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Abstract: The liver is extremely active in oxidizing triglycerides (TG) for energy production. An
imbalance between TG synthesis and hydrolysis leads to metabolic disorders in the liver, including
excessive lipid accumulation, oxidative stress, and ultimately liver damage. Adipose triglyceride
lipase (ATGL) is the rate-limiting enzyme that catalyzes the first step of TG breakdown to glycerol and
fatty acids. Although its role in controlling lipid homeostasis has been relatively well-studied in the
adipose tissue, heart, and skeletal muscle, it remains largely unknown how and to what extent ATGL is
regulated in the liver, responds to stimuli and regulators, and mediates disease progression. Therefore,
in this review, we describe the current understanding of the structure–function relationship of ATGL,
the molecular mechanisms of ATGL regulation at translational and post-translational levels, and—
most importantly—its role in lipid and glucose homeostasis in health and disease with a focus on the
liver. Advances in understanding the molecular mechanisms underlying hepatic lipid accumulation
are crucial to the development of targeted therapies for treating hepatic metabolic disorders.
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1. Introduction

The liver plays a pivotal role in regulating the metabolism of fatty acids (FA) and their
neutral storage form, triglycerides (TG), which requires sophisticated coordination by mul-
tiple enzymes in lipid uptake from the circulation, de novo FA synthesis (lipogenesis), lipid
usage (FA oxidations), lipid breakdown (lipolysis), and lipid secretion in the form of TG-
enriched very low-density lipoprotein (VLDL-TG) [1,2]. Under physiological conditions,
the liver processes large quantities of FAs with only a small portion of them converting to
TG [3]. TG is further deposited into lipid droplet (LD), a spherical cellular organelle that
comprises a hydrophobic core of neutral lipid and an amphipathic phospholipid mono-
layer [4]. However, risk factors—such as diet, alcohol, endocrine, drug, virus, and genetic
variations—can induce an imbalance between lipid deposition and removal in the liver
and ultimately elevate hepatocellular lipid levels. Hepatic steatosis, or fatty liver disease, is
diagnosed when visible LDs are accumulated in more than 5% of hepatocytes [5]. Fatty
liver can promote systemic metabolic dysfunction; progresses to steatohepatitis, fibrosis,
and cirrhosis; and causes irreversible life-threatening conditions. Therefore, understanding
the mechanisms regulating hepatic lipid homeostasis is critical in identifying points of
intervention in this increasingly prevalent disease state. This article will focus on hepatic
lipolysis and its rate-limiting enzyme, adipose triglyceride lipase (ATGL).

2. The Discovery of ATGL and ATGL-Mediated Lipolysis

Lipolysis is a complex and precisely regulated metabolic process for the breakdown
of TG stored in cellular LDs [6]. Upon times of nutrition deprivation or enhanced energy
demand, stored TG is hydrolyzed by a group of hormonally regulated hydrolytic enzymes
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to generate FAs and glycerol [6]. TG is initially hydrolyzed to diacylglycerol (DAG) and a
molecule of fatty acid by ATGL. Next, DAG is further broken down into monoacylglyc-
erol (MAG) and a second fatty acid by hormone-sensitive lipase (HSL). At last, MAG is
converted into glycerol and a third fatty acid by monoacylglycerol lipase (MAL).

For a long time, HSL was believed as the rate-limiting enzyme in TG breakdown.
However, the nonobese phenotype and accumulation of DAG in adipose tissue of HSL-
deficient mice suggested that one or more hydrolases other than HSL may exist that
preferentially catalyze the release of the first fatty acid from TG [7,8]. In 2004, Zimmermann
et al. discovered an enzyme that has homological structures to known lipases and TG-
hydrolase activity by screening the gene and protein databases and named it ATGL [9].
They reported that ATGL exhibited high specificity towards TG as the accumulation of
intracellular DAGs was increased by 21-fold in the absence of this hydrolase. In contrast
to HSL, ATGL does not hydrolyze cholesteryl or retinyl ester bonds [8]. In the same year,
Jenkins et al. reported that calcium-independent phospholipase A2-zeta (iPLA2zeta) had
acylglycerol transacylase activity, even though not as strong as its TG hydrolase activity [10].
Meanwhile, a third group identified a gene termed desnutrin, which encodes a protein
that was believed to be a lipase. This lipase is capable of releasing FAs from adipose
tissue for oxidation and is regulated by nutritional conditions, such as fasting [11]. Later,
ATGL, iPLA2zeta, and desnutrin were collectively referred to as ATGL. Since then, emerging
studies have been dedicated to understanding the physiological and pathophysiological
functions and metabolic implications of ATGL as the rate-limiting enzyme in lipolysis.

3. The Structure–Function Relationship of ATGL

The gene of human ATGL is located on chromosome 11p15.5 and includes 10 exons
that encodes a 504-amino acid protein (NP_065109) [12]. The murine gene of ATGL encodes
a 486-amino acid protein (BAC27476) with a calculated molecular mass of 54 kDa, which
shares an 86.8% sequence identity with its human orthologue [9,12]. Sequence analysis
revealed that a patatin-like phospholipase domain between Ile 10-Leu 178 is located on
the N-terminal half of the protein (Figure 1), which groups ATGL into the patatin-like
phospholipase domain-containing family (PNPLA) [13]. PNPLA family members play
important roles in lipid hydrolysis with varying substrate specificities—including TG,
retinol ester, and phospholipid—through a catalytic dyad within a three-layer (α-β-α)
sandwich structure. Mutation studies confirmed that certain residues, such as Ser47 and
Asp 166, within the patatin-like containing domain constitute the putative catalytic dyad
in ATGL (Figure 1) [14–16]. ATGL is synthesized in the endoplasmic reticulum (ER) and
directly delivered to LDs by the Golgi-ER transport protein complex GBF1 (Golgi-specific
brefeldin A resistance factor 1)-Arf1 (ADP-ribosylation factor 1)-COPI (coat protein complex
I) [17]. It has been reported that ATGL traffics from ER to LDs through membrane bridges
that are controlled by the Arf1/COPI machinery [17]. ATGL is localized in cytoplasm, on
LDs, and on plasma membranes [13].

The studies of naturally occurring mutations in the human ATGL gene in patients
with neutral lipid storage disease with myopathy (NLSD-M) as well as in experimental
models of ATGL mutations, have greatly advanced our knowledge of the structure–function
relationship of ATGL and its role in health and diseases. The N-terminal region of ATGL,
containing the patatin-like domain and a GXSXG consensus motif with the active serine,
is believed to be responsible for ATGL’s TG hydrolase activity based on the analysis of
C-terminally truncated ATGL found in patients with NLSD-M [14,18,19]. Cell culture
studies have confirmed that both active sites, Ser47 and Asp166, are indispensable for TG
hydrolysis [14,16]. The discovery of two overlapping glycine-rich motifs that contains an
amphipathic α-helix structure within residues 10–24 in the proximal N-terminal suggested
that this domain may potentially have a role in TG substrate binding, as the amphipathic
α-helix is involved in neutral lipid binding and is found in other enzymes with hydrolytic
ability, such as a hepatic TG lipase called TG hydrolase [14].
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Figure 1. Schematic representation of predicted structure and domain organizations of hATGL. 
Green: three-layer (α/β/α) sandwich domain (residue 1–253). Purple: Patatin-like domain (residue 
10–178), including the α-helix structure (residue 10–24) and the catalytic serine-aspartate dyad (Ser 
47 and Asp 166), which are essential in TG substrate binding and TG hydrolysis, respectively. Blue: 
putative hydrophobic lipid-binding stretch (residue 315–364), and two potential AMPK phosphor-
ylation sites (Ser 404 and Ser 428), which are responsible for the localization of ATGL on LDs. 
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that the C-terminals of three ATGL mutations identified in patients with NLSD-M were 
severely altered and deleted, while the N-terminals were intact. In vitro, the total activity 
of neutral lipase in NLSD-M fibroblasts was similar to that in the control fibroblasts, sug-
gesting that the truncated C-terminal parts are not associated with TG hydrolase activity. 
Later on, a study conducted by Kobayashi et al. showed that C-terminal truncation-caused 
mutations of ATGL failed to localize around and degrade LDs despite normal TG hydro-
lase activity [20]. 
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C-terminal region of ATGL suppresses its TG hydrolase activity by interfering with pro-
tein–protein interaction between ATGL and its activator comparative gene identification-
58 (CGI-58) [21]. Cornaciu et al. revealed that the minimal protein length for ATGL activity 
ranges until Leucine 254, as fragments shorter than ATGL254 failed to fulfill its TG hydro-
lase activity [13]. 

Figure 1. Schematic representation of predicted structure and domain organizations of hATGL. Green:
three-layer (α/β/α) sandwich domain (residue 1–253). Purple: Patatin-like domain (residue 10–178),
including the α-helix structure (residue 10–24) and the catalytic serine-aspartate dyad (Ser 47 and
Asp 166), which are essential in TG substrate binding and TG hydrolysis, respectively. Blue: putative
hydrophobic lipid-binding stretch (residue 315–364), and two potential AMPK phosphorylation sites
(Ser 404 and Ser 428), which are responsible for the localization of ATGL on LDs.

The C-terminal region of ATGL, harboring the putative hydrophobic lipid-binding
stretch (Val315 to Ile364) and the two potential AMPK phosphorylation sites (Ser 404 and
Ser 428) has been demonstrated to be responsible for the localization of the enzyme around
LDs [13,20–22]. Smirnova et al. reported that ATGL with an S47A mutation failed to
decrease LD size but was still able to localize to LDs, which indicated the lack of hydrolase
activity but the presence of LD-binding ability in the mutant [18]. Fisher et al. reported that
the C-terminals of three ATGL mutations identified in patients with NLSD-M were severely
altered and deleted, while the N-terminals were intact. In vitro, the total activity of neutral
lipase in NLSD-M fibroblasts was similar to that in the control fibroblasts, suggesting
that the truncated C-terminal parts are not associated with TG hydrolase activity. Later
on, a study conducted by Kobayashi et al. showed that C-terminal truncation-caused
mutations of ATGL failed to localize around and degrade LDs despite normal TG hydrolase
activity [20].

Schweiger and coworkers confirmed that C-terminal truncated ATGL mutants do not
localize to LDs, however, the TG hydrolase activities of these mutants were remarkably
increased by up to 20-fold compared with wild type ATGL. The authors proposed that the
C-terminal region of ATGL suppresses its TG hydrolase activity by interfering with protein–
protein interaction between ATGL and its activator comparative gene identification-58 (CGI-
58) [21]. Cornaciu et al. revealed that the minimal protein length for ATGL activity ranges
until Leucine 254, as fragments shorter than ATGL254 failed to fulfill its TG hydrolase
activity [13].

4. The Regulatory Mechanisms of ATGL

ATGL is expressed in all tissues with the highest abundance in white and brown
adipose tissues. It is expressed at much lower levels in non-adipose tissues, such as
the liver [9,23]. The central role of ATGL in lipolysis makes its regulation crucial for
maintaining a defined balance between lipid storage and breakdown. The expression
and activity of ATGL are regulated at multiple levels, such as transcriptional and post-
translational regulations. Pharmacological activators and inhibitors of ATGL are also
reviewed in this section.

4.1. Regulation of ATGL Expression at Transcriptional Level

The factors involved in transcriptional regulation of ATGL are summarized in Figure 2.
As a hormone-sensitive lipase, ATGL is activated by β-adrenergic activation [24]. A study
using mouse model revealed that AMP-activated protein kinase (AMPK) could phospho-
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rylate ATGL at Ser406, therefore activating its enzymatic activity [25]. In contrast to HSL,
phosphorylation of ATGL does not appear to involve protein kinase A (PKA) [26].
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Figure 2. Simplified overview of regulation of ATGL expression. ATGL is demonstrated to be
activated by β-adrenergic activation. AMPK phosphorylates ATGL at Ser 406 therefore activates its
enzymatic activities. Insulin inhibits ATGL expression through upregulating SIRT1, which restrains
the nuclear localization of FoxO1 by deacetylating. Insulin also inhibits ATGL expression through
Egr1-mTORC1 signaling pathway. Sp1 has an inhibitory control over ATGL in preadipocytes, while
the functional interaction of PPARγ and Sp1 transactivates ATGL in mature adipocytes. TNF-α
downregulates ATGL mRNA level but does not alter its protein level.

Insulin is a classic inhibitor of lipolysis. The expression of ATGL is directly suppressed
in the presence of insulin through transcriptional regulation [27–29]. Studies revealed
that ATGL expression was directly suppressed in the presence of insulin by restraining
the nuclear localization of forkhead box protein O1 (FoxO1) in adipocytes. Furthermore,
it was demonstrated that the FoxO1-ATGL pathway was controlled by sirtuin 1 (SIRT1)
through deacetylating of FoxO1 [30]. Chakrabarti et al. firstly reported that the activation
of mechanistic target of rapamycin complex 1 (mTORC1) inhibited ATGL expression at
the transcriptional level upon insulin stimulation in adipocytes [31]. Later on, they further
revealed that it was early growth response 1 (Egr1)—one of the early growth response
transcription factor family members—that mediated mTORC1-induced downregulation of
ATGL [29].

Through investigating the murine ATGL promoter, Kim et al. reported that the
master adipogenic transcriptional regulator, peroxisome proliferator-activated receptor
gamma (PPARγ), transactivated ATGL upon insulin stimulation [27]. Furthermore, Roy
D. et al. speculated that upregulation of ATGL transcription was due to the binding
of PPARγ/RXRα heterodimer in the ATGL promoter at −2424, −1674, and −1573 bp
sites [32]. Insulin responsive transcription factor specificity protein 1 (Sp1) negatively
regulates ATGL expression in preadipocytes. However, the physical functional interaction
between PPARγ and Sp1 is necessary for the transactivation of ATGL in mature adipocytes,
which indicates that PPARγ and Sp1 coordinately regulate ATGL in a state-dependent
manner [27,32]. Besides, tumor necrosis factor-alpha (TNF-α) has been shown to stimulate
lipolysis, partially through degrading ATGL’s direct inhibitor G0/G1 switch gene 2 (G0S2).
Interestingly, TNF-α significantly downregulates ATGL mRNA levels without altering its
protein abundance [32–34]. The underlying mechanisms by which TNF-α downregulates
ATGL yet still enhances lipolysis remain to be elucidated.

4.2. Regulation of ATGL at Post-Transcriptional Level (Protein–Protein Interaction)

Figure 3 illustrates the regulation of ATGL at post-translational levels with a focus
on the liver. In 2006, Lass and coworkers identified CGI-58 as the co-activator of ATGL,
which increases the TG hydrolase activity of ATGL by up to 20-fold [15]. Since then,
numerous studies have been conducted to elaborate the mechanistic link between CGI-
58 and ATGL [21,35]. The α/β-hydrolase core domains within CGI-58 group it into the
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α/β-hydrolase domain family, which explains why it is also referred to as alpha-beta
hydrolase domain-containing 5 (ABHD5). In 2017, Sanders et al. demonstrated for the
first time that the two highly conserved amino acids Arg 299 and Gly 328 in CGI-58 are
necessary for ATGL activation [36]. In adipose tissue, under physiological condition, CGI-
58 binds to LD coating protein perilipin 1 (Plin1), thus preventing activation of ATGL. Upon
PKA-mediated phosphorylation of CGI-58 and Plin1, CGI-58 is released and subsequently
co-activates ATGL activity [12,37,38]. In addition, CGI-58 also localizes to the surface of LD
to stimulate ATGL activity. The hydrophobic Trp-rich stretch within the N-terminal region
of CGI-58 is believed to be essential for its LD localization.
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Figure 3. Regulation of ATGL at post-translational level in the liver. (A) In basal condition: LDs
are coated with PLN2 and PLN5, which restrain the access of ATGL to the stored TGs. PLN5
also directly binds to ATGL, competing against CGI-58 for ATGL interaction. (B) In stimulated
condition, PKA-mediated phosphorylation of PLN5 results to the release of ATGL and subsequently
the co-activation by CGI-58. PLN2 is degraded through chaperone-mediated autophagy, which
exposes the surface of LDs to ATGL, therefore stimulating lipolysis. (C) In inhibited condition: ATGL
inhibitors HILPDA and G0S2 are upregulated, which enhances the inhibitory control over ATGL. E3
ubiquitin ligase COP1-mediated proteasomal degradation reduces the protein levels of ATGL, hence
inhibiting lipolysis.

G0S2 was first identified in the early 1990s in cultured blood mononuclear cells
responding to drug-induced cell cycle transition from the G0 to G1 phase [39,40]. It is
ubiquitously expressed in metabolically active tissues, such as adipose tissue and the
liver [41]. G0S2 is known as an endogenous inhibitor of ATGL even when CGI-58 is
present [42,43]. Studies have shown that global G0S2 ablation in mice enhanced adipose
tissue lipolysis but decreased body weight and hepatic TG content [44,45]. Conversely, liver-
specific overexpression of G0S2 in mice led to hepatic steatosis and reduced lipolysis [44].
In line with that, adipose tissue-specific overexpression of G0S2 in quails prevented fat loss
under feeding-restricted conditions by inhibiting adipose tissue lipolysis [46].

As the most abundant proteins on the surface of LD in adipocytes, Perilipin family
members are actively involved in regulating ATGL activity in a tissue-specific manner [47].
This family consists of five structurally related proteins, serving as the barriers of LDs and
preventing lipases from getting access to them [12]. Plin1 is predominantly expressed in
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adipose tissue. Upon hormonal stimulation, Plin1 is phosphorylated by PKA and releases
CGI-58, which subsequently co-activates ATGL [47]. Perilipin 2 (Plin2) and perilipin 3
(Plin3) are essentially expressed in all tissues, with the highest levels in the liver and
small intestine [48,49]. However, they do not interact with CGI-58 due to the lack of a
C-terminal part required for protein–protein interaction [50]. Studies have shown that
Plin2 and Plin3 promote lipolysis through chaperone-mediated autophagy. Briefly, heat
shock protein HSPA8/hsc70 mediates the degradation of Plin2 and Plin3 in lysosome
and causes increased exposure of LDs surface to ATGL, thereby initiating the first step
of TG hydrolysis [49,51]. It is worth noting that a recent study revealed that autophagy
not only works in parallel with ATGL to facility LD degradation, but also works as a
downstream target of ATGL to promote bulk LD catabolism through the mediation of
SIRT1 [52]. Perilipin 5 (Plin5) is mostly expressed in oxidative tissues, such as the liver
and heart, but at a lower level in adipose tissue [53,54]. In the liver, unlike Plin1 and
Plin2, Plin5 could directly bind to ATGL. Studies have demonstrated that Plin5 serves as
a negative regulator of ATGL-mediated lipolysis through competing against ATGL for
CGI-58 interaction unless PKA is activated [54–56].

Hypoxia-inducible lipid droplet-associated protein (HILPDA; also known as hypoxia-
inducible gene-2) is another regulator that can directly inhibit ATGL activity [57]. HILPDA
is expressed in most organs, including the liver, brain, endocrine tissues, skeletal muscle,
heart, lung, and adipose tissue [57,58]. HILPDA coats the surface of LDs and shares 13.5%
sequence identity with G0S2, mostly in the area where G0S2 is known to bind and inhibit
ATGL [59]. Studies have shown that HILPDA ablation remarkably reduced TG content and
LD size in mouse primary hepatocytes [59], whereas overexpression of HILPDA increased
neutral lipid deposition in HeLa cells and augmented hepatic TG content by up to 4-fold
in mice [57,60]. The hydrophobic region of HILPDA within the N-terminal is believed
to contribute to the intracellular TG regulation by physically interacting with the patatin-
domain-containing region of ATGL, thereby inhibiting its TG hydrolase activity despite the
presence of CGI-58 [61].

The ubiquitin-proteasome system also plays an essential role in ATGL modulation.
Gosh et al. identified hepatic ATGL as a novel target of E3 ubiquitin ligase COP1/RFWD2
through interacting with the consensus VP motif of ATGL and targeting it for proteasomal
degradation predominantly at Lys 100 residue [62]. Other protein interaction partners of
ATGL have not been fully understood yet, including cell death inducing DEFA like effector
C (CIDEC; also known as fat-specific protein 27, FSP27) and pigment epithelium-derived
factor (PEDF; also known as seeping family F member 1, SERPINF1) [63–65].

4.3. Regulation of ATGL by Small Molecules

Atglistatin is a synthetic inhibitor of ATGL that selectively inhibits the activity of
ATGL in a competitive manner [66]. Mayer et al. reported that short-term oral gavage of
Atglistatin to mice markedly reduced plasma TG and the lipolytic parameters FA and glyc-
erol without inducing TG accumulation in all tissues investigated except liver. However,
it did not significantly affect blood glucose, total cholesterol, ketone bodies, and insulin
levels. Atglistatin distributes differently among various tissues with the highest concentra-
tion in the liver, followed by white and brown adipose tissues, which might explain TG
accumulation in the liver after administration of Atglistatin. However, Atglistatin failed to
inhibit either ATGL activity or FAs release in human adipocyte [66].

G0S2 is a powerful endogenous ATGL inhibitor that is highly conservative between
human and mouse [41]. Hence, G0S2-derived peptide can be used as a viable option for
ATGL inhibition. Cerk et al. generated a G0S2-derived 34-amino acid peptide, hGW2052,
which is a potent noncompetitive ATGL inhibitor both in mouse and human. hGW2052 is
highly selective as it does not inhibit other lipases. This peptide inhibitor has great potential
in translating into therapeutic application owing to its ability to fuse with other sequences
to allow tissue-specific inhibition of ATGL [67].
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Oroxylin A is a natural bioactive flavonoid extracted from the root of Scutellaria baicalen-
sis Georgi [68]. Studies reported that Oroxylin A has a positive effect on preventing hepatic
steatosis [69], ameliorating hepatic fibrosis [69,70], and promoting liver regeneration [71].
In 2019, Zhang et al. proposed that Oroxylin A restored LD contents in activated hepatic
stellate cells via downregulating ATGL, therefore preventing hepatic fibrosis [72].

4.4. Regulation of ATGL by Lipid Intermediates

Although the regulation of ATGL activity, either by endogenous regulatory proteins
or pharmacological modulators, has been excessively studied, little research has been done
in exploring the role of lipid intermediates in ATGL-catalyzed lipolysis [73]. As a lipid
intermediate, long-chain acyl-coenzyme A (LC-CoA) is not only a short-lived metabolite,
but also a potent lipase inhibitor that inhibits lipase activity, such as HSL [73]. Nagy
et al. reported that ATGL activity is inhibited by long-chain acyl-coenzyme A (LC-CoA)
in a non-competitive manner regardless of the presence of CGI-58 [74]. A study showed
that the inhibitory effect of LC-CoA on HSL is enhanced by acyl-CoA-binding protein
(ACBP) [73]; however, whether ACBP or other acyl-CoA-binding proteins are involved in
LC-CoA-mediated ATGL inhibition is unknown so far.

5. The Roles of Hepatic ATGL in Health and Disease

Emerging evidence have suggested that the physiological function of ATGL is not
restricted to adipose tissue but is also crucially important in many nonadipose tissues,
such as the liver. ATGL is expressed at low levels in hepatocytes, hepatic stellate cells
(HSC), and macrophages (Kupffer cells) [9,75,76]. Hepatic ATGL levels are upregulated
upon fasting [77]. Patients with NAFLD have reduced hepatic ATGL levels, although
the pathophysiological mechanisms remain unclear [78]. Furthermore, in recent years,
the generation of transgenic mice with global- and/or tissue-specific ATGL ablation and
cellular models of ATGL manipulations, as well as patients with ATGL-related mutations,
have deepened our understanding about the pivotal role of ATGL in regulating hepatic
lipid homeostasis and the progression of liver diseases [21,79–82]. Here, we summarized
the studies of mouse models with global- and liver-specific mutation of ATGL in Table 1
and discuss the findings in several aspects to elucidate the tissue-specific role of hepatic
ATGL in the liver under normal and disease conditions (Figure 4).

Table 1. Studies of mouse models with global- and liver-specific mutation of ATGL.

Author Year Animal Model Animal Age Key Findings

Haemmerle
et al. [67] 2006

Global ATGL inactivation
by targeted homologous

recombination
8 to 14 weeks

ATGL is the rate-limiting enzyme of TG
catabolism. The inactivation of ATGL

increased glucose tolerance and insulin
sensitivity.

Reid et al. [83] 2008
Adenovirus-mediated

global ATGL knockout in
ob/ob mice

3 to 5 months old

ATGL possesses TG hydrolase activity and is
essential in maintaining hepatic lipid

homeostasis by mobilizing and partitioning
stored TG into FA oxidation pathways.

Kienesberger
et al. [84] 2009

Global ATGL knockout in
mice with mixed genetic

background (50% C57BL/6
and 50% 129/Ola)

<14 weeks Global ATGL deficiency decreased insulin
signaling in the liver of the mice.

Turpin
et al. [85] 2011

Adenovirus-mediated
liver-specific ATGL
overexpression in

ob/ob mice

10 weeks
Liver-specific ATGL overexpression reduces
hepatic steatosis and mildly enhances liver

insulin sensitivity.
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Table 1. Cont.

Author Year Animal Model Animal Age Key Findings

Wu et al. [86] 2011
Albumin Cre-mediated

liver specific ATGL
knockout

6, 8, and
12 months old

ATGLLKO induced hepatic steatosis and
suppressed β-oxidation in the liver.

Ong et al. [87] 2011

Adenovirus-mediated
liver-specific ATGL

knockdown in
C57/B16 mice

8 to 10 weeks old

Liver-specific knockdown of ATGL reduced
TG hydrolase activity, and increased TG

content in the liver. It also altered fatty acid
composition with a significant reduction in
C16:0, C18:0, and C18:3 but an increase in

C18:1 in hepatic TG content.

Fuchs
et al. [88] 2012

Global ATGL inactivation
by targeted homologous

recombination
N/A

The increased non-esterified oleic acid (OA)
in the liver protected ATGL KO mice from

TM-induced hepatic ER stress through
interfering with palmitate (PA)-induced

phosphoinositide-3-kinase inhibitor 1
(Pik3ip1) expression.

Jha et al. [89] 2014
Global ATGL inactivation
by targeted homologous

recombination
7 to 10 weeks

ATGL deficiency enhanced MCD- and
LPS-induced hepatic inflammation. The

anti-inflammatory effect of ATGL in the liver
was partially achieved by PPARα

signaling pathway.
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Figure 4. Role of ATGL in regulation of liver pathophysiology. Hepatic ATGL is inversely correlated
with TG contents and LD sizes in the liver. Additionally, ATGL-mediated lipolysis provides substrates
(FAs) for sustaining FA oxidation and for coordinating the transcriptional program required for FA
oxidation. Furthermore, ATGL may play a protective role against inflammatory responses in the liver.
Last but not least, although studies have shown that hepatic ATGL is not required for direct systemic
glycaemic control, its significance in controlling hepatic and systemic glucose metabolism cannot be
excluded considering the mutual coordination of glucose and FAs as major fuels.
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5.1. Lessons Learned from Humans with ATGL-Related Mutations

Neutral lipid storage disease (NLSD) with myopathy (NLSD-M) is a rare autosomal
recessive disorder caused by ATGL/PNPLA2 mutations. Studies investigating the clin-
ical, molecular, and cellular phenotypes in these patients illustrate an essential role of
ATGL in maintaining systemic lipid homeostasis and multi-organ functions, including the
liver [19,90]. Mutations in ATGL lead to either its inactivation or compromised lipid droplet
binding ability [21]. To date, 57 patients had been clinically and genetically characterized
worldwide [83,85]. Thirty-nine different types of ATGL mutation had been reported that
attribute to NLSD-M development by differentially affecting ATGL protein expression
and/or functions [79]. NLSD-M is characterized by excessive, non-lysosomal accumula-
tion of TG-rich cytosolic LDs in non-adipocytes, including hepatocytes [79,80]. Patients
suffering from NLSD-M display a range of clinical features, such as progressive myopathy,
cardiomyopathy, hepatomegaly, and diabetes with no obesity being reported [81,82].

Liver damage was observed in half of NLSD-M patients, manifesting as mild to
severe hepatic steatosis and elevated blood aminotransferase levels, including alanine
aminotransferase (ALT) and aspartate aminotransferase (AST) [79,83,85]. The liver biopsy
results of a 63-year-old female patient with NLSD-M revealed significant hepatic cytosolic
lipid deposition, indicating impaired hepatic TG turnover [21]. A 33-year-old Turkish
patient with NLSD-M presented Grade 2 macrovesicular steatosis and hepatomegaly,
which contributed to the unfortunate death of the patient [83].

Interestingly, another subgroup of neutral lipid storage disease: NLSD with ichthyosis
(NLSD-I), caused by mutations in the Cgi-58 gene is characterized by systemic TG accumu-
lation and severe ichthyosis [79,82]. It is noteworthy that the liver is the most frequently
damaged organ in patients with NLSD-I, the manifestations of which include hepatomegaly,
steatosis, and sometimes cirrhosis [79,82]. More than 80% of NLSD-I patients have fatty
liver disease [79]. A retrospective cross-sectional study conducted in Italy showed that, in a
cohort of 21 patients, NLSD-I exhibited a worse prognosis in terms of life expectancy, with
two deaths from hepatic failure due to lipid infiltration compared to NLSD-M [82].

5.2. ATGL in Hepatic TG Accumulation

It has been reported that supraphysiological TG accumulation occurred in most tissues
in global ATGL deficient mice (Atgl-/-) compared with wild type (WT) mice [86]. Turpin
et al. revealed that overproduction of ATGL markedly reduced the size of LDs in mouse
liver [86]. In line with that, Reid et al. reported that only very small portions of LDs were
presented in the livers of ATGL overexpressed ob/ob mice compared to control mice [87].
In 2006, Haemmerle et al. reported that hepatic TG content was increased by 1.3-fold in
non-fasted 12- to 14-week-old male Atgl-/- mice compared with WT mice [91]. Progressive
hepatic steatosis was also observed in hepatocyte-specific ATGL knockout mice (AtglL-KO).
In 2011, Wu et al. reported that, in a time period of 12 months, AtglL-KO mice had larger
cytoplasmic LDs in cholangiocytes and more than 3-fold higher TG contents compared
with controls [92].

In accordance with the accumulated hepatic TG contents, the lipolytic activities in
the livers of AtglL-KO mice were decreased by 33% to 73% in comparison with that in
WT mice [87,91]. In an in vitro model, the lipolytic activity of ATGL was increased by
1.9-fold, while the cellular mass was reduced by about 60% in McA-RH7777 cells with
adenovirus-mediated ATGL overexpression compared with that in controls [87].

To further investigate the TG-hydrolytic ability of ATGL in the liver, Reid and cowork-
ers generated a transgenic mouse model with adenovirus-mediated hepatic overexpression
of ATGL (Ad-ATGL). They reported that liver TG content was reduced by 65% in fasting
female ob/ob mice 8 days after Ad-ATGL infection compared with Ad-GFP-infected controls.
The same trend was observed in male diet-induced obesity (DIO) mice as there was a
40% reduction in hepatic TG content at 10 days post-Ad-ATGL infection compared with
their counterpart controls [87]. In agreement with the aforementioned findings, Ong et al.
reported that the TG hydrolase activity in the livers of mice with adenovirus-mediated
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hepatic ATGL knockdown was reduced by 40% after 7 days of adenovirus injection, which
led to a 30% increase in liver weight and a more than doubled increase in TG content of
controls [89]. Interestingly, composition analysis showed that ATGL knockdown caused a
significant reduction in C16:0, C18:0, and C18:3 FAs but an increase in C18:1 FA in hepatic
TG content.

Taken together, current evidence suggests that hepatic TG content is inversely corre-
lated with the expression of ATGL in the liver. ATGL expression not only affects hepatic
TG content, but also might alter the overall fatty acids profile in the liver.

5.3. ATGL in Hepatic FA Oxidation

PPARα is a ligand-activated transcriptional regulator of genes involved in mitochon-
drial FA β-oxidation [93]. Studies have shown that FAs are strong endogenous ligands
that bind to and activate PPARα [94]. Given the fact that ATGL regulates the production
of TG-derived FAs, it is assumed that ATGL might affect PPARα expression and therefore
influence its downstream target genes that are involved in FA β-oxidation. Wu et al. re-
ported that liver-specific knockout of ATGL in mice remarkably downregulated hepatic
expressions of PPARα and carnitine palmitoyltransferase-1α (CPT-1α) at 4-month-old age
compared with controls, suggesting reduced FA β-oxidation in the liver [89]. Hepatocyte-
specific ATGL deficiency-induced downregulation of hepatic PPARα and its target genes
was demonstrated in another adenovirus-mediated ATGL knockdown mouse model [89].
However, PPARα agonist fenofibrate treatment failed to normalize either liver weight
or high-fat diet-induced elevated liver TG content in ATGL shRNA-treated male mice,
suggesting that ATGL regulates PPARα through a ligand-independent manner in mice. In-
terestingly, in another study, Jha et al. reported that fenofibrate supplementation completely
normalized methionine-choline-deficient (MCD)-induced steatosis in female ATGL-KO
mice [95]. The discrepancies of how ATGL deficiency mice response to fenofibrate supple-
mentation could be due to the various doses of fenofibrate, fasting status when mice were
sacrificed, as well as the different mechanisms underlying hepatic steatosis in two animal
models. Additionally, gender differences could also be a contributor to the conflicting
findings, since ATGL expression has been reported to be affected by estrogen [88].

Even though to what extent that PPARα signaling pathway contributes to ATGL KO-
induced steatosis is still obscure, the results about the effects of ATGL on β-oxidation are,
so far, consistent. In an in vitro study, adenovirus-mediated ATGL knockdown in primary
hepatocytes led to an approximately 70% decrease in fatty acid oxidation represented
by ASM production, while ATGL overexpression increased ASM production by 3-folds,
compared with the cells treated with control shRNA [89]. Hepatic overexpression of ATGL
increased β-oxidation in mice as well as oleate supplementation-induced TG accumula-
tion in McA-RH7777 cells [87]. As for the underlying mechanism of ATGL-derived FAs
metabolism in the liver, Ong et al. demonstrated that liver fatty acid binding protein (L-
FABP) is not necessary for channeling ATGL-derived FAs to mitochondria for β-oxidation
or to nucleus for PPAR-α activation [84].

5.4. ATGL in Hepatic Inflammation

Lipotoxicity occurs when excess lipids accumulate in the liver, which may lead to
hepatic inflammation. It is clinically important to investigate the role of ATGL in the
pathogenesis of hepatic inflammation, which is one of the most important characteristics
in both non-alcoholic fatty liver disease (NAFLD) and alcohol related fatty liver disease
(AFLD) [96].

Jha et al. reported that ATGL KO mice fed with a 2-week MCD diet developed
more severe inflammation in the liver compared to their WT counterparts, as evidenced
by increased expression of inflammatory markers, such as TNF-α, inducible nitric oxide
synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), and interleukin-1beta (IL-1β),
as well as increased infiltration of mononuclear inflammatory cells in the liver. For the LPS
model, 8 to 10-week-old female mice were intraperitoneally injected with a single dose of
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LPS for 12 h at non-fasted state. Compared with WT mice, Atgl-/- mice exhibited marked
hepatic inflammation, as indicated by the significant upregulation of TNF-α, iNOS, MCP-1,
and IL-6, along with elevated serum levels of TNF-α and IL-6. They further demonstrated
that the anti-inflammatory effect of ATGL in the liver was partially achieved through
PPARα signaling pathway [95].

Blood ALT levels have been used as a surrogate marker for liver injuries [97]. Wu et al.
reported that AtglL-KO mice had higher plasma ALT levels and ALT/AST ratio but no
significant differences in hepatic macrophage infiltration, at 8 and 12 months, compared
with WT controls [92]. It is worth noting that the absence of ATGL protected mice from
tunicamycin-induced acute hepatic ER stress [98].

Given the current evidence, ATGL plays a protective role against hepatic inflammation
in steatohepatitis. More studies using liver-specific ATGL knockout animal models are
needed to further elucidate the clinical relevance of ATGL as a therapeutic target in the
progression of metabolic liver diseases.

5.5. ATGL in Hepatic Glucose Metabolism

Despite causing abnormal TG accumulation in non-adipose tissues, global ATGL KO
was reported to be beneficial as it improved systemic glucose tolerance and insulin sensi-
tivity [91,99,100]. The inability of TG mobilization and the subsequent reduced circulating
FFAs forced the mice to shift their energy source from FFAs to glucose, therefore improving
glucose clearance [91,99].

Studies have demonstrated that global ATGL deficiency promoted tissue-specific
changes in insulin action [99,100]. Kienesberger et al. reported that insulin action was
impaired in the liver of Atgl-/- mice (at 10–12 weeks of age) in a short term fasting of
6 h, as reflected by decreased hepatic expression of insulin-stimulated phosphorylation of
IRS1Tyr612 and AktTyr308, as well as decreased insulin-stimulated Akt activity compared
with WT mice [99]. However, in an adenovirus-mediated ATGL knockdown mouse model,
Ong et al. reported that hepatic insulin signaling was not altered despite improved whole-
body glucose tolerance, as no changes of insulin-stimulated phosphorylation of AktSer473

or IRS1Tyr989 were observed in ATGL knockdown mice compared to WT mice [100]. In line
with Ong, Turpin et al. reported that ATGL deficiency did not influence insulin sensitivity
in hepatocytes. The insulin-stimulated phosphorylation of AktS473 and AktT308 was not
different between genotypes, neither were the mRNA expressions of phosphoenolpyruvate
kinase (Pepck) and glucose-6-phosphatase (G6Pase) upon insulin treatment. The authors
claimed that ATGL ablation does not influence insulin sensitivity in hepatocytes despite
induced marked steatosis, meanwhile, hepatic ATGL overexpression mildly improved
hepatic insulin sensitivity without affecting hepatic inflammation [86]. These findings
indicate that the improved whole-body insulin sensitivity and glucose homeostasis in
Atgl-/- mice may not be contributed by liver-specific insulin action.

5.6. ATGL in Hepatocellular Carcinoma (HCC)

During the last few years, growing evidence suggests a non-canonical role of ATGL
in the prognosis of several human malignancies including HCC [101–104], yet the results
are contradictory. Metabolic reprogramming is an important cancer hallmark to sustain
high energy demand and fast proliferation rate via upregulation of glycolysis and lipid
metabolism [105]. Several studies have reported that abnormal lipid metabolism is closely
related to tumor occurrence, development, and metastasis [106,107]. Although the function
of ATGL in hepatic lipid homeostasis is well-known [89], evidence regarding the role of
ATGL in liver cancer is still lacking. Liu et al. have recently shown that ATGL promotes
the proliferation of hepatocellular carcinoma cells by upregulating the phosphorylation
of AKT, whereas inhibition of p-AKT significantly suppressed such effect mediated by
ATGL [108]. Interestingly, Di Leo et al. observed that ATGL overexpression attenuated
cellular glucose uptake/utilization and cell proliferation while fatty acid oxidation and
mitochondria activity were enhanced. They further demonstrated that ATGL-mediated p53



Biomolecules 2022, 12, 57 12 of 17

acetylation/stabilization via the PPAR-α/p300 pathway is responsible for the metabolic
shift from glycolysis to fatty acid oxidation [103]. In contrast, another group reported that
nuclear paraspeckle assembly transcript 1 (NEAT1) disrupts HCC cell lipolysis through
modulation of ATGL [109]. They found that suppression of NEAT1 in hepatoma cells
downregulated the expression of ATGL, and subsequently decreased levels of cellular
DAG and FFA, which led to the suppression of HCC cell proliferation. These results have
provided new insights of ATGL regarding its role in HCC progression and may shed light
on the development of selective therapies towards HCC with further research.

6. Conclusions

Although ATGL was initially characterized and well-studied in adipose tissue, grow-
ing evidence also suggests that ATGL has pivotal tissue-specific roles in other organs,
including the liver. This review provides a unique perspective on the current under-
standing of the structure–function relationship of ATGL, the molecular mechanisms of
ATGL regulation at translational and post-translational levels (summarized in Figures 2
and 3), and, most importantly, its role in lipid and glucose homeostasis in health and
disease (summarized in Figure 4). Many important questions regarding hepatic ATGL
and ATGL-mediated lipid metabolism remain unanswered, including: (a) How is hepatic
ATGL regulated in the setting of fatty liver diseases? (b) What is the precise mechanism
by which hepatic ATGL mediates the onset and progression of fatty liver diseases? (c)
Do cell–cell interactions among hepatocytes, HSCs, and macrophages exist when hepatic
ATGL is dysregulated? and (d) Is hepatic ATGL of clinical relevance and should it be
targeted as a potential therapeutic strategy for liver diseases, including fatty liver disease,
steatohepatitis, hepatic fibrosis, or even liver cancer? In summary, a deeper understanding
is needed regarding the precise mechanisms whereby FA uptake, synthesis, and breakdown
are tightly regulated within the liver, especially through the regulation of hepatic ATGL.
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