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Background:Osteosarcoma (OSA) is the most prevalent form of malignant bone cancer

and it occurs predominantly in children and adolescents. OSA is associated with a

poor prognosis and highest cause of cancer-related death. However, there are a few

biomarkers that can serve as reasonable assessments of prognosis.

Methods: Gene expression profiling data were downloaded from dataset GSE39058

and GSE21257 from the Gene Expression Omnibus database as well as TARGET

database. Bioinformatic analysis with data integration was conducted to discover the

significant biomarkers for predicting prognosis. Verification was conducted by qPCR and

western blot to measure the expression of genes.

Results: 733 seed genes were selected by combining the results of the expression

profiling data with hub nodes in a human protein-protein interaction network with their

gene functional enrichment categories identified. Following by Cox proportional risk

regression modeling, a 2-gene (PML-EPB41) signature was developed for prognostic

prediction of patients with OSA. Patients in the high-risk group had significantly poorer

survival outcomes than in the low-risk group. Finally, the signature was validated and

analyzed by the external dataset along with Kaplan–Meier survival analysis as well as

biological experiment. A molecular gene model was built to serve as an innovative

predictor of prognosis for patients with OSA.

Conclusion: Our findings define novel biomarkers for OSA prognosis, which will possibly

aid in the discovery of novel therapeutic targets with clinical applications.

Keywords: osteosarcoma, protein-protein interaction network, gene signature, prognostic prediction,

survival analysis

INTRODUCTION

Osteosarcoma (OSA) is an aggressive malignant neoplasm that occurs around the metaphysis
of tubular long bones. It exhibits osteoblastic differentiation and produces malignant immature
osteoid (1, 2), which causes a painful health burden and potentially fatal complications. OSA
occurs primarily in children and adolescents: more than 26,400 new cases are diagnosed each
year and the disease is frequently associated with poor clinical outcomes (3). Chemotherapeutic
and radiation treatments cannot efficiently treat OSA and their varied efficacies may be due to
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individual differences and patient-specific factors. Moreover, the
toxicity of some chemotherapeutic drugs cannot be avoided
(4, 5), which adds to the pain and burden of disease associated
with OSA. Therefore, it is imperative that clinicians and
patients understand the best options for the treatment of
OSA and prevention of undesirable complications. Over the
past two decades, the survival rate of patients with OSA has
not substantially improved. Many studies of the molecular
mechanism of OSA have identified several oncogenes and tumor
suppressors that play significant roles in the tumorigenesis of
OSA (6, 7). However, no generally recognized biomarkers have
been established to facilitate the comprehensivemanagement and
the prognostic prediction of patients with OSA, which might
help overcome the poor survival rate of OSA. With the rapid
development of high-throughput sequencing and improvements
in data analysis techniques, the discovery of cancer-related
genes and the identification of clustering models can rely on
bioinformatics and data integration. Recently, many biomarkers,
including MYC and SP1, have been verified to be correlated
with the progression and clinical diagnosis of OSA (8, 9).
Additionally, the identification of tumor biomarkers and the
discovery of gene functions are the focuses of many studies
(10, 11). However, few research has focused on establishing
specific gene signatures that can accurately guide patient therapy
when predicting the outcomes of OSA. Thus, identifying tumor
markers or constructing feature gene models are still the focus of
much research and study.

The purpose of this study was to explore the biological
significance of certain gene candidates for predicting prognosis
in OSA. We focused on analyzing gene expression profiles in
a Gene Expression Omnibus (GEO) dataset combined with a
human protein-protein interaction (PPI) network to identify
the seed genes that affect the prognosis of patients with
OSA. Using functional enrichment, Cox proportional hazards
regression modeling, and Kaplan–Meier survival analysis, we
established a 2-gene prognostic signature that can serve as a
model for predicting prognosis in OSA. Finally, the consistency
and availability of our findings were confirmed by an external
GEO dataset and TARGET database. Based on the conclusion
above, experimental validation was conducted on human normal
osteoblast and OSA cell line. The 2-gene signature can provide
new insights for monitoring the prognostic status of patients
with OSA.

MATERIALS AND METHODS

Data Source
Gene expression profiling data encompassing OSA were
downloaded from GEO (12) in the National Center for
Biotechnology Information database. We used the mRNA of
internal testing dataset GSE39058, including 2 subsets: GSE39055
andGSE39057 (13) (platform: GPL14951 IlluminaHumanHT-12
WG-DASL V4.0 R2 expression beadchip). Expression profiling
contained 29,377 gene probes and 47 samples, including 37
independent OSA biopsy samples and 5 paired samples (5
OSA biopsy samples and 5 surgical resection specimens);
patient clinical information and survival time data were also

included. GSE21257 (14) was used as an external dataset
of verification (platform: GPL10295 Illumina human-6 v2.0
expression beadchip). This dataset included 53 samples of
OSA and follow-up information. TARGET dataset including 84
samples was also applied for further validation.

Identification of Seed Genes
The degree of variation of each sample gene was measured by
the CV, which was calculated according to the following formula:
CV =

SD
MN × 100%, where SD refers to the standard deviation,

and MN is the mean. The genes for which the CV was larger than
20% were selected for further analysis as the seed genes of OSA.

Unsupervised Hierarchical Clustering
Based on the seed genes obtained in the previous step, 47
samples underwent unsupervised hierarchical clustering using
the hclust function in R and the Euclidean distancemeasurement.
The heatmap was completed with the pheatmap package, which
revealed the gene expression levels and clinical information of
the samples.

PPI Network Construction
Five PPI network databases, including the Human Protein
Reference Database (15), the Database of Interacting Proteins
(16), the Biomolecular Interaction Network Database (17),
IntAc (18) and the Molecular INTeraction Database (19), were
integrated to develop a PPI network. Seed genes were entered into
the network and became the key nodes. Each node and its closest
neighbor genes were then extracted to construct a sub-network
of candidate genes.

Functional Enrichment Analysis
A web server for the functional interpretation of Gene lists, g:
Profiler (20) (http://biit.cs.ut.ee/gprofiler/), was used to carry out
the enrichment analysis of Gene ontologies, Kyoto Encyclopedia
of Genes and Genomes pathway analysis, and human protein
profiling for these candidate genes. EnrichmentMap (21),
a Cytoscape plugin, allowed for visualization of the gene
enrichment analysis results, which contributed to a better
understanding of the gene functional enrichment categories.

Construction of the 2-Gene Signature
First, univariate Cox regression analysis for each candidate
gene was used to identify genes that significantly (p < 0.01)
influenced the prognosis of OSA. Then, we enrolled the genes
into the multivariate Cox regression analysis to determine the
independent prognostic factors that are not affected by covariates
such as age, sex, and recurrence. The Cox proportional risk
regression model was constructed by the coxph function in
survival R package (Tables 1, 2). Next, the regression coefficients
and expression values of the genes that significantly influenced
the prognosis of OSA were used to establish the PI, which
was calculated according to the following formula: PI =
∑

coef
(

genei
)

× exp
(

genei
)

. Patients were divided into high-
risk and low-risk groups on the basis of median PI value.
The significance of the difference between the 2 groups was
determined by the log-rank test, and Kaplan–Meier survival
curves were performed to determine the survival state of OSA
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TABLE 1 | Univariate and multivariate cox survival analysis in the training

GSE39058 and two external datasets (TARGET database and GSE21257).

Variables Univariate analysis Multivariable analysis

HR 95% CI of

HR

P-value HR 95% CI of

HR

P-value

GSE39058

2-gene risk score

Risk score

(high/low)

6.631 1.43–30.75 1.56E-02 8.991 1.74–46.21 8.50E-03

Age 0.997 0.957–1.039 0.922 0.981 0.942–1.022 0.371

Gender

(male/female)

1.045 0.329–3.308 0.941 0.576 0.171–1.947 0.375

TARGET datasets

2-gene risk score

Risk score

(high/low)

2.944 1.33–6.51 7.00E-03 3.118 1.393–6.977 5.65E-03

Age 0.999 0.999–1.001 0.81 1 0.999–1.000 0.809

Gender

(male/female)

0.868 0.624–1.208 0.402 0.977 0.646–1.479 0.915

Metastatic vs.

non-metastatic

4.74 2.27–9.89 3.41E-05 5.09 2.416–10.73 1.88E-05

GSE21257

7-gene risk score

Risk score

(high/low)

2.7 1.17–6.19 0.019 2.85 1.215–6.681 0.016

Age 0.999 0.996–1.004 0.957 1.002 0.998–1.005 0.319

Gender

(male/female)

1.402 0.58–3.34 0.44 1.407 0.584–3.387 0.446

TABLE 2 | Detailed sample information of internal and external datasets.

Characteristics GSE39058

(n = 42)

TARGET all

datasets

(n = 84)

GSE21257

(n = 53)

Age (years) <=18 21 66 35

>18 21 18 18

Survival status Living 30 55 30

Dead 12 29 23

Gender Female 20 37 19

Male 22 47 34

Metastatic Metastatic 20 21 34

Non-metastatic 22 53 19

patients. The ROC curves of the PI signature and the genes in
the signature were compared by using timeROC function in R.
We conducted single-sample GSEA analysis by GSVA function.
The ssGSEA score corresponding to each function was obtained
according to the expression matrix. The correlation between
these functions and RiskScores was further calculated to realize
potential regulatory pathways of PI.

Identification of Two Genes by
Experimental Test
Human osteoblast cell line hFOB1.19 was maintained in
DMEM/F12 medium at 34◦C with 5% CO2 in a humidified

atmosphere. Human osteosarcoma cell line MG-63 and
SAOS-2 cells were cultured in MEM and Macoy’5A medium,
respectively. Medium were all supplemented with a 10% FBS,
100 µgml streptomycin and 100 U/ml penicillin at 37◦C with
5% CO2 in a humidified atmosphere. Quantification of gene and
protein expression measurement is carried out by quantitative
polymerase chain reaction and western blot as previously cited.
The primer sequences were as follows: forward, 5′-ACCAACAA
CATCTTCTGCTCCAACC-3′ and reverse, 5′-CCGAGGCG
TAGCACTTCATCC-3′ for PML; The primer sequences were
as follows: forward, 5′-ACAGGTCCATGACTCCAGCTCAG-3′

and reverse, 5′-ACCAGAAGGCCACTAGAGCAGAC-3′ for
EPB41; and forward, 5′-GTGAAGCAGGCATCTGAGGG-3′

and reverse, 5′-GCCGTATTCATTGTCATACCAGG-3′ for
GAPDH. The EPB41 antibody (Cat. no. 13014-1-AP), PML
antibody (Cat. no. 21041-1-AP) and GAPDH antibody (Cat. no.
60004-1-Ig) were obtained from Proteintech. All the presented
data and results were processed using GraphPad Prism 7.02
software and expressed as mean ± standard deviation of at least
three independent experiments. T-test was used to determine
statistical significance. P < 0.05 or P < 0.01 were considered to
indicate statistically significant differences.

RESULTS

Identification of Seed Genes Based on the
Coefficient of Variation in OSA
In the present study, we established a 2-gene signature for the
prognostic prediction of OSA (Figure 1). First, we used the
GSE39058 dataset, which included 47 samples, as a training
set. In this dataset, each patient sample included detailed
clinicopathologic information and survival status. The coefficient
of variation (CV) of each probe was calculated for all samples, and
the probes with a CV >20% were considered to have the largest
degree of variation among all OSA samples and were selected as
the seed probes. Then, 309 probes were obtained and mapped to
308 unique genes. Next, we completed an unsupervised clustering
analysis of the 42 samples by using expression profiling of the 309
probes obtained in the previous step. As shown in Figure 2A,
the OSA samples were divided into 2 groups, and there were
significant differences in gene expression levels between the
groups. Survival analysis was then used to compare the outcomes
of the groups: no significant difference was observed between
them (log-rank test p ≥ 0.05) (Figure 2B).

Network Construction and Sub-network
Extraction Based on PPI Databases
In order to amplify potential candidate genes for further
analysis, we integrated 5 human PPI databases, as mentioned
in the Materials and Methods section. First, we constructed a
background network that included 13,368 genes with 80,977
interaction pairs (Table S1). We then entered 308 seed genes
into the network and identified 192 nodes. Each identified node
and its closest neighbor genes were extracted to construct a
sub-network containing 2,270 nodes (Figure 3A). As shown in
Figure 3B, the distribution of interacting nodes was consistent
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FIGURE 1 | Schematic diagram for a multi-step strategy to identify 2-gene signature for the prognostic prediction of osteosarcoma.

with power-law distribution, which suggests the accuracy of the
sub-network extraction.

Hub nodes, the larger-degree nodes in this network, may
play significant roles in molecular progress. In this network, the
largest node was UBC (degree = 481), which has been reported
to be a target gene for the diagnosis and treatment of OSA
(22). Moreover, many studies have proved that a mutation in the
second largest node, TP53 (degree = 243), is closely linked with
the development (23), prognosis (24), and tumor susceptibility

(25) of OSA. The third largest gene, YWHAZ (degree = 192),
has been shown to be a potential biomarker for the occurrence
and treatment of OSA tumors and affects patient prognosis (26).
Interestingly, none of these top 3 genes were screened for OSA in
the previous step, which proved that PPI network construction
for OSA-related genes was necessary. Second, we selected hub
nodes from the network that ranked in the top 20%, which
amounted to 454 genes (Table S2). Together with the above-
mentioned 308 identified seed genes, we obtained a final total of
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FIGURE 2 | Unsupervised hierarchical clustering analysis for 2-genes. (A) The expression heatmap of seed genes in all OSA tumor samples. The horizontal axis

above represents the samples, using Euclidean distance; the samples were grouped into two clusters (cluster 1 and cluster 2). (B) The Kaplan–Meier survival curves of

two different clusters. There was no significant difference between two clusters (log-rank test p > 0.05).

733 genes (Figure 3C) as the candidate genes for further analysis.
These genes, which corresponded to 1,174 gene probes, were
also used to divide the OSA samples into 2 clusters (Figure 3D),
which is the same as the above results in Figure 2A.

Functional Annotations of Candidate
Genes Based on Bioinformatics Analysis
All of the 733 candidate genes may participate in the genesis
and progression of OSA. Therefore, we used a comprehensive
bioinformatics analysis to perform a gene functional analysis.
Using an online tool (g: Profiler), we completed functional
annotation for the 733 candidates; the EnrichmentMap tool of
Cytoscape software was used to visualize the results (Figure 4A).
The findings indicated that the genes were associated with
many biological and pathological processes (Table S3), such
as the development and differentiation of bone tissue, bone
development, bone cell development, osteoclast differentiation,
and the acute bone marrow leukemia pathway, as well as bone
marrow and hematopoietic cells involved in human protein
mapping. Representative results are shown in Figure 4B and
indicate that the abnormality of these genes may lead to
lesions of the bone tissue (Table S4). There were many familiar
pathways that were closely connected with bone derived sarcoma
formation, such as soft tissue sarcoma, osteoclast differentiation,
apoptosis process, cell cycle, cell adhesion, etc. Wnt signaling
pathway and MAPK1/MAPK3 signaling pathway have been
widely reported in previous studies regarding OSA. Due to
the diversity of proteoglycans in cancer, its influence on OSA
deserves further study in the future.

Establishment of a 2-Gene Signature of
OSA
We completed expression profiling of the corresponding probes
for the 733 genes, and we obtained expression values for a
total of 1,174 probes. Patient clinical information was collected

for 42 biopsy samples, including age, sex, disease recurrence,
survival time, and survival status. Cox regression analysis was
then applied on the basis of the probes.

First, the univariate Cox regression analysis was performed
for each probe, and 9 probes were identified (Table 3) that
significantly influenced survival (p < 0.01). The 9 probes were
then introduced into the multivariate Cox regression analysis.
Age, sex, and recurrence were used as covariates. We found 2
independent prognostic candidate genes of patient survival that
were not affected by these covariate factors: ILMN_1811588 and
ILMN_1663786, which corresponded to genes PML and EPB41,
respectively (Table 4).

With the expression values of these 2 genes and multivariate
Cox regression coefficients, we constructed the prognostic index
(PI) as follows: PI (3.8581)× PML expression value+ (0.9718)×
EPB41 expression value. Patients were divided into 2 groups
according to the median PI value. The survival analysis and
the log-rank test revealed a significant difference in survival
outcomes between the groups [log-rank test p = 0.0057, hazard
ratio = 0.1508, 95% confidence interval = (0.0325, 0.6991)]
(Figure 4C). We suggest that these 2 genes could be used as
prognostic risk markers for OSA. Furthermore, we conducted
ROC analysis on prognosis classification of PML, EPB41 and
PML-EPB41 signature through timeROC function in the training
dataset, and the prognostic AUC of 1, 3, and 5 years were
analyzed, respectively. It was found in Figures 4D–F that the
AUC of 1, 3, and 5 years of PI was above 0.91. Although the 1-year
AUC of PML gene was above 0.96, its 3- and 5-year AUCwere not
ideal. The overall AUC value of EPB41 was no better than that of
the PML-EPB41 signature. Therefore, it indicated that the PML-
EPB41 signature constructed by us is more effective than the two
genes signature alone.

In order to observe the relationship between risk scores
of different samples and biological functions, we selected the
corresponding gene expression profiles of these samples and
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FIGURE 3 | PPI network construction. (A) Sub-network of candidate genes. Three hundred and eight seed genes were subjected into PPI network and 192 nodes

were obtained. The above nodes and its closest neighbor genes were extracted to construct sub-network containing 2,270 nodes. (B) The distribution of interacted

nodes. (C) The venny gram of seed genes and hub genes. (D) The expression heatmap of all candidate genes.

used GSVA function in R to conduct single-sample GSEA
analysis. By calculating the scores of different functions in
each sample, the ssGSEA score of each sample was obtained.
The correlation among these functions and the risk score was
further computed, and the function whose correlation was
>0.4 were selected. It can be seen that a few of them were
negatively correlated with the sample RiskScore (Figure 5A),
while most of them were positively correlated with the RiskScore.
20 KEGG pathways that were most correlated with more than
0.4 were selected for cluster analysis based on their enrichment
scores. As Figure 5B illustrated, among the 20 pathways,
metabolism-related pathways, decreased with the RiskScore
increasing, such as HEDGEHOG SIGNALING PATHWAY

and ALPHA LINOLENIC ACID METABOLISM. Immune-
related pathways, such as NOTCH SIGNALING PATHWAY
and T CELL RECEPTOR SIGNALING PATHWAY, increased as
RiskScore rose, which also suggested that the dysregulation of
these pathways was closely related to the progression of tumor.

External Dataset Validation of the 2-Gene
Signature in OSA
In order to validate the accuracy and prognostic value of the
signature, an external validating dataset, GSE21257, was applied.
This dataset included 53 samples of OSA, as well as follow-up
information. Based on the expression levels of PML and EPB41,
the PI was constructed as described above. The patients were also
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FIGURE 4 | The functional analysis of candidate genes. (A) Visualization for functional enrichment results of 733 candidate genes by Cytoscape software. Each node

represents an annotation term. (B) The results of g: profiler functional enrichment with prognostic candidate genes. Horizontal axis above represents annotation terms.

Vertical axis represents the value of –log10 (p-value). (C) The Kaplan–Meier curves for overall survival of high- and low-risk groups of OSA in the internal training

dataset and external validating dataset. The prognostic differences between the two groups in internal training dataset was significant (log-rank test p = 0.0057).

(D) ROC of PML-EPB41 signature based on PI in training dataset samples. (E) ROC of PML signature in training dataset samples. (F) ROC of EPB41 signature in

training dataset samples.

TABLE 3 | Result of univariate Cox regression analysis.

Probe Gene P-value β

ILMN_2253720 DHX30 0.0020 3.3967

ILMN_1663786 EPB41 0.0030 0.9986

ILMN_1760542 PSMA1 0.0033 −8.5203

ILMN_1811588 PML 0.0036 2.7934

ILMN_1747146 TSG101 0.0048 −2.5886

ILMN_2241679 UBE2D3 0.0052 −12.0814

ILMN_3250923 CREB1 0.0061 1.6714

ILMN_1704557 RPS6KB1 0.0066 1.1951

ILMN_1765189 PTK2B 0.0074 −8.2439

divided into high-risk and low-risk groups using the median PI
value. From the results of the Kaplan–Meier survival curves, we
found that there were significant prognostic differences between
the 2 groups (log-rank test p = 0.0341) (Figure 6A), indicating
that this 2-gene signature was indeed a key prognostic predictor
for patients with OSA.

In addition, we downloaded the 84 OSA related expression
profile data with clinical information from the TARGET

TABLE 4 | Result of multivariate Cox regression analysis.

Probe Gene Covariate P-value β

ILMN_1811588 PML ILMN_1811588 0.0066 3.8581

Age 0.2100 −0.0515

Gender 0.9500 −0.0458

Recurrence 1.0000 21.9600

ILMN_1663786 EPB41 ILMN_1663786 0.0082 0.9718

Age 0.3700 0.0389

Gender 0.6000 −0.4248

Recurrence 1.0000 22.8354

database. The same method above was used to verify the results
in the TARGET dataset, indicating a significant difference in
prognosis between the two groups (p = 0.0052). TimeROC
function was used to conduct ROC analysis on the prognosis
classification of PI. The 3- and 5-year prognostic classification
efficiency was obtained. As shown in Figure 6B, it could be
concluded that the signature had a large AUC, with 0.71 in 3-year
and 0.72 in 5-year, respectively. From the results of the Kaplan–
Meier survival curves in Figure 6C, it was found that there
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FIGURE 5 | (A) Clustering analysis between KEGG pathway whose RiskScore correlation >0.4 and RiskScore correlation coefficients. (B) The relationship between

the change of ssGSEA score and KEGG pathway RiskScore in each sample. The horizontal axis represents each sample, with risk scores rising from left to right.

FIGURE 6 | (A) The prognostic differences between the two groups in external validating dataset was significant (log-rank test p = 0.0341). (B) ROC curve in external

validation TARGET dataset. (C) 2-gene signature KM curve in external validation TARGET dataset.

were significant prognostic differences between the 2 groups
in TARGET dataset (log-rank test p = 0.00523). The result
above indicated two-gene signature were capable of influence
OSA prognosis.

Biological Experimental Validation of
PML-EPB41 Expression in Cell Lines
By quantitative polymerase chain reaction, relative mRNA
expression level of PML and EPB41 were measured among
hFOB1.19, MG-63 and SAOS-2. As Figure 7 illustrated,
the mRNA expression level of PML and EPB41 decreased
significantly in MG-63 and SAOS-2 cells compared with
hFOB1.19 cells (∗P < 0.05). Furthermore, protein expression
level of PML and EPB41 were also down-regulated by western
blot in OSA cell lines (∗∗P < 0.01).

DISCUSSION

In the present study, we first obtained 308 candidate seed
genes by screening the gene expression profiling of OSA in

a testing dataset. These genes were closely associated with
the occurrence, development, disease subtype, prognosis, and
differential response to therapeutic treatment of OSA. In order
to amplify the seed genes for a more comprehensive analysis,
454 genes were further screened through a human PPI network
as the hub nodes that were thought to be potential OSA-related
genes. These genes were selected as candidate genes along with
the 308 differential genes. The candidate genes were all associated
with biological processes such as bone cell development and
cancer pathways. Based on the construction of a univariate
and multivariate Cox proportional risk regression model, we

successfully developed a 2-gene (PML-EPB41) signature for

predicting the prognosis of patients with OSA. An external
data set was applied to verify the feasibility and reliability

of the PML-EPB41 signature. It was verified that the 2-gene

clustering model effectively classified patients from the selected

dataset into high-risk and low-risk groups with significant

differences observed in survival time and reoccurrence risk

according to Kaplan–Meier survival analysis in both testing and
external datasets.
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FIGURE 7 | (A) Relative mRNA expression level of PML and EPB41 in three cell lines are conducted by quantitative polymerase chain reaction. Data are presented as

the mean ± SD. *P < 0.05 vs. hFOB1.19. (B) Expression of EPB41 and PML by western blot. Protein levels were statistically evaluated in columns. Measurements

were in triplicate and data were presented as the mean ± SD. **P < 0.01 vs. hFOB1.19.

In previous studies, bioinformatics analysis was used to
identify potential target genes, transcription factors, and gene
functions in OSA. Additional analysis was conducted to identify
the differential expressed genes (DEGs) and related potential
biological process of OSA progress, in order to provide better
guidance and clinical treatment options for patients (8–10,
27, 28). DEGs and their biological functions were identified
by the integration of several GEO data sets (29). He et al.
used an additional independent microarray dataset to verify
the OSA-related pathway enrichment modules (30). Moreover,
integrated whole-genome analysis was completed by identifying
gene expressions and genomic aberrations in OSA, including
single-nucleotide polymorphisms and copy number variants
(11). However, all of these studies remain in the primary stage
of differential gene screening and biological process enrichment.
A specific and efficient way to predict the prognosis of OSA has
not been confirmed. This study presents, for the first time, the
2-gene (PML-EPB41) signature that was built on the basis of the
patient outcomes, which reflects overall patient prognosis. The 2-
gene signature can be used to predict risks and prognosis of OSA
and is not impacted by patient age, sex, or relapse.

The verification by independent dataset proved that PML and
EPB41 are indeed the key genes that affect the prognosis of
OSA. The nuclear scaffold protein promyelocytic leukemia gene
(PML) has a dual role in cancer: it can act as the downstream
target of oncogenic RAS and it can promote tumorigenesis
(31). PML is a pro-apoptosis gene that can be indirectly
suppressed by cisplatin-based systemic chemotherapy in non-
small cell lung carcinoma (32). Additionally, it is suggested
that it has a potential role in immune-modulatory approaches
for treating lung cancer with aberrant PML degradation (33).
Silencing of PML also inhibits cell proliferation and induces DNA
damage in cultured ovarian cancer cells (34). In OSA, PML has
significantly different expression levels among OSA cell lines
(35), and, as a suppressor gene in an OSA cell line, PML has
been demonstrated to physically and functionally interact with
oncogene MDM2 to regulate the biological behavior of tumor

cells (36). The EPB41 gene encodes Erythrocyte Membrane
Protein Band 4.1. EPB41 has been identified to function as a
tumor suppressor in the molecular pathogenesis of meningiomas
(37), and Yang et al. identified EPB41 as a hepatocellular
carcinoma tumor suppressor that dysregulated in an allelic-
specific fashion on the basis of functional-based assays in vivo and
in vitro (38). Another factor interaction analysis for chromosome
8 and DNA methylation alterations highlighted that the EPB41
family participates in innate immune response suppression and
cytoskeletal changes in prostate cancer (39, 40). Together, this
evidence supports the biological relevance of EPB41 in tumor
biology. Still, to date, the role of EPB41 in OSA has not
been reported.

To identify the two-gene signature, quantitative polymerase
chain reaction was applied to test relative mRNA expression
level of PML and EPB41 in three human derived cell line,
in which hFOB1.19 is the normal human osteoblast, while
MG-63 and SAOS-2 are human osteosarcoma cell lines. PML
and EPB41 are likely to be down-regulated in aggressive
tumors and linked with poor prognosis. Consistent results
can be obtained on its expression in other tumor related
researches mentioned above. Several limitations of the present
study should be noted. The results suggest that the prognostic
value of the PML-EPB41 signature is independent of other
clinical factors in OSA. However, the number of datasets
needed to confirm this finding need to be expanded using
GEO or Cancer Genome Atlas databases. Further integrated
analysis may help to accurately predict the risk of OSA.
If possible, the signature should be validated in collected
clinical OSA biological samples. Secondly, no experimental
data on the underlying mechanisms of EPB41 in OSA
have been obtained, and future additional well-designed
experimental studies on EPB41 will help define its functional
role in OSA.

In summary, we established a 2-gene (PML-EPB41) signature
that can be considered an innovative prognostic predictor
for patients with OSA. This study provides new insights
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and novel molecular biomarkers for OSA prognosis, and the
findings may help to discover novel therapeutic targets with
clinical applications.
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