for the vast majority of observed behavioral changes in simple
motor adaptation tasks (Krakauer et al., 2019). These three
mechanisms are SPE-driven learning, explicit learning, and
reinforcement learning (Figure 1). Each of these mechanisms
is thought to respond to a different kind of feedback signal,
and consequently, drive changes in behavior in different (and
occasionally opposing) ways and at different rates (Mazzoni
and Krakauer, 2006; van der Kooij et al., 2018; Albert et al.,
2020; Morehead and Orban de Xivry, 2021). In general, the
study of these mechanisms has treated them as modular,
typically assuming that observed behavior can be described as
the summation of the outputs of the individual mechanisms.
Thus, when the contribution of a single mechanism cannot be
easily isolated experimentally, it is often estimated by subtracting
out the influence of a second, more easily measured mechanism
(Taylor et al., 2014; McDougle et al., 2015; Maresch et al., 2021).

One commonly used task to study motor adaptation has
participants generate a movement such as a reach or a saccade
toward a target. Participants are then presented with a predictable
perturbation that alters the outcome of that movement, which
necessitates learning to alter the movement pattern to account
for the imposed perturbation. For example, in a task requiring
the adaptation of reaching movements to a visuomotor rotation,
individuals observe a cursor move at a fixed non-zero angle
relative to their actual hand motion, which is hidden from view.
Over many trials, participants learn to adjust their motor plans to
reach in a direction opposite the perturbation to reduce the error.
Trial-to-trial learning in this adaptation task has been shown to
be supported by all three mechanisms.

SPE-driven learning was the first mechanism recognized
to contribute to behavioral changes in adaptation tasks. SPEs
convey the difference between the sensory outcome of a
movement and a prediction of that outcome based on a copy of
the outgoing motor command (Kawato, 1999; Tseng et al., 2007;

Shadmehr et al., 2010; Morehead et al., 2017). The SPE signal is
thought to be computed by the cerebellum (Medina, 2011; Schlerf
et al., 2012); hence people with cerebellar damage are known
to exhibit poor performance in adaptation tasks (Criscimagna-
Hemminger et al., 2010; Izawa et al., 2012; Therrien et al.,
2016; Wong et al., 2019). SPEs do not necessarily reflect task
failure, but rather the fact that a movement did not result
in the predicted sensory outcome according to the planned
motor command. Thus, if an inappropriate motor command
was executed accurately (e.g., reaching toward the target when
the task is to reach in the opposite direction from the target),
it would result in a task error but not an SPE. More recently,
such task errors (specifically, the observed difference between the
movement outcome and the intended movement target or goal)
have also been suggested to drive learning under this mechanism
(Miyamoto et al., 2014; Leow et al., 2018; Albert et al., 2020).
Regardless, SPE-driven learning requires sensory information
about the direction and magnitude (i.e., vector information)
of movement errors. In motor adaptation tasks, vector error
information is typically provided by contrasting the desired
target location with a visual representation of the index fingertip
position during reaching movements (e.g., a cursor on a screen).
The signature of SPE-driven learning (and the most reliable
measure of its impact on behavior) is the existence of after-
effects—behavioral changes reflecting a new mapping of motor
commands to predicted sensory outcomes that persist even
after the perturbation has been removed. SPE-driven learning
is described as occurring without conscious awareness, possibly
due to a concomitant recalibration of perception (Ostry and
Gribble, 2016; Rossi et al., 2021), and can be expressed even at
low reaction times (approximately 130 ms, Haith et al., 2015;
Leow et al., 2017; Hadjiosif and Krakauer, 2021); hence, it is often
referred to as implicit learning. By most accounts, SPE-driven
learning is thought to be the primary driving force behind motor
adaptation (Izawa and Shadmehr, 2011; Therrien et al., 2016;
Cashaback et al., 2017; Wong et al., 2019).

In addition to SPE-driven learning, prior work has
emphasized a large contribution of an explicit learning
mechanism. In the context of adaptation tasks, explicit learning
is often described as the acquisition of an aiming strategy or
learning to deliberately move somewhere other than the target
location. For example, if a cursor is rotated 45◦ clockwise
relative to the hand, people can accurately move their hand
to a target if they adopt a strategy of aiming their reach 45◦

counterclockwise from the target. Broadly speaking, explicit
learning arises as a result of a task error (i.e., awareness that
the task objective was not achieved), although exactly how task
errors are quantified and how they lead to changes in behavior
are not well understood. Nevertheless, studies probing the
relationship between SPE-driven and explicit learning often
assume that these mechanisms have an additive impact on
behavior (Mazzoni and Krakauer, 2006; Benson et al., 2011;
McDougle et al., 2015; Long et al., 2016; Miyamoto et al., 2020).
Researchers often subtract explicit aiming reports from net
learning to measure SPE-driven learning (e.g., Taylor et al.,
2014). Alternatively, researchers might measure the SPE-driven
learning process using a process dissociation procedure and
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FIGURE 1 | Control policy updates arising from the interactions of three learning mechanisms. On trial n, a control policy is issued to perform the current movement
(light green thick arrows). This plan is executed by the body (physical plant), and sensory feedback is detected (dark green arrows). The SPE-driven learning system
predicts the expected sensory consequences of the movement, which is compared against sensory feedback of the actual executed movement to compute a
sensory prediction error (SPE). The reinforcement learning system predicts the expected reward associated with that movement and this is compared against the
actual reward outcome to compute a reward prediction error (RPE). The explicit learning system compares the expected outcome of the strategy against the
observed movement outcome to compute a task error (TE). In all cases, the computed error signals (thin blue arrows) update both the respective prediction
mechanism as well as the control policy for the next (n + 1) movement. Most studies treat this control-policy update as the combination of the contributions of the
individual learning systems (here labeled as the Integrator). We suggest that these systems also interact in other ways. For example, SPE signals are a means by
which the reinforcement-learning and explicit-learning systems could solve the credit-assignment problem in determining whether the policy or the execution of that
policy led to the observed result (solid orange arrows). Additional speculated interactions may exist (dashed orange arrows), although more behavioral evidence is
needed to support the existence of such connections in humans.

subtract it from net learning to estimate the contribution of an
explicit process (Werner et al., 2015). Many studies have used
these methods to examine adaptation across the age span and
have suggested that impaired performance in older individuals
is largely due to a reduced contribution of the explicit learning
mechanism, while the SPE-driven learning system remains intact
(McNay and Willingham, 1998; Bock, 2005; Heuer and Hegele,
2008; Hegele and Heuer, 2013; Vandevoorde and Orban de
Xivry, 2019).

Finally, there is reinforcement learning. Despite being one
of the earliest learning mechanisms to have been studied in
the context of behavior modification (Thorndike, 1905), studies
have only recently begun to carefully examine its contribution
to adaptation tasks. Reinforcement learning occurs in response
to scalar feedback about performance outcomes. In the extreme
case, scalar feedbackmay be a binary signal (e.g., an auditory tone
indicating success or failure), but reinforcement learning can also
occur in response to a success gradient (e.g., hot/cold). Studies

of motor adaptation have attempted to leverage reinforcement
learning by providing binary or gradient feedback in place of
a visual cursor representing the position of the hand during
reaching movements. In this way, an individual does not have
access to the direction or magnitude of movement errors; rather,
the individual must explore possible task solutions to discern
those that yield success. Reinforcement learning induces a change
in behavior by increasing the likelihood of generatingmovements
associated with rewarding outcomes. It is thought to depend
on reward-prediction errors (RPEs), computed in midbrain
dopaminergic circuits, which convey the difference between
predicted and actual rewards (Schultz, 2006; Lee et al., 2012).
Although learning in response to rewards could occur as part
of a deliberate decision-making strategy, here we classify such
situations as examples of explicit learning since they are primarily
driven by task errors (where the ‘‘task’’ in this case is to choose
the most rewarding option). Instead, we view reinforcement
learning as an implicit process, in line with the notion that
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behavioral conditioning can occur without needing to explicitly
learn the relationship between stimulus, response, and outcome
(Skinner, 1937). Indeed, in motor learning tasks, exploration of
the response space (characteristic of a reinforcement learning
process) can be driven by unconscious motor variability (Wu
et al., 2014), and reinforcement learning has been shown to
couple with other implicit processes such as use-dependent
learning (Mawase et al., 2017). However, more work is needed
to carefully dissociate the explicit and implicit effects of learning
in response to reinforcement.

Reinforcement learning can occur either as a stand-alone
process that is independent of the other learning mechanisms,
or by interacting with either the SPE-driven or explicit process.
In the former case, reinforcement learning drives motor learning
without recalibrating perception (Izawa and Shadmehr, 2011).
It may operate by inducing both exploration of the reward
landscape as well as the repetition of more successful movements
(Nikooyan and Ahmed, 2015; Cashaback et al., 2017; Uehara
et al., 2019). Thus, reinforcement learning may complement
other learning mechanisms by contributing in an additive
manner to the net observed behavior (Kim et al., 2019), although
if only scalar feedback is provided this could alternatively reduce
the amount of learning arising from another mechanism like
SPE-driven learning (Izawa and Shadmehr, 2011; van der Kooij
et al., 2018). On the other hand, reinforcement learningmay have
a more intimate interaction with SPE-driven or explicit learning.
It could do so by increasing the likelihood of selecting more
successful behaviors that have been identified through these
other learning mechanisms (Shmuelof et al., 2012; Nikooyan and
Ahmed, 2015). For example, reinforcement learning may help
individuals to identify and preferentially select more successful
explicit strategies (Bond and Taylor, 2015; Codol et al., 2018;
Holland et al., 2018; Rmus et al., 2021) because the explicitly-
identified action also becomes associated with greater reward.
Regardless of its exact mechanism of action, reinforcement
learning is typically treated as acting in conjunction with other
learning mechanisms to modify behavior (Haith and Krakauer,
2013).

Evidence of Interactions Between
Sub-components of Learning Mechanisms
Although the interactions between SPE-driven, explicit, and
reinforcement learning mechanisms have largely been modeled
as a summation or integration of each mechanism’s outputs,
imperfect additivity has been noted (e.g., Maresch et al.,
2021). Deviations from model predictions have sometimes
been attributed to additional learning processes not measured
or, alternatively, to the inability of measurement methods to
fully capture a given mechanism’s output. However, some
work suggests the additional possibility that sub-components of
each mechanism may also interact. That is, the computations
underlying one learning mechanism may serve a critical role
in the functioning of another. Understanding the nature
of sub-component interactions is crucial, as their presence
significantly complicates attempts to experimentally parse the
contribution of different learning mechanisms in behavioral
tasks. To date, the clearest evidence of sub-component

interactions comes from studies of people with cerebellar
degeneration. With the cerebellum’s role in SPE-driven learning
well established, one hypothesis has been that cerebellar
damage selectively disrupts this learning mechanism. Yet
studies attempting to distinguish SPE-driven, explicit, and
reinforcement learning in people with cerebellar degeneration
have not shown the hypothesized dissociation (McDougle et al.,
2016; Therrien et al., 2016; Wong et al., 2019).

Therrien et al. (2016) attempted to distinguish supervised and
reinforcement learning in people with cerebellar degeneration
by modifying error feedback in an adaptation task. In one
condition, SPE-driven learning was leveraged by providing full
vector feedback of movement errors in the form of a visual cursor
representing the index fingertip position throughout reaching
movements. In a second condition, reinforcement learning was
leveraged by providing only binary feedback of reach success
or failure. People with cerebellar degeneration showed distinct
behaviors in the two learning conditions: no retention of learning
(i.e., no after-effect) when provided with vector error feedback,
but significant retention when provided with binary feedback.
If examined only at the output level of each mechanism, these
results are consistent with cerebellar degeneration impairing
supervised learning and leaving reinforcement learning intact.
However, people with cerebellar degeneration learned more
slowly with binary feedback compared to age-matched control
participants, suggesting that cerebellar degeneration may reduce
the efficiency of reinforcement learning. Importantly, this latter
result pointed to a previously unknown interaction between
cerebellar computations and reinforcement learning.

How could cerebellar computations contribute to
reinforcement learning? Cerebellar SPEs may be used to
solve reinforcement learning’s credit-assignment problem
(Taylor and Ivry, 2014; McDougle et al., 2016; Therrien et al.,
2016, 2018). In reinforcement learning, the valence of RPE
signals is used to update the future probability of selecting a
particular motor response to a given stimulus (Dayan and Niv,
2008; Haith and Krakauer, 2013). However, motor response
execution is rife with uncertainty due to a combination of noise
inherent in the sensorimotor system and variable properties of
the environment (Franklin and Wolpert, 2011). Sensorimotor
uncertainty makes determining the true cause of reward signals
(i.e., credit-assignment) ambiguous. Cerebellar SPEs convey
whether a movement was executed as intended, and thus
constitute a particularly useful solution to the credit-assignment
problem (Figures 2A,B).

Reinforcement learning behavior is known to account for
higher-order statistical properties of sensorimotor uncertainty,
such as the distribution standard deviation (Trommershäuser
et al., 2008; Wu et al., 2009, 2014; Landy et al., 2012). However,
behavioral variability reflects variance in both motor planning
(i.e., response selection) and motor execution (van Beers et al.,
2004; van Beers, 2009). Therrien et al. (2016, 2018) modeled
reinforcement learning with behavioral variability parsed into
exploration, representing planning variability, and motor noise,
representing execution variability. Their conjecture was that,
after positive reinforcement, response selection is updated
in a manner that accounts for exploration, but not motor
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FIGURE 2 | Proposed interactions between the SPE signal and other learning mechanisms to solve the credit-assignment problem. (A) On a given trial, individuals
receive positive or negative reward feedback about reach outcome. If this feedback is unexpectedly negative (i.e., a negative RPE signal), for example, individuals
must determine whether they erroneously selected the wrong control policy or simply executed the correct policy poorly. (B) An example state diagram
corresponding to the situation in panel (A) describes how an update signal is generated based on an RPE (indicating an error has occurred). An SPE is used to
determine if the RPE should be attributed to a poor policy choice or a poor execution of that policy. (C) During explicit learning, an individual adopts a strategy (e.g.,
aim location) to attain a goal (hit the target with the cursor). If a task error arises, individuals must determine if they erroneously selected the wrong explicit strategy or
if they poorly executed the correct strategy. (D) Although it remains unclear exactly how explicit learning occurs, we propose that updates to the strategy choice
occur as a result of a task error (TE), which is modulated by an SPE informing about the accuracy of executing the chosen strategy.

noise. In their studies, people with cerebellar degeneration
displayed reinforcement learning behavior consistent with
excessive variability being allotted to motor noise—a pattern
indicative of impaired estimation of action execution. People
with cerebellar degeneration also showed reduced exploration
after negative reinforcement (Therrien et al., 2018), suggesting
that cerebellar degeneration impacts the integration of both
positive and negative reinforcement signals. The cumulative
result is a reduced updating of action selection in response to
reinforcement signaling that slows learning in this population.

McDougle et al. (2016) examined the role of SPE-like
sensorimotor error signals in solving a credit-assignment
problem in reinforcement-based decision making. Participants
were required to select between two visual targets, each associated

with a different magnitude of reward, by reaching to hit one
or the other. On some trials they were given false feedback
about the accuracy of their reach, which generated RPEs—the
actual reward received differed from the expected outcome.
In contrast to neurologically healthy participants, people with
cerebellar degeneration were unable to determine if RPEs should
be attributed to themselves or the experimental manipulation
(i.e., solve the credit-assignment problem) in this task, suggesting
that reach-related sensorimotor error signals play an important
role in reinforcement learning.

Reinforcement learning is not the only situation in which
a credit-assignment problem must be resolved. Although it is
less clear exactly how explicit learning operates, sensorimotor
uncertainty likely contributes to a credit-assignment problem
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similar to that identified above. For example, onemust determine
if an error arose because of a poor choice of strategy, or
because of poor execution of the chosen strategy. Here again,
the involvement of an SPE signal would be beneficial to
formulate and modify explicit strategies by informing how well
the intended strategy was executed (Figures 2C,D).

Evidence supporting the involvement of an SPE-like signal in
explicit learning arises from a series of studies investigating the
ability of people with cerebellar degeneration to develop de novo
strategies for learning. As noted above, cerebellar degeneration
disrupts the signal supporting SPE-driven learning, which
impairs performance during a visuomotor rotation paradigm.
Previous work had demonstrated that in such tasks, people
with cerebellar degeneration could follow a provided strategy
to aim in a direction other than the target (i.e., opposite
the visuomotor rotation), allowing them to overcome the
perturbation and successfully hit the target (Taylor et al., 2010).
Such an observation led to a puzzling question—if their ability
to employ strategies was so successful, why did not people with
cerebellar degeneration use strategies all the time to compensate
for their movement deficits instead of continuing to rely on
an impaired SPE-driven learning system? Butcher et al. (2017)
showed that, on their own, people with cerebellar degeneration
had great difficulty invoking explicit learning to identify a
successful aiming strategy that would minimize task errors. That
is, some people with cerebellar degeneration continued to aim
directly for the target despite the presence of the visuomotor
rotation perturbation. However, Wong et al. (2019) revealed that
this was only part of the answer. Under certain circumstances,
people with cerebellar degeneration could successfully develop
de novo strategies using explicit learning. Wong and colleagues
demonstrated that when people with cerebellar degeneration
were able to view their actual hand moving simultaneously with
the cursor, they could resolve the credit assignment problem by
recognizing that task errors were not a result of a mis-executed
motor command but instead caused by a manipulation of the
cursor. That is, people with cerebellar degeneration could use
visual feedback to appropriately attribute performance errors to
task errors rather than execution errors. Consequently, people
with cerebellar degeneration were able to invoke explicit learning
to modify their movement goals (i.e., change their aiming
direction) akin to that of age-matched neurotypical controls.
This work thus suggests a role for SPE signals in supporting
explicit learning. While more work is needed to parse the
specific role that such SPE signals may play, together these
studies provide compelling evidence of interactions between
cerebellar computations and both explicit and reinforcement
learning mechanisms.

CONCLUSION

We have reviewed current literature on the interactions between
SPE-driven, explicit, and reinforcement learning mechanisms
in motor adaptation. It is generally agreed that overt learning
behavior results from the combined outputs of each mechanism,
but interactions between these mechanisms likely occur at

multiple levels. For example, studies of people with cerebellar
degeneration provide evidence of a role for SPE signals in
the functioning of both reinforcement and explicit learning.
These studies suggest that an SPE signal may be needed by
reinforcement and explicit learning systems to know whether
RPEs or task errors, respectively, arose from poorly executed
movements or poor selection of an action or strategy. By helping
to resolve this credit-assignment problem, SPEs can optimize
learning by informing reinforcement and explicit learning
systems whether an action or strategy truly needs to change.

It is notable that some of the neuroanatomy needed to support
these proposed interactions has been shown. With regard to
a role for cerebellar SPE signals in reinforcement learning,
the cerebellum communicates directly with the dorsal striatum
via a short-latency disynaptic connection that modulates
corticostriatal plasticity (Hoshi et al., 2005; Chen et al., 2014).
The posterior lobules of the cerebellum are also reciprocally
connected with prefrontal cognitive regions of the cerebral
cortex, which are hypothesized to support the explicit learning
process (Ramnani, 2006; Strick et al., 2009). The nature of the
information sent through these pathways is unclear, but there is
recent evidence to suggest homologous function across cerebellar
projections (Pisano et al., 2021). However, the cerebellum
contributes to a diverse set of behaviors, both motor and
non-motor (Diedrichsen et al., 2019; King et al., 2019; Sereno
et al., 2020). Further work is needed to understand whether
different regions of the cerebellummay be preferentially involved
in the interactions proposed here or whether variability in the
pattern of cerebellar damage across individuals and studies can
explain some contrasting results. Sharing of the SPE signal
represents one of the multiple possible interactions among SPE-
driven, reinforcement, and explicit learning mechanisms below
the level of their output stages (see Figure 1), and future research
is needed to elucidate others. Importantly, the presence of such
multi-level interactions means that learning mechanisms cannot
be easily isolated.

When it comes to motor adaptation, studies of people with
cerebellar degeneration suggest that SPE-driven learning may be
the primary system responsible for resolving performance errors.
Only when the influence of SPE-driven is minimized, such as
by eliminating the need or ability to compute a meaningful SPE
signal (e.g., by removing cursor feedback altogether or providing
visual feedback of the hand), can reinforcement learning or
explicit learning become the predominant driver of changes in
behavior (Therrien et al., 2016, 2021; Cashaback et al., 2017;
Wong et al., 2019). This has important implications for future
studies aiming to manipulate or leverage individual learning
mechanisms.

Finally, the work reviewed here begs the question of whether
further insight into the interactions between SPE-driven, explicit,
and reinforcement learning mechanisms can be gained from
studies of motor adaptation in other patient populations.
Parkinson’s disease (PD) is often studied as a model of basal
ganglia dysfunction, a structure known to play an integral
role in reinforcement learning (Schultz, 2006; Lee et al., 2012).
A sizable body of literature has studied motor adaptation in
people with PD but has noted inconsistent findings. While some
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studies show similar adaptation behavior between people with
PD and age-matched control participants (e.g., Stern et al., 1988;
Marinelli et al., 2009; Leow et al., 2012, 2013), other studies have
noted adaptation impairments in people with PD (Contreras-
Vidal and Buch, 2003; Venkatakrishnan et al., 2011; Mongeon
et al., 2013). Discrepant results may stem from differences
in the size of the imposed perturbation (Venkatakrishnan
et al., 2011; Mongeon et al., 2013) or medication status of
participants across studies (Semrau et al., 2014). To date, no
study has attempted to parse the contributions of SPE-driven,
explicit, and reinforcement learning to motor adaptation in
this population (but see Cressman et al., 2021), but it would
be highly interesting for future studies to do so. Overall,
this literature, along with the other studies reviewed here,
underscores the complexity of interactions occurring between

motor learning mechanisms and argues for the importance
of not treating such learning mechanisms as predominantly
modular.
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