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Abstract: Bats have been increasingly gaining attention as potential reservoir hosts of some of the
most virulent viruses known. Numerous review articles summarize bats as potential reservoir hosts
of human-pathogenic zoonotic viruses. For European bats, just one review article is available that we
published in 2014. The present review provides an update on the earlier article and summarizes the
most important viruses found in European bats and their possible implications for Public Health. We
identify the research gaps and recommend monitoring of these viruses.

Keywords: bats; virome; metagenomics; Issyk-Kul virus; SARS-like CoV; zoonoses; Zwiesel bat
banyangvirus; Mammalian orthoreovirus; Lloviu virus

1. European Bat Viruses

Bat viruses have been gaining worldwide attention following the outbreaks of SARS-
Coronavirus (CoV), SARS-CoV-2, Nipah virus, Hendra virus, and Ebola virus. Worldwide
sequences of 12,476 bat-associated viruses are available at NCBI Genbank and DBatVir
(accessed on 31 March 2021) [1,2]. The highest number of sequences is available from Asia
(5225), followed by Africa (2728), North America (1889), Europe (1353), South America
(1065), and Oceania (216). In comparison to Asia and Africa, the number of European bat
viruses discovered seems low. As virus species richness is positively correlated with species
richness and abundance, it is coherent that more viruses are discovered in the species-rich
tropical regions [3,4]. Additionally, the prominent examples of zoonotic bat viruses have
been emerging in Asia and Africa; this is consequential since the highest number of bat
viruses was detected on these continents. European bat species are covered by species
protection through the European Commission (http://ec.europa.eu/environment/nature/
legislation/habitatsdirective, accessed on 22 June 2021) and through the Agreement on the
Conservation of Populations of European Bats (www.eurobats.org, accessed on 22 June
2021); therefore investigative research requires special permission by local government
bodies. This might contribute to the lower number of viruses detected in Europe and North
America. Nevertheless, the viral richness discovered in European bats is high.

The current SARS-CoV-2 pandemic is once more underlining the importance of viral
discovery in bats. If we can come back to databases containing the sequences of the viral
diversity in the respective hosts, it becomes more feasible to determine which measures
need to be taken. This review aims to provide an overview on viruses discovered in
European bats. In addition, we identify the research gaps, as data on critical factors
necessary for an assessment of the zoonotic risk are rarely reported. For most of the viruses,
data is unavailable on viral shedding of infectious virus, prevalence of the virus in the
host population, abundance of hosts and habitat overlap with humans, identification of
potential transmission routes, and data on shedding seasonality. We discuss the potential
anthropozoonotic and zoonotic transmission between bats and humans and propose to
further investigate certain bat viruses.
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1.1. Bat Virus Discovery in Europe

The first sequence of a European bat virus in the database was reported in 1995, and
the oldest collected European bat specimens were from 1968 [1,5]. The greatest attention
was paid to Rhabdoviruses before the virus discovery studies have been diversifying from
2007 on. Figure 1 shows the number of published virus sequences over time, related to the
respective viral family and order. However, another criterion to determine virus discovery
in Europe is the number of published viruses by year of specimen collection, as shown in
Figure 2 that summarizes the number of published viruses by year of specimen collection.
Figure 2 displays that the number of discovered viruses and, we assume, likewise the
efforts in specimen collection had grown ten-fold in 2007. This increase in sample collection
and virus discovery studies may be the result of the increasing recognition of bats as
potential reservoir host of emerging viruses. Bats were confirmed as reservoir host of
Hendra virus in 2000 [6], Nipah virus in 2001 [7], SARS-like CoV in 2005 [8], and Marburg
virus in 2009 [9]. In addition, they were postulated as potential host of Ebola virus in
2005, MERS-CoV in 2012, and SARS-CoV-2 in 2020 which still has to be confirmed [10–12].
Figure 3 illustrates how the discovery of bat viruses has been diversifying from 2003 on,
while virus discovery focused on Rhabdoviruses in bats until 2002. From 2003 on we see
an increased discovery of CoV in European bats. On the one hand, this might be due to
the fact that CoV (among other viruses) can be detected in feces samples and are therefore
more accessible to research than other specimens (compare Figure 4). On the other hand,
CoV are very abundant in bats and have a high tenacity, making them more likely to be
detected compared to e.g., Paramyxoviruses. Moreover, the lack of data on negative tested
bats raises difficulties to draw conclusions [13–17]. Another factor is the availability of bat
species for examination. Bat species are very divergent in their roosting and migration
behavior, making it difficult to collect specimens from some species and easy from others.
In contrast to studies in other areas of the world, the European bats are strictly protected;
thus bat sampling is more complicated and results in a potential underrepresentation of
the number of bat viruses reported. An overview on viruses discovered by bat species in
Europe is given in Table 1. It seems that most viruses were found in Myotis spp., Pipistrellus
spp., and Eptesicus spp. Here also, without data on bats that were sampled but tested
negative, it is hard to draw conclusions.

Figure 1. Number of published virus sequences over time, related to the respective viral family and order (DBatVir [1]).
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Figure 2. Number of published virus sequences by year of specimen collection (DBatVir [1]).

Figure 3. Published virus sequences by year of specimen collection, related to the respective viral family and order
(DBatVir [1]).

Another reason for the generally increased detection of viruses could be the great
progress in virus discovery methods during the same time-frame. While in the early years
of virus discovery researchers had to rely on time-consuming cell-culture methods for virus
detection, the “molecular evolution” was a game changer. Not only PCR, primer design,
and capillary sequencing were becoming cheaper and thus widely available, also massive
parallel sequencing methods were gaining attention. It was in 1994 when Canard and Safarti
first published the baseline for Illumina sequencing technology [18]. In 2005 Margulies et al.
published the massive parallel sequencing method of 454 sequencing [19]. In 2013 already,
Roche shut down the 454 sequencing branch, as Illumina became market leader. Since 2014
portable sequencing via Oxford nanopore is on the rise [20,21]. Metagenomics and viromics
have become standard applications in the virological research communities, leading to
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increased virus discovery results in European bats [15,22–33]. However, isolation of viruses
is still the gold standard in virology for subsequent functional characterization and it will
be very hard to replace this method.

Figure 4. Specimen type used for virus detection related to the respective viral family and order (DBatVir [1]).

1.2. Viruses Detected in European Bats

Until now, the database of bat viruses comprises 1353 entries for Europe (accessed
on 31 March 2021) [1]. A summary of all entries (viruses vs. bat species) can be found in
Table 1. Table 2 provides references, host bat species, and detection methods for all viruses
found in European bats. Figure 5 displays the number of viruses by family recorded for
European bats. The majority of viruses recorded in the database belongs to the families
Rhabdoviridae and Coronaviridae. Since the first review on zoonotic viruses of European
bats in 2014 [2] various novel viruses have been discovered. In the following section we
focus on these viruses that in our opinion could possibly pose a zoonotic threat to humans.
The full and up-to-date list of European bats can be accessed online at the Database of
Bat-associated Viruses (DBatVir) [1].

Figure 5. Number of viruses by family recorded for European bats in log scale (DBatVir [1]).
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Table 1. Overview on virus data per bat species recorded at DBatVir [1].
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Barbastella barbastellus 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Eidolon helvum 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

Eptesicus isabellinus 0 0 0 0 0 1 0 0 0 0 3 0 4 0 0 0 0 0 0 0 0 13 21
Eptesicus nilssonii 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 2 6
Eptesicus serotinus 3 1 0 1 0 2 0 0 0 1 3 0 13 0 0 0 0 0 0 2 1 315 342

Hypsugo savii 4 0 0 0 0 4 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 11
Miniopterus schreibersii 1 11 0 0 3 16 2 0 0 0 5 0 0 0 4 0 18 0 0 1 0 5 66

Murina leucogaster 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
Myotis alcathoe 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 4

Myotis bechsteinii 1 1 0 0 0 2 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 8
Myotis blythii 1 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 4

Myotis brandtii 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3
Myotis capaccinii 0 3 0 0 0 6 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 12

Myotis dasycneme 2 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 9 36
Myotis daubentonii 0 1 0 1 0 63 0 0 0 2 2 0 0 8 0 0 0 0 0 8 0 47 132
Myotis emarginatus 4 3 0 0 1 26 0 0 0 0 2 0 0 9 0 0 0 0 0 1 0 0 46

Myotis escalerai 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2
Myotis myotis 3 8 0 0 1 22 0 0 0 0 2 0 0 2 0 0 15 0 0 1 0 21 75

Myotis myotis blythii 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Myotis mystacinus 1 1 0 0 0 0 0 0 0 0 3 1 0 4 0 0 0 0 0 3 0 1 14

Myotis nattereri 0 1 1 0 1 24 0 0 0 0 2 0 0 4 0 0 0 0 0 1 0 7 41
Myotis oxygnathus 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2

Nyctalus lasiopterus 16 0 0 0 0 5 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 24
Nyctalus leisleri 8 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 11

Nyctalus noctula 13 2 0 0 1 5 0 0 2 0 3 0 0 1 1 0 2 0 0 0 0 0 30
Pipistrellus 0 1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

Pipistrellus kuhlii 18 2 0 0 0 16 0 0 0 0 1 0 0 2 1 1 1 0 0 28 0 1 71
Pipistrellus nathusii 5 0 0 0 1 5 0 0 0 1 1 0 0 0 3 0 0 0 0 0 0 1 17

Pipistrellus pipistrellus 13 1 1 0 0 13 0 2 0 0 3 0 0 2 2 0 1 0 0 2 0 1 41
Pipistrellus pygmaeus 32 1 0 0 0 12 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 46

Plecotus auritus 1 1 0 0 1 1 0 0 0 0 1 0 0 0 2 0 0 0 0 1 0 3 11
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Table 1. Cont.
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Plecotus austriacus 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 4
Pteropus giganteus 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
Pteropus vampyrus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

Rhinolophus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
Rhinolophus blasii 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 13

Rhinolophus euryale 11 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 5 1 0 3 0 0 28
Rhinolophus

ferrumequinum 11 0 0 0 0 99 0 0 0 0 1 0 1 0 0 0 3 0 0 1 1 2 119

Rhinolophus
hipposideros 1 1 0 0 1 7 0 0 0 0 1 0 0 0 0 0 1 1 0 2 0 0 15

Rhinolophus mehelyi 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
Rousettus aegyptiacus 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 1 4

Tadarida teniotis 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 2 0 0 6
Vespertilio murinus 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 8

unclassified Chiroptera 0 0 0 0 0 3 0 0 0 0 0 2 0 0 0 1 1 0 0 3 0 56 66
Total 153 42 2 3 12 385 2 2 2 5 56 4 20 35 13 3 52 2 1 65 2 491 1352
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Table 2. Overview on viruses detected in European bats with references (Data from DBatVir [1]).

Virus Family Genus Bat Species Origin Detection Reference

Adenoviridae Mastadenovirus

Pipistrellus nathusii
Pipistrellus pipistrellus Germany Isolation

PCR [34,35]

Nyctalus noctule
Rhinolophus ferrumequinum Hungary PCR [36]

Rhinolophus euryale
Rhinolophus ferrumequinum

Rhinolophus hipposideros
Eptesicus nilssonii
Eptesicus serotinus

Myotis blythii
Myotis dasycneme

Myotis emarginatus
Myotis myotis

Myotis mystacinus
Nyctalus leisleri
Nyctalus noctula
Pipistrellus kuhlii

Pipistrellus nathusii
Pipistrellus pipistrellus
Pipistrellus pygmaeus

Plecotus auratus
Vespertilio murinus

Hungary/Germany PCR [37]

Myotis myotis Germany PCR [38]

Hypsugo savii
Myotis bechsteinii

Myotis emarginatus
Myotis myotis

Nyctalus noctula
Nyctalus lasiopterus

Nyctalus leisleri
Pipistrellus kuhlii

Pipistrellus pipistrellus
Pipistrellus pygmaeus
Rhinolophus euryale

Rhinolophus ferrumequinum

Spain PCR [39]
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Table 2. Cont.

Virus Family Genus Bat Species Origin Detection Reference

Pipistrellus kuhlii Italy Isolation [40]

Astroviridae Mamastrovirus

Myotis myotis Germany PCR [38]

Myotis daubentonii
Plecotus auritus

Myotis bechsteinii
Nyctalus noctula

Pipistrellus pygmaeus
Myotis emarginatus

Myotis nattereri
Miniopterus schreibersii

Hungary PCR [41,42]

Pipistrellus spp.
Myotis mystacinus
Myotis emarginatus

Pipistrellus pipistrellus
Vespertilio murinus

Nyctalus noctule
Rhinolophus hipposideros

Czech Republic PCR [43]

Barbastella barbastellus
Eptesicus serotinus

Miniopterus schreibersii
Myotis capaccinii

Myotis emarginatus
Myotis myotis blythii

Pipistrellus kuhlii

Italy PCR [44]

Bornaviridae Myotis nattereri
Pipistrellus pipistrellus France Metagenomics [22]

Caliciviridae
Eptesicus serotinus

Myotis alcathoe
Myotis daubentonii

Hungary PCR [42]
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Table 2. Cont.

Virus Family Genus Bat Species Origin Detection Reference

Circoviridae

Miniopterus schreibersii Italy PCR [45]

Miniopterus schreibersii Croatia Metagenomics [46]

Myotis nattereri
Myotis emarginatus

Myotis alcathoe
Plecotus auritus

Pipistrellus nathusii
Nyctalus noctula

Hungary, Serbia,
Ukraine Metagenomics [24]

Bunyaviridae

Phenuivirus
Pipistrellus kuhlii Italy Isolation [47]

Eptesicus nilssonii Germany Metagenomics [26]

Nairovirus
Myotis mystacinus France Metagenomics [22]

Eptesicus nilssonii Germany Metagenomics [15,25]

Coronaviridae Alphacoronavirus

Myotis bechsteinii
Myotis dasycneme

Myotis daubentonii
Pipistrellus nathusii

Pipistrellus pygmaeus
Myotis nattereri

Germany PCR [48,49]

Pipistrellus pipistrellus Germany Metagenomics [15]

Myotis blythii
Myotis daubentonii

Myotis myotis
Mineropterus schreibersii

Nyctalus lasiopterus
Pipistrellus kuhlii
Pipistrellus spp.

Spain PCR [50]
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Table 2. Cont.

Virus Family Genus Bat Species Origin Detection Reference

Rhinolophus ferrumequinum
Myotis emarginatus
Myotis daubentonii

Myotis nattereri
Rhinolophus ferrumequinum

Myotis myotis
Miniopterus schreibersii

Myotis capaccinii
Pipistrellus pipistrellus

France, Spain PCR [51,52]

Myotis brandtii
Myotis daubentoniid

Eptesicus nilssonii
Finland PCR [53]

Myotis myotis
Myotis nattereri

Myotis oxygnathus
Plecotus auritus

Pipistrellus kuhlii
Pipistrellus pipistrellus

Rhinolophus ferrumequinum

Italy PCR [54–57]

Hypsugo savii
Nyctalus noctule

Pipistrellus kuhlii
Pipistrellus spp.

Rhinolophus hipposideros

Italy PCR [57]

Miniopterus schreibersii
Nyctalus leisleri

Rhinolophus euryale
Rhinolophus blasii

Rhinolophus ferrumequinum
Rhinolophus mehelyi

Germany PCR [38]
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Table 2. Cont.

Virus Family Genus Bat Species Origin Detection Reference

Myotis daubentoniid
Myotis nattereri United Kingdom PCR [58]

Myotis daubentonii
Myotis dasycneme
Eptesicus serotinus

Pipistrellus pygmaeus
Myotis nattereri

Denmark PCR [59]

Myotis myotis
Pipistrellus pygmaeus

Myotis nattereri
Rhinolophus ferrumequinum

Rhinolophus hipposideros
Myotis daubentonii

Hungary PCR [42]

Myotis emarginatus
Rhinolophus ferrumequinum Luxembourg PCR [60]

Betacoronavirus

Miniopterus schreibersii
Nyctalus leisleri

Myotis daubentonii
Rhinolophus euryale
Rhinolophus blasii

Rhinolophus ferrumequinum
Rhinolophus mehelyi

Rhinolophus hipposideros

Bulgaria
Germany PCR [61]

Myotis brandtii
Eptesicus nilssonii Finland PCR [53]

Rhinolophus euryale Hungary PCR [42,62]

Rhinolophus ferrumequinum Luxembourg PCR [60]

Pipistrellus nathusii
Pipistrellus pygmaeus

Pipistrellus pipistrellus
Romania, Ukraine PCR [63]

Rhinolophus hipposideros Slovenia PCR [64]

Pipistrellus pipistrellus Netherlands PCR [65]
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Table 2. Cont.

Virus Family Genus Bat Species Origin Detection Reference

Rhinolophus hipposideros United Kingdom Metagenomics [27]
Preprint

Eptesicus isabellinus
Hypsugo savii Spain PCR [50]

Eptesicus serotinus
Hypsugo savii

Nyctalus noctule
Pipistrellus kuhlii

Pipistrellus sp.
Rhinolophus hipposideros

Rhinolophus ferrumequinum

Italy PCR [54,56,57,66–68]

Rhinolophus ferrumequinum France, Spain PCR [51]

Filoviridae Cuevavirus Miniopterus schreibersii Spain, Hungary PCR [28,69]

Flaviviridae Japanese encephalitis
serocomplex Pipistrellus pipistrellus Germany PCR [70]

Hantavirus Nyctalus noctula Czech Republic PCR [71]

Hepeviruses Hep-E-related viruses
Eptesicus serotinus
Myotis bechsteinii

Myotis daubentonii

Germany
Bulgaria PCR [72]

Herpesviridae Betaherpesvirus
Gammaherpesvirus

Myotis myotis
Myotis nattereri
Nyctalus noctula

Pipistrellus pipistrellus
Plecotus auritus

Germany PCR [73]
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Table 2. Cont.

Virus Family Genus Bat Species Origin Detection Reference

Betaherpesvirus
Alphaherpesviruses Rousettus aegyptiacus Hungary PCR [36]

Betaherpesviruses

Eptesicus isabellinus
Hypsugo savii

Miniopterus schreibersii
Myotis alcathoe

Myotis bechsteinii
Myotis blythii

Myotis capaccinii
Myotis daubentonii
Myotis emarginatus

Myotis escalerai
Myotis myotis

Myotis mystacinus
Myotis nattereri

Nyctalus lasiopterus
Nyctalus leisleri
Nyctalus noctula

Pipistrellus pipistrellus
Pipistrellus kuhlii

Pipistrellus pygmaeus
Plecotus austriacus

Rhinolophus ferrumequinum
Rhinolophus hipposideros

Rousettus aegyptiacus
Tadarida teniotis

Spain PCR [74]
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Table 2. Cont.

Virus Family Genus Bat Species Origin Detection Reference

Gammaherpesvirus Eptesicus serotinus Hungary PCR [75]

Papillomavirus Papillomavirus Eptesicus serotinus
Rhinolophus ferrumequinum Spain PCR [76]

Paramyxoviridae

Unassigned
Myotis mystacinus
Nyctalus noctula

Pipistrellus pipistrellus
Germany PCR [77]

Morbillivirus

Myotis bechsteinii
Myotis daubentonii

Myotis myotis
Myotis mystacinus

Myotis alcathoe
Myotis capaccinii

Bulgaria
Germany
Romania

PCR [78]

Parvoviridae

Miniopterus schreibersii Croatia Metagenomics [23]

Miniopterus schreibersii Hungary Metagenomics [29]

Myotis myotis
Pipistrellus kuhlii
Myotis nattereri

Eptesicus nilssonii
Myotis daubentoniid
Vespertilio murinus
Eptesicus nilssonii
Nyctalus noctula

Germany Metagenomics [15]

Picornaviridae

Rhinolophus ferrumequinum
Myotis myotis

Pipistrellus kuhlii
Nyctalus noctula

Rhinolophus hipposideros
Miniopterus schreibersii

Myotis dasycneme

Luxembourg, Germany,
Spain, Romania PCR [79]

Miniopterous schreibersii Hungary Metagenomics [31]

Pipistrellus pipistrellus Italy Metagenomics [30]

Plecotus aurithus
Pipistrellus nathusii Germany Metagenomics [15]
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Table 2. Cont.

Virus Family Genus Bat Species Origin Detection Reference

Polyomavirus Rhinolophus euryale
Rhinolophus hipposideros Hungary PCR [80]

Poxviridae Hypsugo savii Italy Isolation [81]

Reoviridae

Orthoreovirus

Myotis mystacinus
Nyctalus noctula

Pipistrellus pipistrellus
Pipistrellus nathusii

Pipistrellus kuhlii
Plecotus auritus

Germany Isolation
PCR [82]

Pipistrellus kuhlii
Rhinolophus hipposideros

Nyctalus noctula
Tadarida teniotis
Nyctalus noctula

Italy Isolation
PCR [83]

Myotis nattereri
Pipistrellus kuhlii Italy PCR [33]

Eptesicus serotinus
Myotis daubentonii

Myotis myotis
Myotis emarginatus

Slovenia PCR [84]

Rotavirus

Rhinolophus blasii
Rhinolophus

Rhinolophus euryale
Myotis daubentonii

Germany,
Bulgaria PCR [85]

Myotis mystacinus France Metagenomics [22]

Pipistrellus pipistrellus Germany Metagenomics [15]

Miniopterus schreibersii Serbia Metagenomics [32]

Orbivirus Nyctalus noctula Germany Metagenomics [15]
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Table 2. Cont.

Virus Family Genus Bat Species Origin Detection Reference

Retroviridae

Gammaretrovirus Eptesicus serotinus France Metagenomics [22]

Endogenous Retrovirus

Myotis myotis
Pipistrellus kuhlii

Pipistrellus pipistrellus
Myotis daubentoniid
Vespertilio murinus

Germany Metagenomics [15]

Rhabdoviridae Various European bat
lyssaviruses

Eptesicus serotinus
Eptesicus isabellinus

Hypsugo savii
Miniopterus schreibersii

Myotis myotis
Myotis daubentonii
Myotis dasycneme
Myotis nattereri
Myotis brandtii

Plectorus auritus
Pipistrellus pipistrellus

Pipistrellus kuhlii
Rhinolophus ferrumequinum

Rousettus aegyptiacus
Vespertilio murinus

unclassified Chiroptera

Denmark
France
Finland

Germany
Hungary

Italy
Netherlands

Norway
Poland

Slovakia
Spain

Switzerland
Ukraine

United Kingdom

Microscopy
Isolation

PCR

[86–109]
[92–95,101,108–111]
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1.2.1. Coronaviruses

Numerous CoV have been detected in bats, most of which belong to the genus Alpha-
and Betacoronaviruses [1,112]. The genus Alphacoronavirus hosts human-pathogenic
strains (i.e., Human CoV 229E and NL63); however, in this review we focus on selected
highly human-pathogenic Betacoronaviruses and their European bat virus relatives [112].
Several more comprehensive reviews on bats and CoV are available [113–115].

SARS-CoV

The first pandemic of the new millennium confronted the world from November
2002 until July 2003 with the severe acute respiratory syndrome in humans caused by a
novel CoV (SARS-CoV, subgenus Sarbecovirus) [116,117]. The SARS-CoV pandemic spread
from its origin, a wet-market in the Guangdong province in China, through 33 countries
on five continents and resulted in more than 8000 infected humans of whom more than
700 eventually died [113,118]. Masked palm civets and bats were suspected as possi-
ble sources and reservoir species. Subsequently, numerous SARS-CoV-like viruses were
detected in bats, some of which were able to use the ACE2 receptor crucial for human
infection, without further modification [119,120]. A SARS-related bat CoV (HKU3) was
isolated from Chinese horseshoe bats (Rhinolophus sinicus) [121]. Furthermore, Hu et al.
identified several SARS-CoV-like viruses in 2017 in a colony of horseshoe bats in Yun-
nan province, China [122]. Three of these viruses display similar surface glycoprotein
domains and are thus capable of using ACE2 as the receptor, and the authors assume that
SARS-CoV originated from these viruses by recombination events and spillover [122,123].
Subsequently, a plethora of diverse CoV of distinct groups have been detected in various
bat species around the world via molecular-biological techniques and virus isolation [114].

Numerous studies of European bats report the presence of Betacoronaviruses and
several report SARS-like CoVs [27,42,50,56,57,60,61,64–67]. Remarkably, all SARS-like CoV
were identified in bats of the family Rhinolophidae. In the UK, Slovenia, and Italy Rhinolophus
hipposideros was the reported host of SARS-like CoVs with identities of >80% with SARS-
CoV [27,57,64]. In Luxembourg, Italy, France, and Spain Rhinolophus ferrumequium was
tested positive for SARS-like CoVs [51,54,60,67,68]. Rhinolophus blasii from Bulgaria was
also found positive for SARS-like CoVs [61].

MERS-CoV

With the emergence of Middle East respiratory syndrome CoV (MERS-CoV, subgenus
Merbecovirus) in 2012, another human-pathogenic CoV began spreading from the Arabian
Peninsula [124], so far resulting in globally 2566 laboratory-confirmed cases of infection
with MERS-CoV, including at least 882 deaths (WHO. Available online: https://www.
emro.who.int/health-topics/mers-cov/mers-outbreaks.html, accessed on 9 April 2021).
Dromedary camels were confirmed as reservoir host of MERS-CoV and a continuing source
of transmission to humans [125]. However, it is widely assumed that MERS-CoV has
initially originated from bats and was transmitted to dromedary camels >30 years ago [126].
This is further supported by the detection of MERS-CoV-related viruses, which share
receptor usage for cell entry with MERS-CoV, in bats [127]. MERS-like CoV were detected
in Hypsugo savii in Italy and in Pipistrellus spp. in Italy, the Netherlands, Germany, Ukraine,
and Romania [57,63].

SARS-CoV-2

Since December 2019 another pandemic CoV, SARS-CoV-2 (subgenus Sarbecovirus),
has been confronting the world [12]. SARS-CoV-2 became the seventh CoV known to be
capable of infecting humans, so far resulting in globally 178,503,429 laboratory-confirmed
cases of infection with SARS-CoV-2, including at least 3,872,457 deaths (WHO, 22 June
2021; https://www.who.int/emergencies/diseases/novel-coronavirus-2019, accessed on
22 June 2021). SARS-CoV, MERS-CoV, and SARS-CoV-2 are associated with severe dis-
eases, while HKU1, NL63, OC43, and 229E cause rather mild diseases [128,129]. Several

https://www.emro.who.int/health-topics/mers-cov/mers-outbreaks.html
https://www.emro.who.int/health-topics/mers-cov/mers-outbreaks.html
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
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of the early cases of SARS-CoV-2 have been linked to the Huanan market in Wuhan,
China [12,130]. Given the SARS-CoV pandemic and the resulting increased interest in bat
CoV, a bat CoV (RaTG13, 96.2% id) detected in Rhinolophus affinis in the Yunnan province
was quickly identified as the closest relative [12,122,131]. SARS-CoV and SARS-CoV-2
share 79.6% sequence identity only, although both viruses are using the ACE2 receptor for
cell entry [12]. We have calculated a phylogenetic reconstruction for Asian and European
SARS-like bat viruses in comparison to SARS-CoV, SARS-CoV-2, SARS-CoV from zibet and
SARS-CoV-2 from pangolin (Figure 6). The European SARS-like viruses are clustering as a
distinct sister clade to the Asian SARS-like bat viruses and SARS-CoV and SARS-CoV-2.

Figure 6. Phylogenetic reconstruction of European SARS-like Betacoronaviruses with SARS-like viruses and SARS-CoV
viruses from Asia. Phylogenetic reconstruction was calculated based on a 392 nt long fragment of CoV available under the
accession numbers mentioned in the tree. Calculations were performed using Clustal, MrBayes (GTR, 10 Mio, 10 percent
Burn-in), visualization Geneious prime.

A related virus detected in bats cannot necessarily be considered as zoonotic. Few
alterations in the SARS-CoV spike protein enabled binding to its host receptor ACE2; thus
SARS-CoV became capable of infecting humans [132]. So far, the SARS-like CoV detected
in European bats lack these alterations and are therefore not predicted to be capable of
infecting humans [129]. However, at least two theories are being discussed about the
proximal origin of SARS-CoV-2 and the way that SARS-like CoVs of the Yunnan province
may have acquired ACE2 receptor usage: 1. Natural selection in an animal host by zoonotic
transfer, in contrast to RaTG13 bat virus (the closest relative of SARS-CoV-2). Some pangolin
CoV show a great similarity in the receptor-binding domain, although neither a bat nor a
pangolin virus has been detected so far that would be sufficiently similar to SARS-CoV-2
to serve as a progenitor virus [129,133,134]. 2. Natural selection in humans following
zoonotic transfer: a progenitor virus would have jumped into the human host, adapted,
and acquired the necessary genomic features during human-to-human transmission [129].
Taking these theories into account and given the present worldwide pandemic, it becomes
reasonable to monitor viruses of concern throughout European bat populations. The
diversity of CoV in bats seems to be immensely high. Although numerous CoV have
already been identified, the real diversity (also of possible progenitor viruses) and the
potential risks remain unclear.

1.2.2. Bat Filovirus

The family Filoviridae comprises six genera, four of which (Marburgvirus, Ebolavirus,
Dianlovirus and Cuevavirus) are associated with bats as either confirmed or suspected reser-
voir host species [112]. Marburg virus (MARV) was isolated in 1967 in Marburg, Germany.
It became apparent that the 32 persons who contracted MARV (of which seven died) han-
dled specimens from vervet monkeys (Cercopithecus aethiops) imported from Lake Victoria,
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Uganda [135,136]. The patients revealed flu-like and gastrointestinal symptoms. Later
on, 25 percent of them developed signs of hemorrhagic diathesis and bled from all body
orifices and needle punctures [136]. In consecutive experimental infections with MARV, the
vervet monkeys showed clinical symptoms and died, leading to the assumption that they
were not the natural MARV reservoir hosts [137]. Subsequent studies investigated different
animals as potential reservoir hosts before MARV was successfully isolated from Rousettus
aegyptiacus and the bat reservoir hypothesis was proved correct [9,138]. Consecutive cases
of MARV infections in humans were sporadically connected to mineworking or tourist
visits to mines inhabited by bats [139–142].

The genus Ebolavirus comprises six distinct species four of which cause severe hem-
orrhagic fever similar to MARV in humans and primates (Bombali ebolavirus, Bundibugyo
ebolavirus, Reston ebolavirus, Sudan ebolavirus, Taï Forest ebolavirus, and
Zaïre ebolavirus) [112,143,144]. With the exception of Reston ebolavirus, all ebolaviruses
were detected in Africa. Ebolavirus was named after the Congolese Ebola river and first
emerged in Zaïre (nowadays Democratic Republic of the Congo; DRC) in 1976 and simulta-
neously in the Sudan [145]. During the search for the reservoir host, bats were increasingly
suspected and examined [137]. In 2014, Zaïre ebolavirus strain Mayinga (ZEBOV-May)
emerged in Guéckédou within the prefecture of Nzérékoré, Guinea [146]. Later on ZEBOV-
May spread to Liberia, Sierra Leone, Nigeria, and Mali, resulting in the largest outbreak
of ebolavirus reported so far, with 28,616 laboratory-confirmed cases and 11,310 deaths
(https://www.cdc.gov/vhf/ebola/history/2014-2016-outbreak/index.html, accessed on
23 April 2021). It is assumed that the whole epidemic started with a single zoonotic trans-
mission event to a 2-year-old boy playing in a hollow tree housing a colony of insectivorous
free-tailed bats (Mops condylurus) [147]. RNA of a recently discovered ebolavirus, Bom-
bali ebolavirus, was first detected in Mops condylurus and Chaerephon pumilus in Sierra
Leone, the prefecture of Nzérékoré, Guinea, and Kenia [148–150]. The potential of Bombali
ebolavirus to cause diseases in humans remains unknown. In 2015, Reston ebolavirus was
detected in a bat (Miniopterous schreibersii) in the Philippines [151].

The genus Dianlovirus comprises a single species, Měnglà virus (MLAV), identified in
lung tissues of Rousettus spp. and Eonycteris spelaea in Yunnan province, China [152].

The genus Cuevavirus also comprises a single species, Lloviu virus (LLOV). LLOV
was detected in suddenly declining colonies of Schreiber’s bats (Miniopterus schreibersii)
in France, Spain, and Portugal in 2002 [69]. LLOV detection was limited to animals that
showed signs of viral infection. Healthy co-roosting bats (Myotis myotis) were investigated
but LLOV was not detected. LLOV is distinctly related to Filoviruses found in African bats
(EBOV) and was classified in 2013 as type species of the novel genus Cuevavirus [112].
In 2015, a study by seroprevalence demonstrated wide circulation of LLOV antibodies
in Schreiber’s bats in Spain [153]. After mass die-offs of Schreiber’s bats in Hungary
(2013, 2016, and 2017) LLOV was confirmed in Schreiber’s bat carcasses presenting with
hemorrhagic symptoms [28]. Schreiber’s bats are reported by banding data as a seasonally
migrating species with flight distances ranging from a few hundred to 800 km (section
migration). Schreiber’s bats are distributed in distinct lineages throughout Oceania, Africa,
southern Europe, and South-East Asia [154]. Given that LLOV was found in Spanish and
Hungarian Schreiber’s bats, there may also be some gradual circulation between colonies
of Schreiber’s bats in between Spain and Hungary. As most Filoviruses are described as
highly pathogenic for humans, the occurrence of LLOV should be carefully monitored by
banding studies and surveys on viruses of Schreiber’s bats to assess these findings.

1.2.3. Bat Flaviviruses

The genus Flavivirus comprises a variety of arthropod-borne human-pathogenic
viruses (Arboviruses) with a high impact on global health (i.e., Dengue virus, Zika virus,
Yellow fever virus, Tick-borne encephalitis virus, West Nile virus). In 1970, West Nile virus
(WNV) was detected and isolated from bats (Rousettus leschenaultii, Lesser Short-nosed
Fruit Bats, Lesser Sheath-tailed Bats, and Thai Horseshoe Bats) in India, Malaysia, and

https://www.cdc.gov/vhf/ebola/history/2014-2016-outbreak/index.html
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Mexico [155–157]. Subsequent to the epizootic emergence of WNV in the USA, Mexico, and
Canada, studies on amplification hosts (other than birds) were performed. Although low
levels of antibodies to WNV were detected in Eptesicus fuscus and Myotis septentrionalis from
Illinois, New Jersey, and New York, USA, an experimental infection of North American
Eptesicus fuscus and Mexican Tadarida brasiliensis bats resulted in the conclusion that bats
were unlikely to serve as amplification hosts of WNV [158–160]. Recently, Zika virus was
detected in Artibeus jamaicensis in Mexico [157]. In addition to these cases, a variety of
Flaviviruses was isolated from or detected in bats in Asia, the Americas, and Africa; overall
seroprevalence studies indicated a low prevalence of Flaviviruses in the bats’ sera and
experimental infection showed signs of poor replication [161–166]. The poor replication in
the host bats’ tissues upon experimental infection conflicts with the theory that bats are
involved in the sylvatic cycle of arboviral Flavivirus transmission [167].

Usutu virus (USUV) belongs to the Japanese encephalitis serocomplex of Flaviviruses [70].
Migratory birds and mosquito vectors (mainly Culex spp.) are assumed to play an important
role as amplification hosts and in introducing USUV into new areas, as recently shown for
Europe where USUV has been causing epizootics among wild birds and Usutu fever in
humans [168]. In 2013, two dead-found bats (Pipistrellus pipistrellus) were investigated in
the south-west of Germany and USUV was detected in the brain of both individuals [70].
Full genomes were sequenced and showed 99.3 percent identity (nt) to a bird-derived
strain BH65/11–02–03 from Germany [70]. The authors assume that the bats may act rather
as coincidental hosts than as reservoirs of USUV.

1.2.4. Bat Bunyaviruses

The order Bunyavirales comprises twelve families of whom five are associated with
severe diseases in humans (Arenaviridae, Hantaviridae, Nairoviridae, Peribunyaviridae, and
Phenuiviridae) [112].

Hantavirus

In humans Hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) in Asia
and Europe and Hantavirus cardiopulmonary syndrome (HCPS) in the Americas [169].
Hantavirus sequences have been detected in several bat species of Sierra Leone, Vietnam,
Brazil, Côte d’Ivoire, China, Myanmar, Gabon, and Ethiopia [1,170–175]. In Europe a
novel Hantavirus (Brno virus) was detected in common noctule bats (Nyctalus noctula)
in the Czech Republic [71]. This virus is related to Longquan virus (LQUV) detected
in Rhinolophus spp. in China [172]. These viruses are only distantly related to other
Hantaviruses described so far.

Phenuivirus

Within the family Phenuiviridae there are 19 genera. Viruses of the genus Phlebovirus
are transmitted by sandflies and mosquitoes (Phlebotomus group) or ticks (Uukuniemi
group) and several were linked to human diseases [112]. Toscana virus (TOSV) and Rift
Valley fever virus (RVFV) are the most prominent examples. Toscana virus is transmitted
by sandflies and ranges among the three most prevalent viruses causing meningitis in the
Mediterranean (in particular Italy) during the warm season [176]. RVFV is transmitted to
humans either vectorially through mosquito bites or by direct contact to infected tissue [177].
The disease phenotype of RVFV in humans ranges from unapparent to severe courses of
hemorrhagic fever and meningoencephalitis [178]. RVFV has been isolated from bats of the
species Micropteropus pusillus and Hipposideros abae in the Republic of Guinea [178]. The
only reported Phenuivirus in Europe associated with bats was Toscana virus from the brain
of one Pipistrellus kuhlii bat in Italy, although doubts have arisen in this early finding which
might be due to possible cross-contamination [1]. Two novel Phenuiviruses were recently
identified in German bats by metagenomics from Eptesicus nilssonii tissue: Bavarian bat
lalavirus (BblV, Pipistrellus nathusii) and Munich bat lalavirus (MblV, Pipistrellus nathusii).
BblV and MblV are distantly related to other members of the Uukuniemi group [15].
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Within the family Phenuiviridae, viruses of the genus Bandavirus have caused febrile
infections, encephalitis, and severe fevers with fatal outcome in humans. Recently, two
novel tick-borne Phenuiviruses (Severe Fever with thrombocytopenia virus (SFTS), recently
renamed Huaiyangshan banyangvirus and more recently renamed Dabie bandavirus, and
Heartland virus (HRTV)) were detected and characterized. SFTS was initially reported in
2011 in the Henan and Hubei provinces, China. Patients developed hemorrhagic fever,
thrombocytopenia, leukocytopenia, and multi-organ dysfunction with an initial case fatality
rate of 30 percent [179,180]. By then, the etiological virus was isolated from patients’ blood
and Haemaphysalis longicornis and Rhipicephalus microplus ticks throughout China, South
Korea, and Japan [181,182]. Similar symptoms were recognized in two men from Missouri,
USA. The respective virus, named Heartland virus (HRTV), was isolated in 2012 from
patients’ blood and Amblyomma americanum ticks collected in the field [183,184]. Despite
the identification of ticks as vectors for SFTS and HRTV, the reservoir hosts of the viral
pathogens remain unknown. In 2014, Malsoor virus, a related Bandavirus, was isolated
from Rousettus leschenaultii in India [26,185].

A novel Bandavirus strain was recently identified in German bats by metagenomics
from bat tissue: Zwiesel bat banyangvirus (ZbbV, Eptesicus nilssonii) [15]. The German
ZbbV is closely related to Malsoor virus. Both viruses cluster monophyletically with the
genus Bandavirus which comprises SFTS and HRTV capable of causing severe diseases in
humans [26,185].

Nairovirus

The family Nairoviridae contains the genus Orthonairovirus, named after the Nairobi
sheep disease orthonairovirus (NSDV) species [186]. NSDV and other members of the
genus, like Crimean Congo Hemorrhagic Fever virus (CCHFV), Dugbe virus, and Ganjam
virus, are highly pathogenic to animals and humans [187]. Orthonairoviruses are often
transmitted by ticks. As the viruses were not detected in wild ruminants or other animals
in enzootic areas, the vertebrate reservoir host of these viruses remains unknown. Several
Nairoviruses with unknown zoonotic potential have been detected in bats from Senegal,
Uganda, Zambia, and French Guiana. A seroprevalence study conducted on African bats
(Rousettus aegyptiacus, Coleura afra, Hipposideros caffer, Miniopterus inflatus, and Hipposideros
gigas) found first evidence of a widespread prevalence of CCHF-like viruses within these
species [188].

In Europe, a bat Nairovirus, Ahun Nairovirus, has been detected in lung tissues of
one Pipistrellus pipistrellus and one Myotis mystacinus in France [22]. Phylogenetically, Ahun
Nairovirus appears as a new clade distinct from other Orthonairoviruses [22]. Further
three Nairoviruses have been detected in German bats by metagenomic sequencing: Berlin
bat Nairovirus (BbnV, Pipistrellus pipistrellus), Wittenau bat Nairovirus (WbnV, Pipistrellus
pipistrellus), and Issyk-Kul virus strain PbGER (Eptesicus nilssonii) [15,25]. BbnV is related
to Sapphire II virus (Id 85% nt) and clusters with the Dera Ghazi Khan genogroup usually
associated with birds and not described as human pathogenic [189]. WbnV is phylogeneti-
cally distantly related to Avalon virus (Id 71% nt) which was initially isolated from ticks
in France [190,191]. Both cluster monophyletically with the Sakhalin genogroup; viruses
of these genogroups have not been described before to be associated with bats [190,191].
Issyk-Kul virus strain PbGER is very closely related to Issyk-Kul virus LEIV315K (Id 95%
nt), both clearly allocated within the Keterah genogroup [25]. Issyk-Kul virus was first iso-
lated in 1970 from Nyctalus noctula bats in Kyrgyzstan, Tajikistan, and Kazakhstan [192,193].
Eptesicus nilssonii is a common bat distributed throughout Asia and Europe (including
the polar regions). In Scandinavia they are even the most frequent bat species. They are
dependent on humid habitats in close proximity to fresh water. In winter, they hibernate
on heated attics and in wall claddings of human dwellings. For Issyk-Kul virus sporadic
febrile outbreaks in humans are described with headache, myalgia, and nausea. It is
assumed that Issyk-Kul virus is transmitted by tick bites and exposure to bat feces and



Vaccines 2021, 9, 690 22 of 41

urine [192,193]. These findings show for the first time the abundance of Nairoviruses in
Europe and within this species.

1.2.5. Bat Reoviruses

The family Reoviridae is divided into the subfamilies Sedoreovirinae and Spinareovirinae.
Within the Sedovirinae the genera Orbivirus and Rotavirus are of public health impor-

tance, as they comprise bluetongue virus and rotavirus types A, B, and C. Bat Orbiviruses
were detected in China, Uganda, Guinea, Nigeria, Bangladesh, and Germany. In Germany,
the Orbivirus was detected in a common noctule bat (Nyctalus noctula) [15]. This strain
shares similarity with the yet unpublished Bat Orbivirus from China (AccNo. MH144554.1)
(Id 81% aa) and Sathuvachari virus first isolated in India in 1963 [194]. Bat Rotaviruses are
described in bats from China, Kenya, Gabon, Korea, and Cameroon. In Europe, numer-
ous bat Rotaviruses were also discovered in bats from France (Myotis myotis), Germany
(Pipistrellus pipistrellus), Bulgaria (Rhinolophus blasii, R. euryale), and Serbia (Miniopterus
schreibersii) [15,22,32,85]. All strains, excluding the strain from Serbia, were allocated to
Rotavirus species Rotavirus type A. The zoonotic potential of these bat Rotaviruses related
to group A has yet to be determined.

The subfamily Spinareovirinae comprises among others the genera Coltivirus and
Orthoreovirus, both associated with diseases in humans. A Coltivirus was isolated from
Chaereophon aloysiisabaudiae in Côte d’Ivoire [195]. Orthoreoviruses were isolated from
fruit bats in Australia (Nelson Bay virus) and Malaysia (Pulau virus) [196,197]. In 2007,
Melaka virus (closely related to Pulau virus) was isolated from human patients in Malaysia
and a zoonotic bat-borne transmission was assumed [198]. Since then five additional
Orthoreoviruses (Xi-River, Kampar, Sikamat, HK23629/07, and Broome virus) have been
isolated from fruit bats [199,200] or from humans with assumed contact to bats [201–203].
Three Orthoreoviruses were detected and several ones isolated from German bats (Plecotus
auritus, Myotis mystacinus, Pipistrellus pipistrellus, Pipistrellus nathusii, Pipistrellus kuhlii, and
Nyctalus noctula) [82]. Further 19 Orthoreoviruses in Myotis kuhlii, Rhinolophus hipposideros,
Tadarida teniotis, and Vespertilio murinus were detected in Italy [83]. A close relationship of
the strains from Germany and Italy was revealed to the genus Mammalian Orthoreovirus
(MRV). In particular, they showed a high identity to an Orthoreovirus obtained from a dog
(strain T3/D04) with hemorrhagic enteritis in Italy and an MRV isolated from a hospitalized
child with acute gastroenteritis (strain SI-MRV0) in Slovenia [2,82,83,204,205]. The causative
agent of the latter displayed high identity (ranging between 98.4% and 99.0% nt in the
respective segments) to bat MRV (T3/Bat/Germany/342/08) isolated from Plecotus auritus
in Germany [2,82,205]. These findings indicate a human-pathogenic potential for the MRV
strains in European bats, and especially for strain T3/Bat/Germany/342/08. Interestingly,
no contact was reported between the infected child and bats, but contact to a domestic dog
was assumed [205]. In a second case a child with primary immunodeficiency was reported
to be persistently infected with an MRV with very close relationship to the mentioned
bat MRVs [206]. Further studies were conducted, elucidating the prevalence of potential
zoonotic MRV strains in Slovenian and Italian bats [33,84,207]. The retrospective survey
of Slovenian bat samples from 2008 to 2010 and in 2012 finally confirmed the occurrence
of strain SI-MRV0 in the Slovenian bat populations and thus the zoonotic potential of
bat-borne MRVs [84,205]. The isolated MRV could facilitate seroprevalence studies in
humans which should be initiated to examine the prevalence of specific antibodies to bat
MRVs in Slovenia, Italy, and Germany to further characterize their zoonotic potential.

1.2.6. Rhabdoviruses

Rhabdoviruses of the genus Lyssavirus are harmful and truly zoonotic agents, in-
evitably causing the death of unvaccinated humans if not treated in time before the onset
of the rabies disease [208]. The genus Lyssavirus comprises 17 distinct species only two
of which (Mokola virus and Ikoma Lyssavirus) most likely originated in bats [2,3]. The
reported total number of human fatalities in Europe is low (n = 2–5 since 1963), even
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though bat-transmitted Lyssaviruses (by bat biting and scratching) have a case fatality rate
of virtually 100 percent [208–211]. All so far described hosts of European bat Lyssaviruses
(EBLV-1 and EBLV-2) are synanthropic, hence sharing their habitats with humans [210].
EBLV-1 was detected in Eptesicus serotinus and E. isabellinus in Europe, both living in build-
ings, roofs, and attics usually in the southern regions of Europe (E. serotinus until 55◦ N,
E. isabellinus in southern Portugal), and male bats are reported to co-roost with multiple bat
species [212]. EBLV-1 was also detected in V. murinus, M. schreibersii, M. myotis, M. nattereri,
R. ferrumequinum, and T. teniotis. It has not yet been determined whether these bat species
constitute accidental hosts infected by spillover from co-roosting E. serotinus species or
whether they are additional reservoirs [92,93,101,108,213].

Two human cases described by Johnson et al. were confirmed to be infected with EBLV-
2 which is prevalent in European M. daubentonii and M. dasycneme [101,208]. M. daubentonii
is prevalent in north-eastern Europe and is frequently found co-roosting with P. pipistrellus
and M. nattereri, whereas M. dasycneme is found throughout Europe and in the Mediter-
ranean, co-roosting with M. capaccinii. So far, none of the co-roosting bats were reported to
carry EBLV-2 [212]. However, spillover transmission to other animals (stone marten, sheep,
and cat) was described for EBLV-1 [96,214,215].

The diversity of known European bat-associated Lyssaviruses has expanded. In 2003,
West-Caucasian Bat Virus (WCBV) was isolated from Miniopterus schreibersii [107]. In
2011, Lleida Bat Lyssavirus (LLEBV) was detected also in Miniopterus schreibersii bats in
Spain and later on in France [105,106]. Bokeloh bat Lyssavirus (BBLV) was identified in
Myotis nattereri in Germany, France, and Poland [96,99,100]. Most recently, Kotalahti Bat
Lyssavirus (KBLV) was detected in Myotis brandtii in Finland [86,104]. The rather novel
BBLV and, tentatively, KBLV are (like EBLV-1 and EBLV-2) members of the phylogroup
I Lyssaviruses. Several more comprehensive reviews on bats and bat Lyssaviruses are
available [93,94,101,108,209].

1.2.7. Other Novel European Bat Viruses
Caliciviruses

The first detection of Caliciviruses in European bats (M. daubentonii, E. serotinus,
and M. alcathoe) was published in 2014 [45]. Fecal samples of Hungarian bats were
screened by RT-PCR. While strain BtCalV/M63/HUN/2013 segregated with other viruses
of the genus Sapovirus, the remaining two strains (BtCalV/BS58/HUN/2013 and Bt-
CalV/EP38/HUN/2013) were unique and could not be classified to one of the already
existing genera of Caliciviruses [42].

Parvoviruses

Metagenomic profiling of bats from Croatia, Germany, and Hungary resulted in the
detection of several bat Parvoviruses [15,23,29]. In the Hungarian and German bats, se-
quences of bat Bufaviruses were identified [15,29]. The Hungarian Bufaviruses discovered
in M. schreibersii were found to be phylogenetically related to the recently described human-
pathogenic Bufaviruses, causing acute and severe diarrhea in children in Burkina Faso and
Bhutan [29,216,217].

Picornaviruses

Bat Picornaviruses were identified in several bat species in Luxembourg, Germany,
Spain, Romania, Hungary, and Italy [15,30,31,79]. Drexler et al. showed that bats harbored
evolutionarily ancestral strains of Hepatoviruses [79]. Picornaviruses detected by metage-
nomics in German bats were related to King virus, Tetnovirus, and Hubei Picornavirus of
invertebrates (id 66.0–99.0 percent nt) [15]. The Hungarian strain is highly divergent from
other bat-derived Picornaviruses of the Sapelovirus genus [31]. The strain from Italy is
distantly related to a bat Aichivirus [30]. All these findings support the idea of a possible
ancestral origin of Picornaviruses in bats.
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Polyomaviruses

Recently, bat Polyomaviruses were detected in Hungarian Rhinolophus bats [91]. These
viruses were closely related to Polyomaviruses of Chinese and African horseshoe bats,
suggesting a co-divergence of bat Polyomaviruses with their hosts during their evolutionary
history [80].

Poxviruses

Hypsugopoxvirus (HYPV), a novel poxvirus, was isolated from Hypsugo savii in
Italy [81]. HYPV is related to Eptesipoxvirus detected in Eptesicus fuscus in the USA [81],
both viruses belonging to the Chordopoxvirinae subfamily genus Vespertilionpoxvirus.

2. Ecological Factors

Bats are the second largest order of mammals and compose about 20 percent of
all extant mammals in the world [218]. They are the only mammals capable of active
wing beat and flight, allowing them to migrate over vast distances. In summer, they can
use torpor to reduce their body temperature in between ambient temperatures and the
usual 37 ◦C, in winter they hibernate to save energy. It is important whether bats are
long-distance migrants or sedentary species when investigating the respective colonies
regarding zoonotic virus transmission. Furthermore, the possible effect of climate change
on species richness and abundance of European bat species needs to be considered. This
section will provide a short overview on the migration behavior and possible effects of
climate change on European bat species.

2.1. Migration

The International Union for Conservation of Nature (IUCN) lists 53 bat species that
inhabit the European continent, some of which are threatened with extinction on the
population level and are hence protected under the IUCN Red List of Threatened Species
and the Convention on the Conservation of Migratory Species of Wild Animals (CMS). All
bats in Europe, also the fruit bat Rousettus aegyptiacus (inhabiting Cyprus), use echolocation
to navigate. Numerous bat species migrate over vast distances while others are rather
territorial. Hutterer and Ivanova summarized the available data on migration behavior of
European bats based on 7366 migration routes recorded by banding [219].

They allocated the bats in three groups, sedentary species (up to 100 km of movement),
seasonally migrating species (up to 800 km) and long-distance migrants (up to 4000 km)
(Table 3) [219].

Table 3. Migrating bat species in Europe (sedentary species (up to 100 km of movement), seasonally
migrating species (up to 800 km) and long-distance migrants (up to 4000 km)) [219].

Sedentary Species Seasonal Migrants Long-Distance Migrants

Rhinolophus blasii,
R. euryale,
R. ferrumequinum,
R. hipposideros,
R. mehelyi,
Myotis bechsteinii,
M. emarginatus,
M. nattereri,
Pipistrellus kuhlii,
Plecotus auritus,
P. austriacus,
P. teneriffae,
Tadarida teniotis

Barbastella barbastellus,
Eptesicus nilssonii,
E. serotinus,
Myotis blythii,
M. brandtii,
M. capaccinii,
M. dasycneme,
M.daubentonii,
M. myotis,
M. mystacinus,
Pipistrellus pipistrellus,
Miniopterus schreibersii

Nyctalus leisleri,
Nyctalus noctula,
Pipistrellus nathusii,
Vespertilio murinus
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2.2. Climate Change

European bat species can be allocated to either one of three biogeographical groups,
the Mediterranean, the Temperate, and the Boreal zone [220]. Current hotspots of European
bat diversity are mainly located in the southern European peninsulas and in southern
France [220]. Bat species hotspots of the Boreal group are located at the very northern
end of Europe and these species are rarely found in southern Europe. Bat species of the
Temperate group inhabit Central Europe and the United Kingdom. Even though the
Temperate group is not the species-richest group, it is clearly the most widespread group in
Europe [220]. Rebelo et al. modelled the effects of climate change on bat populations in the
Boreal, Temperate, and Mediterranean zone [220]. They conclude that bats of the Boreal
zone will face serious challenges to their survival by the end of the century. Depending
on the model, the Temperate group will either increase species richness or face extinction
in Central Europe. However, in every model used, the bats of the Temperate group will
disappear from southern Europe. For the Mediterranean bats, the models predict that
Central Europe will become highly suitable for the richness of Mediterranean bats in the
future, while they will disappear from the Mediterranean zone. This theory is further
supported by studies combining acoustic transect bat identification and modeling [221].

Another model by McCain found previously that the abundance of bats seems to be
positively correlated with species richness; this suggests that bat species richness may also
be related to productivity [222]. This means the more species are present in a selected region,
the higher is the overall abundance of bats. All of the European bat species are protected
by the Eurobats initiative as they are threatened by climate change, land-use changes,
habitat loss, degradation, and wind turbines [62,223,224]. The latter might be connected to
nocturnal insect migration and therefore also be affected by climate change [62].

Boyles et al. considered bats to be among the most economically important non-
domesticated animal groups because of their important ecological roles as top predators and
pollinators. Subsequently, in regions of bat diversity loss through climate change, the insect
pest abundance would increase and pollination of food plants would be reduced [225].

3. Risk Factors
3.1. Zoonotic and Anthropozoonotic Transmission

The assessment of the risk of zoonotic spillover of bat-borne viruses is of major
importance for public health [226,227]. One important point is the aspect of climate change
and how it affects the European bat populations. This is described in the “ecological
factors” section. A study investigating the spatial hotspots of land-use changes in Europe
from 1990 to 2006 found increased harvest on stable forest areas in central and northern
Europe compared to the Mediterranean and western Europe [228]. Increased deforestation
and urbanization within a host distribution has been shown to be positively correlated
with the number of zoonotic viruses in a species [4,226]. By shifting bat populations
northwards, the whole ecological system may be impacted and possible consequences in
virus dynamics have to be monitored. Bat species predominantly abundant in southern
Europe are suspected to be reservoirs of potentially zoonotic viruses (e.g., Miniopterus
schreibersii, LLOV; Rhinolophus ferrumequium, SARS-like CoV) and would, according to
climate models, thus be directly affected by climate change.

3.1.1. Could Spillover Be Facilitated by Bat Handling and Virus Research?

Bat research is not limited to virus discovery. Many disciplines study bats as one of the
most special order of mammals. They are the subject of multifaceted studies investigating
among others their bacteria, immunology, behavior, conservation, ecology, migration,
echolocation, and evolution. They serve as model for e.g., the development of bionic
aerodynamics and even mobility aid for the blind [229,230]. For all of these reasons and
beyond, people have been handling bats for decades. Regarding risk assessment for bat
viruses, we have to keep in mind how much (research) contact between humans and bats
there is already and has not been reported so far to cause zoonotic spillover events. It is
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important to point out that zoonotic spillover is, to our knowledge, an extremely rare event
that can usually only be evaluated retrospectively. However, generally the only people who
could be exposed to a possible risk are those in direct contact with bats, their excretions,
or their virus isolates (e.g., volunteers, bat workers, veterinarians, wildlife biologists, and
also virologists). As we have no reports on any zoonotic virus transmission from bats
to humans in Europe besides Lyssaviruses and Reoviruses, one could assume that these
events would also be very rare in the future.

In the context of the origins of the SARS-CoV-2 pandemic the question has arisen
if the examination of bat hosts will facilitate virus emergence. Investigation, whether
invasive or non-invasive, is stressful for the bats. A study investigating the stress-induced
hypothermia (SIH) of silver-haired bats found that SIH is effected by capture and handling
of the bats [231]. Following both the episodic shedding hypothesis and the transient
epidemics hypothesis, it is assumed that for Pteropid bats stress can result in higher virus-
shedding rates, as was already shown for Hendra virus and Nipah virus [232–235]. If
this were applicable to European bat species, stress-triggered virus shedding would still
not start immediately during bat handling but might be more important in the case of
volunteers handling bats in nursery stations. However, it has yet to be determined to which
degree insectivorous species are sensitive to stress in regard to episodic shedding. Even if
bats wild-captured and released during investigations reacted later on with increased viral
shedding rates, the risk of bat-to-human contact for the individual bat is negligible.

Bringing samples to the lab and propagating bat virus creates possibilities of human–
bat–virus interaction that would most likely not have occurred in nature. It is unlikely for
laboratory workers to get infected by a virus in the laboratory, although lab accidents are
reported. Following the SARS-CoV epidemic, three possible accidental laboratory-acquired
infections were reported in Singapore, Taiwan, and China [236–239]. However, it is difficult
to quantify lab-acquired infections because there is no systematic reporting system [240].
Wurtz et al. summarized the occurrence of laboratory-acquired infections around the world
in BSL-3 and BSL-4 laboratories [240]. They identified human error to be the predominant
cause of laboratory-acquired infections. In turn, this illustrates the effectiveness of the
technical measures that are already in place. Human error in handling infectious specimens
cannot be completely prevented, but the risk is minimized by conducting and observing
biosafety training and creating an error management culture. To conclude, bat handling
and bat virus research will most likely not lead to the introduction of viruses into the
human population. Moreover, after individual laboratory infections there are no reports
of any widespread laboratory-acquired infections. All reported infections were contained
immediately. The WHO investigated the origins of the SARS-CoV-2 pandemic and con-
cluded that it is extremely unlikely that a laboratory would have represented the origin
of the pandemic [241]. They report that all three of the laboratories in Wuhan working
with CoVs had high-quality biosafety level facilities that were well managed [241]. The
benefit of researching bats and their pathogens by far exceeds, in our opinion, the risk of
zoonotic spillover, as it entails the development of vaccines and therapeutics and allows
for the thorough understanding of virus evolution and disease.

3.1.2. Anthropozoonoses

Vice versa, especially during the current pandemic, we also have to discuss the
possibility of anthropozoonoses. Human-to-animal transmissions of SARS-CoV-2 have
already been described for minks, cats, and dogs [242–244]. In Denmark and the Nether-
lands, infected minks on mink farms developed respiratory disease with typical signs
of viral pneumonia and were able to transmit the virus among each other and back to
humans [242,245,246]. The source of infection pointed to humans as the initial source of
infection based on genetic information and as no other connection was found between
outbreaks on several farms [242,245,246]. It became apparent that mink farms can serve
as reservoir of SARS CoV-2 and available SARS CoV-2 vaccines are less efficient in the
mink-derived strain, thus resulting in the culling of 17 million minks in Denmark [247]. In
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addition, human-to-feline transmission of SARS CoV-2 was described for domestic cats as
well as lions and tigers at the Bronx Zoo in New York, USA [243]. Occasional infections of
dogs are also described [244,248]. Should an infected person come into contact with bats,
for instance during field work in a bat cave, it cannot be ruled out that there is also a small
potential for anthropozoonotic transmission. To elucidate whether bats are susceptible to
a SARS-CoV-2 infection, experimental infection studies were conducted. A transmission
study with SARS-CoV-2 in fruit bats (Rousettus agyptiacus) assumed transient infections
after intra-nasal infection of nine bats with 10 × 5 TCID50 of SARS-CoV-2 [249]. Three
native “contact bats” were added 24 h after infection, with one of three “contact bats” tested
RNA positive for SARS-CoV-2, although no antigen or live virus was detected in any of the
internal organs [249]. This is conclusive with an infection study in which Rousettus aegyptia-
cus bats were infected intranasally with a SARS-like CoV (WIV1-CoV), resulting in no signs
of viral replication in the bats’ tissues [250]. Another study, experimentally challenging
Eptesicus fuscus with SARS-CoV-2 in the US, did not find any evidence of successful viral
replication in these bats [251]. As already described in the section “Viruses of European
Bats,” SARS-CoV-like viruses were only detected in bats of the family Rhinolophidae. So
far, the bat CoV closest related to SARS-CoV and SARS-CoV-2 were detected in Rhinolo-
phus sinicus and Rhinolophus affinis in China, respectively [131]. The described infection
studies of Rousettus aegyptiacus and Eptesicus fuscus with SARS-CoV-2 have only limited
significance as CoV are described as strongly host specific. The SARS-like CoV in Europe
were predominantly detected in Rhinolophus hipposideros, R. ferrumequinum, and R. blasii. To
determine whether European bats are susceptible to SARS-CoV-2, European bats of the
family Rhinolophidae would have to be investigated in further studies. In this proposed
study it should also be investigated whether the viral loads excreted by a SARS-CoV-2-
infected person were sufficient for an air-borne infection of the bats. For SARS-CoV-2
an average viral load in sputum of 7.00 × 10 × 6 copies per ml is reported [252]. Never-
theless, we should be aware and prevent a possible establishment of SARS-CoV-2 within
the European bat populations. When viruses acquire new hosts (host jumps), it is often
associated with a period of accelerated sequence change [253]. During this adaptation time
the virus may remodel and regain fitness in the altered environment. Subsequently, this is
typically associated with amino acid sequence changes of viral genes encoding receptor
interactions and evasion of the innate immune system, but often throughout the entire
virus genome [253–256]. On the one hand, the European Rhinolophus spp. are related to
the Asian Rhinolophidae and host jumps may result in only lower evolutionary pressure.
Phylogeographical reconstruction of the evolutionary history of the greater Horseshoe
bat (Rhinolophus ferrumequinum) across Europe and west Asia revealed that nearly all of
the European Rhinolophus ferrumequinum species were made up by a single haplotype
spread from west Asia throughout Europe approximately 40,000–60,000 years ago [181].
On the other hand, it is hard to predict how these effects would either increase or de-
crease pathogenicity, virulence, and vaccine efficacy. However, successful establishment
of SARS-CoV-2 within the European bat populations would provide a potential source of
reintroducing the (altered) virus into the human population.

As long as no further data are available to rule out a potential risk of anthropozoonotic
transmission, it is good practice that bat volunteers and researchers wear FFP2 masks and
gloves to prevent air-borne zoonotic and anthropozoonotic transmission, as is already
recommended by most bat rehabilitation foundations (i.e., https://www.fledermausschutz.
de/2020/12/29/fledermausschutz-empfehlungen-zur-kontrolle-von-winterquartieren-in-
zeiten-von-corona/, accessed on 22 June 2021).

3.1.3. Examining the Zoonotic Potential of Viruses in the Laboratory

How can we continue to investigate the zoonotic potential, mostly starting with virus
sequences revealed by virus discovery studies? There are several options to investigate
viruses further. On the genomic side we can sequence the full genome, annotate pro-
teins, calculate phylogenetic reconstructions and molecular clocks, analyze recombination

https://www.fledermausschutz.de/2020/12/29/fledermausschutz-empfehlungen-zur-kontrolle-von-winterquartieren-in-zeiten-von-corona/
https://www.fledermausschutz.de/2020/12/29/fledermausschutz-empfehlungen-zur-kontrolle-von-winterquartieren-in-zeiten-von-corona/
https://www.fledermausschutz.de/2020/12/29/fledermausschutz-empfehlungen-zur-kontrolle-von-winterquartieren-in-zeiten-von-corona/
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and reassortment, and predict and compare genes and protein structures of interest (i.e.,
receptor-binding domains). All of these methods aim to find structures and genes related
to human-pathogenic viruses. Virus isolation enables animal experiments, cell culture ex-
periments, metatranscriptomics, and serostudies. Especially the availability of cell cultures
of potential reservoirs is increasing which can be used for receptor studies and provide
opportunities to examine species barriers. Proteomics, modeling, and many more tech-
niques are more comprehensively available. Serosurveys in human and bat hosts are of
importance, as they can give a retrospective picture of infection occurrence. However, the
only indubitable proof of a zoonotic infection is the repeated isolation (persistence) of a
virus from animal host and human.

3.2. How Can We Assess the Zoonotic Risk?

Numerous general factors contribute to a potential risk of spillover, ranging from
the abundancy of potential bat vectors to the innate immune response of the human
hosts [233,257]. We have to collect the necessary data to be able to assess viral traits. Most
virus discovery studies performed for European bats (and bats worldwide) describe new
viral sequences and their phylogenic reconstruction. This is very important in order to be
able to classify whether or not the newly discovered virus is potentially human pathogenic.
With this data it can be decided which viruses have high priority for further investigation.
If we want to draw conclusions on the zoonotic potential we need to go further and collect
more data on virus–host dynamics. It is crucial to know whether the bats are shedding
infectious virus particles or if they are just excreting non-infectious nucleic acids. It should
be also considered that viral shedding may be subject to seasonal effects. With this data we
could calculate the prevalence of the new viruses within the host population. Subsequently,
we can set the data in context of ecological traits. Whether the bat species migrates over vast
distances or roosts in human dwellings may affect any zoonotic potential. Plowright et al.
describe exemplarily for Hendra virus that, for successful spillover, shedding must align
with exposure behavior and susceptibility of the recipient hosts and with environmental
and bat population conditions that generate levels of pathogen pressure that are sufficient
to produce an infectious dose [257].

We have compared available data for those viruses which in our opinion may pose a
potential threat to public health, based on their virological properties like relatedness to
known human-pathogenic viruses (Table 4). We filled the Table with available data which
should contribute to a risk assessment regarding a zoonotic potential. We considered the
migratory behavior of bats as a potential risk for epizootic transmission and spread through
diverse bat colonies. Assuming that immunity of the bat host follows recovery, viruses
may disappear locally but persist globally through migration [258]. We have included
the IUCN threat status. While examining global shifts of mammalian populations in the
light of spillover risk, Johnson et al. found that species of least concern with increasing
abundance were estimated to be 1.5 times the number of zoonotic viruses. Vulnerable
species had less than one-sixth the number of viruses compared to species of least concern
that were stable in abundance [4]. Synanthropic bat species are described to increase
their abundance with the growing human population [259]. Synanthropic bat species may
benefit from the energetic advantages of buildings (warmer roosts) to exploit habitats
otherwise devoid of roosting structures [259]. Furthermore, the synanthropic nature of bat
species is a requirement when thinking of bat–human contact as a prerequisite for spillover,
beside bat handlers and tourists visiting bat caves. Bat Lyssavirus 1 (EBLV-1) was included
as an example of a well-studied virus for which the necessary data are already available.
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Table 4. Overview on risk factors that may contribute to zoonotic transmission and spillover. Bat species: E. Ser, Eptesicus serotinus; R. hip, Rhinolophus hipposideros; R. fer, Rhinolophus
ferrumequinum; R. bla, Rhinolophus blasii; M. sch, Miniopterous schreibersii; P. pip, Pipistrellus pipistrellus; E. nil, Eptesicus nilssonii; N. noc, Nyctalus noctula; P. aur, Plecotus
auritus. Migration: seasonal; seasonal migrants; long distance; long-distance migrants. Human interaction: syn, synanthropic species; synNE, synanthropic in northern Europe; non-syn,
non-synanthropic. * copies per gram of feces.

Virus Name Country
Bat Species

Related to Viral
Family/Order

Viral RNA
(copies/µL)

Virus
Isolated

Virus
Shedding

Potential
Shedding Route

Hints for Epizootic or
Zoonotic

Transmission
Migration IUCN Human

Interaction

EBLV-1 Europe E. ser
EpE. Rhabdoviridae CT > 20

(salivary glands) Yes no data oral, bites zoonotic seasonal least concern syn

BtCoV 187632-2/2012 Italy R. hip Coronaviridae
Sarbecovirus no data Neg no data fecal no data sedentary least concern synNE

BtCoV 243585/2012 Italy R. hip Coronaviridae
Sarbecovirus no data Neg no data fecal no data sedentary least concern synNE

BtCoV 19681/2011 Italy R. hip Coronaviridae
Sarbecovirus no data Neg no data fecal no data sedentary least concern synNE

SarBatCoV1 Italy R. fer Coronaviridae
Sarbecovirus no data no data no data fecal no data sedentary least concern synNE

BtCoV 893/09-11 Italy R. fer Coronaviridae
Sarbecovirus no data no data no data fecal no data sedentary least concern synNE

SLO1A00XX Slovenia R. hip Coronaviridae
Sarbecovirus no data CoV particle (EM) no data fecal no data sedentary least concern synNE

BtCoV FRA_EPI1_3975 France R. fer Coronaviridae
Sarbecovirus no data no data no data fecal no data sedentary least concern synNE

BtCoV LUX16_A_2016 Luxembourg R. fer Coronaviridae
Sarbecovirus no data no data no data fecal no data sedentary least concern synNE

BtCoV
BM48-31/BGR/2008 Bulgaria R. bla Coronaviridae

Sarbecovirus 2.4 × 108 * Neg no data fecal no data seasonal mig vulnerable synNE

Lloviu virus Spain, Hungary
M. sch

Filoviridae
Cuevavirus 1.6 × 104 Neg no data fecal + aerosol * no data seasonal least concern non-syn

Usutu virus Germany
P. pip

Flaviviridae JEV
complex no data Neg no data ? (brain) epizootic seasonal least concern syn

Issyk-Kul virus PbGER Germany E. nil Nairoviridae
Keterah

3.5 × 106 (liver),
7.6 × 104 (lungs) Neg no data aerosol * zoonotic seasonal least concern syn

Zwiesel bat
banyangvirus Germany E. nil Nairoviridae

Banyangvirus 4.0 × 106 (spleen) Neg no data ? (liver, lungs,
spleen, intestine) no data seasonal least concern syn

Brno virus Czech Republic
N. noc

Bat-associated
Hantavirus no data Neg no data ? (liver, kidney) no data long distance least concern syn

T3/Bat/Germany/342/08 Germany P. aur Mammalian
orthoreovirus

2.4 × 107

(intestine) Yes no data fecal epizootic, zoonotic sedentary least concern syn

SI-MRV0/SI-MRV02 Slovenia E. ser Mammalian
orthoreovirus no data Yes no data fecal zoonotic seasonal least concern syn
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Summarized, criteria used were (1) relatedness to a viral species known to induce
severe diseases in humans; (2) viral RNA load shed by host species in copies/µL; (3)
successful virus isolation; (4) infectious virus shedding; (5) potential route of transmission;
(6) hints of epizootic or zoonotic transmission; (7) migration behavior of bat host; (8) IUCN
threat; and (9) synanthropic behavior. These criteria were selected in accordance with
the available literature [226,233,257,260]. Table 4 summarizes the research gaps we are
currently facing for the newly discovered and potentially zoonotic viruses. Not all of these
gaps can be closed easily nor is unlimited funding and manpower available. However, it is
important to critically revise the available data, point out gaps, and propose to fill them.

4. Conclusions and Recommendations

Survey of European wildlife (especially bats) should be increased because the risk
of zoonotic emerging diseases in Europe seems neglected. So far, several studies have
enlightened the virome of European bats, many of which are comparable. However,
research is also competitive in publishing the first sequences of certain viruses. Maybe
it is time to overcome this because so much more could be achieved with a collaborative
initiative. If bat researchers combined their skills and finalized a certain strategy it would
become possible to address the missing gaps collaboratively. For example, a bat Filovirus
(LLOV) was detected in Miniopterus schreibersii in Spain and Hungary. As most Filoviruses
are described to be highly pathogenic for humans, the occurrence of LLOV should be
carefully monitored. Miniopterus is a seasonally migrating species with flying distances
between a few hundred and 800 km. There must be more Miniopterus schreibersii colonies in
between Spain and Hungary that could serve as potential reservoirs of LLOV. It is assumed
that the Spanish and French bats migrate from Africa through the Rhône valley and the
Hungarian bats migrate over the eastern route through Turkey. However, the colonies of
Miniopterus schreibersii have exchanges at a certain level. This would be a great opportunity
to bundle ecological and virological expertise and skills throughout Europe to monitor
and evaluate the occurrence of LLOV in Miniopterus schreibersii. Bat researchers of all
countries participating could sample Miniopterus schreibersii colonies in their respective
geographical research area. All samples could be investigated with the same coordinated
methods, allowing to get a picture of LLOV prevalence in Europe. Furthermore, LLOV has
been associated with mass mortality in Miniopterus schreibersii; raising awareness for this
phenomenon across Europe could improve the timely investigation of LLOV emergence.
This is just one example [28,69].

People are increasingly concerned about the risk posed by synanthropic bats (e.g.,
roosting in the attics of their houses). Viruses have been detected in numerous synanthropic
species, therefore a potential for transmission is given (especially true for bat Lyssaviruses),
though preventable by simple measures: No touching or handling of bats or bat excre-
ments without gloved hands and, in the case of a bat bite, immediately proceeding to the
appropriate facility for post-exposure prophylaxis [195]. Based on our current knowledge,
zoonotic spillover events are extremely rare.

The intensified research effort on bat CoV after the emergence of SARS-CoV allowed
for the rapid identification of SARS-CoV-2 and its potential reservoir host. This is an
excellent example of the importance of knowing viruses harbored by bats for preparedness
against emerging infectious diseases [85]. In most cases virus discovery studies are a
snapshot of the viral diversity, and successful detection depends on several factors like
seasonality, sample quality, ecological factors, and detection strategies. However, most
of the viruses harbored by bats seem to be strictly species specific, and zoonotic events
may be only very rare and unlikely. Only two viral genera proved to be zoonotic in
Europe, the bat Lyssaviruses and the bat MRVs (see Sections 1.2.5 and 1.2.6). However,
also for Issyk-Kul virus strain PbGER recently discovered in Germany, a potential zoonotic
transmission seems likely as Issyk-Kul virus has already been causing smaller endemics
in Central Asia. For bat Lyssaviruses of phylogroup 1, the classical rabies virus vaccine
confers cross-protection [104]. Bat MRV infection seems to be very rare and causes rather



Vaccines 2021, 9, 690 31 of 41

mild diseases [205,206]. However, even though there are only two proved zoonotic viruses,
there are several viruses with zoonotic potential: at least all of the viruses in Table 4 should
be subject to a thorough monitoring in Europe. In addition to the projected research
studies filling the identified gaps in Table 4, seroprevalence studies should be conducted to
estimate the prevalence of antibodies to bat viruses in the human population. Thorough
longtime surveys on bats regarding seasonal viral shedding and generation of novel
variants should be performed, alongside a comprehensive molecular surveillance system
monitoring viruses beyond country borders in Europe. Another important consideration is
the aspect of climate change and how it affects the European bat populations. By shifting
populations to other European regions, the whole ecosystem will be affected. These effects
are already being discussed as drivers of the SARS-CoV and SARS-CoV-2 pandemics in
Asia [261]. The consequences for bat populations, viral dynamics, and shedding have to be
carefully monitored.
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