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Determining effective means of preventing Multiple Sclerosis (MS) relies on testing

preventive strategies in trial populations. However, because of the low incidence of

MS, demonstrating that a preventive measure has benefit requires either very large trial

populations or an enriched population with a higher disease incidence. Risk scores

which incorporate genetic and environmental data could be used, in principle, to identify

high-risk individuals for enrolment in preventive trials. Here we discuss the concepts of

developing predictive scores for identifying individuals at high risk of MS. We discuss

the empirical efforts to do so using real cohorts, and some of the challenges-both

theoretical and practical-limiting this work. We argue that such scores could offer a

means of risk stratification for preventive trial design, but are unlikely to ever constitute a

clinically-helpful approach to predicting MS for an individual.
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INTRODUCTION

Multiple Sclerosis (MS) is a prototypical complex autoimmune disease of the central nervous
system. It is the leading cause of non-traumatic neurological disability in young adults, and
affects over 2 million people worldwide (1). Although the pathogenesis of MS is not completely
understood, converging lines of evidence support roles for both genetic and environmental
factors in determining MS susceptibility. A variety of environmental influences are associated
with increased susceptibility to MS; the most consistent and replicated risk factors are smoking,
childhood obesity, infectious mononucleosis, and lower serum vitamin D (2). The largest
genome-wide association study (GWAS) of MS orchestrated by the International Multiple Sclerosis
Genetics Consortium (IMSGC) discovered 233 genetic signals associated with MS, collectively
explaining around 50% of MS heritability (3).

It may be possible to quantify an individual’s susceptibility to MS based on their genetic data
and exposure to certain risk factors. In principle, if it were possible to predict an individual’s
risk of developing MS routinely in clinical practice, this could transform all aspects of MS care,
including diagnosis, treatment choices, and prognosis. Accurate and early prediction could also
pave the way for trials of preventive therapies. In reality, predicting whether a given individual will
develop MS may be a pipedream, as attempts to do so are constrained by several theoretical and
practical challenges.

In this review we discuss previous efforts to develop MS prediction algorithms and explore the
challenges facing these approaches. We present an optimistic but realistic view of how personalized
prediction may enhance MS research and care over the coming decades.
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THE GENETIC CONTRIBUTION TO MS
RISK

Key Points
• MS is a complex genetic disease, with small effects of>200 loci

contributing to the genetic component of risk
• Common genetic factors alone could explain up to ∼20% of

MS susceptibility

Heritability estimates derived from the IMSGC meta-analysis
suggest that around 19.2% of MS susceptibility is attributable to
the additive effects of common variants across the genome (3), of
which roughly 50% could be explained in terms of genome-wide
significant and suggestive effects, leaving ∼50% of heritability
unexplained. The strongest signal from GWAS data is for the
HLA-DRB1∗15:01 risk allele (Odds Ratio of 2.9) (3). Evidence
from the IMSGC case-control exome chip study analyzing the
role of rare coding variants suggests that a further ∼10% of MS
heritability may be explained by rare (Minor Allele Frequency <

0.05) variants (4). Neither these substantial gene discovery efforts
nor smaller pedigree designs have discovered any reproducible
single-gene causes ofMS (5–19). Although raremonogenic forms
of MS not captured in these studies cannot be excluded, these
data argue for MS being a prototypical complex and polygenic
disease. The genetic component to susceptibility consists in a
large number of individually small effects scattered across at least
two hundred genetic loci.

GENETIC RISK SCORES,
ENVIRONMENTAL RISK SCORES, AND
PREDICTION OF MS

Key Points
• Genetic risk scores for MS can be calculated by summing an

individual’s number of risk alleles at each known risk locus
• Various methods exist for deciding which risk variants to

include in the genetic risk score, and how to “weight” the
contribution of individual variants

• Environmental risk score’s can be calculated in the same
fashion if the effect of a given risk factor is known from case-
control/cohort studies, and an individual’s exposure to the risk
factor can be quantified

• Efforts to predict MS using risk scores comprising genetic and
environmental risk factors have all failed to show meaningful
predictive performance on an individual level

As genotyping costs continue to fall and large biobank-scale
GWAS become available for a number of common traits and
diseases, it is conceivable that genotyping could become a
routinely-available clinical test to help predict an individual’s risk
of developing a complex disease (20). If the effects of genetic
variants on the risk of a disease are known through large GWAS,
and an individual can be genotyped at these variants, it is
straightforward to calculate the individual’s genetic risk of the
disease by adding together the sum of their risk alleles, each
weighted by its effect: for j SNPs, with βj the effect of each SNP on
MS (i.e., the log odds ratio per effect allele), and gj the individual’s
allele count at that SNP (which could be 0, 1, 2, or an imputed

dosage probability), the individual’s polygenic risk score over all
SNPs is given by

PRS =

j∑

n=1

βjgj (1)

Various methods have been developed to enhance polygenic risk
score prediction of complex traits (21). Although the principle is
universal-to combine the effects of risk alleles across the genome
using external weights derived from GWAS-these methods differ
in terms of how variants are selected for inclusion in the score,
and how the weights are tuned (22–25).

Large cohort and case-control studies, driven primarily by
Scandinavian and North American cohorts/registry data, have
consistently demonstrated that several environmental factors
play a role in determining MS susceptibility (2). Such risk factors
include low serum vitamin D, various aspects of EBV infection
(prior infectiousmononucleosis, higher anti-EBV antibody titres,
EBV seropositivity in general), childhood obesity, smoking and
various other putative factors such as head injury, solvent
inhalation, and shift work (2). Interestingly, the effect of some
of these factors appears to be potentiated by the high risk HLA
allele, DRB1∗15:01 (26–28). It is plausible that environmental
risk factors for MS are modified by an individual’s prior genetic
risk, and if this is correct, risk models which account for gene-
environment interactions are likely to outperform models which
do not.

The earliest effort to predict MS using environmental and
genetic data was published in 2009 (29). Since then, there have
been several efforts incorporating increasingly refined genetic
maps of MS susceptibility and applying this approach to novel
datasets (Table 1) (29–36, 38, 39). Broadly, these studies support
the view that genetic risk scores (GRS) / PRS can discriminate
between cases and controls. All show moderate performance
(areas under the curve, AUC, ranging from 0.52 to 0.8), but all
fall short of clinically-useful diagnostic test thresholds. Efforts to
demonstrate a correlation between PRS and subclinical evidence
of demyelination have yielded mixed results, with the largest
such cohort (∼30,000 healthy controls in UK Biobank) failing
to demonstrate an association (33, 40, 41) (unpublished data,
https://github.com/benjacobs123456/PRS_UKB_MRI). In order
to have clinical utility, scores should be able to make predictions
which are useful on an individual level. The addition of disease-
relevant environmental variables (such as prior smoking and
prior infectious mononucleosis) has been shown to enhance the
discriminative performance of these models (33).

Although these efforts highlight the discriminative capacity
of risk models en masse, the performance metrics are well
short of what would be required for a diagnostic or predictive
test. In general the methods for deriving and applying risk
scores, and the reporting of the results of such analyses
have been inconsistent in the literature. Few studies report
absolute risk estimates within deciles of the risk scores and
calibration statistics (predicted disease prevalence in each
risk decile vs. observed disease prevalence). In addition
there are discrepancies between studies in the methods for
selecting which genetic and/or environmental factors to include
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TABLE 1 | Comparison of PRS and ERS efforts in MS in literature.

References Score type MS GWAS used Population validated Results (AUC)

De Jager et al. (29) PRS 16 (MHC + non-MHC) 3 populations: 2,215 cases, 1,340 cases, 143 cases 0.64–0.70

PRS 15 (non-MHC) 0.57–0.61

PRS + ERS 16 (MHC + non-MHC) 0.68–0.74

Jafari et al. (30) PRS 6 Simulated 100,000 genotypes 0.64

PRS 24 0.66

PRS 53 0.69

Gourraud et al. (31) PRS + Female sex 17 (MHC + non-MHC) 1,213MS families (810 sporadic, 403 multi-case) 0.57

PRS 17 (MHC + non-MHC) 0.55

PRS 16 (non-MHC) 0.52

PRS + Female sex 1 (MHC) 0.58

Disanto et al. (32) PRS 60 (non-MHC) 70 patients, 79 HC 0.66

PRS 110 (non-MHC) 0.69

PRS 1 (MHC) 0.71

PRS 61 (MHC + non-MHC) 0.77

PRS 111 (MHC + non-MHC) 0.8

Dobson et al. (33) PRS + ERS 1 (MHC) 78 patients, 121 unaffected siblings, 103 HC 0.77

PRS + ERS 58 (MHC + non-MHC) 0.8

PRS + ERS – vitamin D 1 (MHC) 0.8

PRS + ERS – vitamin D 58 (MHC + non-MHC) 0.82

Ayati and Koyuturk (34) PRS 8,267 975 cases 0.64–0.65

NetPocos 243 Pocos: 3 SNPs per Pocos 0.62–0.63

Xia et al. (35)* ERS 0 113 cases, 1,683 asymptomatic first degree relative p val-0.10

PRS 64 (MHC + non-MHC) p val 1.5E-5

PRS + ERS 64 (MHC + non-MHC) p val 4.8E-6

Kulm et al. (36) Covariates + PCA only 0 1,445 cases in UKB 0.62

PRS + Covariates + PCA 23,309 0.73

Jacobs et al. (37) Covariates + PCA only 0 2,276MS cases, 486,000 controls 0.63

PRS + Covariates + PCA 200 (non-MHC) 0.67

PRS + Covariates + PCA 232 (MHC + non-MHC) 0.71

Barnes et al. (38) Covariates 0 3 populations: 15 cases, 30 cases, 97 cases 0.61–0.70

PRS + Covariates 127 (MHC + non-MHC) 0.70–0.77

*Xia et al. (35), no AUC available, results shown as p-values for discrimination between MS cases and controls using the risk score. PRS, Polygenic Risk Score; ERS, Environmental

Risk Score; PCA, Principal Components Analysis; HC, Healthy Controls.

in the score, the methods for generating polygenic risk
scores, the statistical evaluation of the model performance,
and the choice of / omission of confounding covariates
such as age, sex, and genetic principal components in
predictionmodels. Furthermore, these studies differ substantially
in terms of how the data were generated, i.e., cohort
characteristics, genotyping methods, and ascertainment of
environmental variables. The recent development of consensus
guidelines should help streamline further efforts to predict MS
using risk scores (42). Given this heterogeneity in methods
and reporting, it is difficult to make comparisons across
published studies.

CHALLENGES AND OPPORTUNITIES FOR
RISK PREDICTION ALGORITHMS

Key Points
• MS heritability places an upper bound on PRS performance

• Uncertainty about which variants are causal at a locus
leads to inclusion of non-causal variants in PRS, which
degrades performance

• Most PRS are restricted to common variants, and therefore
may miss some of the susceptibility conferred by high-impact,
low-frequency variants

• Modeling interactions between genetic and environmental
factors may improve PRS performance over models
assuming independence

• Cross-ancestry differences in LD structure and
allele frequencies limit the performance of PRS in
non-European ancestries

• Environmental risk factorsmay not be truly causal, are difficult
to measure consistently, and may have varying effects over
time, limiting their usefulness in risk scores

• The low prevalence of MS limits the clinical utility of all
individual-level risk scores, and this is disguised by focussing
on metrics like AUC, accuracy, and sensitivity/specificity
rather than the positive predictive value
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• Case-control definitions in biobank-scale datasets used for risk
score evaluation may be imperfect

• If there are truly random processes which contribute to MS
pathogenesis, these are difficult to capture with risk scores

MS Heritability Places an Upper Bound on
PRS Performance
The broad-sense heritability of MS-the proportion of phenotypic
variation explained by genetic variation-places a theoretical
upper limit on the performance of polygenic risk score prediction
alone (43). Whilst generous estimates from twin studies estimate
a broad-sense heritability of 50% (44), SNP heritability-the
proportion of phenotypic variation attributable to additive effects
of all typed/imputed SNPs across the genome-was estimated at
19.2% in the most recent GWAS (3). Genome-wide significant
and suggestive loci only explain ∼50% of this SNP heritability.
These considerations emphasize the limitations of PRS generated
using common, genome-wide significant markers. Even PRS
which incorporate weaker effects across the genome are bounded
by the h2SNP of 19.2%. There are several explanations for missing
heritability, which we discuss below, some of which could be
overcome to improve MS prediction scores.

Selecting Causal Variants for Inclusion in
PRS
The classical “clumping-and-thresholding” approach to variant
selection for PRS selects variants for inclusion at each
independent locus (defined by an arbitrary ‘clumping’ linkage
disequilibrium and physical distance window), selecting the
variant with the strongest statistical association with the trait
(i.e., lowest P-value). Unfortunately, the variant with the lowest
P-value is unlikely to be the true causal variant / one of the
causal variants at the locus (45). Unless the included variant
is in perfect LD (R2 = 1) with the true causal variant, the
performance of the PRS will be vulnerable to the LD structure
in the region, and may perform poorly even in the presence of
subtly different LD (where the true causal effect will be less well-
captured by the included variant). Methods incorporating local
LD structure to estimate SNP effects, such as LDpred, overcome
this concern to a degree and lead to appreciable improvements in
prediction accuracy (23).

Rare Variation
Rare variation may account for some of the missing heritability
and thus improve PRS performance. Realistically, however,
rare variants may have large effects for individuals, but they
are unlikely to explain substantial phenotypic variation on a
population scale. A variant with an odds ratio of 8 but a minor
allele frequency (MAF) of 0.001 will only be observed, on average,
once in a population of 500 people. Although this may have a
substantial impact on that individual’s risk of MS, it has only
a limited impact on the overall performance of the score in
the population.

Although heritability estimates suggest that rare (MAF <

0.05) coding variation may account for a sizeable proportion of
MS heritability, the largest effort to date using the exome chip
platform revealed only five associated variants within four genes

outside of known MS risk loci (4). As the landscape of rare
variant contributions toMS becomes clearer through large exome
sequencing efforts, further performance gains may be derived
from including rarer variation in PRS.

Interactions
A simple additive PRS does not account for gene-gene or gene-
environment interactions. External weights taken from GWAS
assume that the effects of SNPs are constant regardless of the
individual’s genetic background or exposure to environmental
risk factors. Various methods have been developed to account
for gene-gene and gene-environment interaction in determining
PRS weights. Such methods include use of conditional summary
statistics, e.g., those derived from the Conditional Joint
Analysis (COJO) method, which calculates effect sizes for SNPs
iteratively, conditioning on each SNP in turn, starting with the
strongest association (46).

Non-linear machine learning methods, such as gradient-
boosted trees and random forests, can also account for high
order interactions between SNPs without needing to specify these
interactions a priori, and have been shown to afford prediction
gains for complex traits in large datasets (47). It remains unclear
to what extent this approach will lead to improvements in MS
prediction, as widespread gene-gene interactions have not been
observed outside of the MHC region in the largest sample
size GWAS (3, 48). The preliminary evidence for interactions
between PRS and environmental risk factors for MS suggests that
incorporating GxE interaction terms into risk models may lead
to further power gains (37).

Cross-Ancestry Portability
Accurate risk estimation with PRS relies on the “true” SNP effects
in the target population (i.e., the individual/s being tested) being
similar to the estimated SNP effects from GWAS. Measured
SNP effects in one population may differ substantially from
the effect of the variant in a different ancestral population due
to the different LD structures, different allele frequencies, or
other factors (such as ancestry-specific gene-gene and gene-
environment effects). This is a major problem for PRS derived
from GWAS of individuals of European ancestry, and has
been empirically demonstrated to result in poorer quality
predictions for individuals of other ancestral backgrounds (49).
Novel statistical methods can improve prediction in non-
European populations, for instance by incorporating information
from multiple ancestries (50) or prioritizing variants based
on functional annotations (51). Preliminary evidence from
small non-European MS cohorts suggests that the genetic
architecture of MS is not identical for people with Hispanic
or African ancestry (52–54). Larger GWAS of MS in non-
European populations are likely to improve predictive scores for
these populations.

Environmental Risk Factors
Intuitively, including established environmental risk factors for
MS should lead to improvements in prediction accuracy over
genetic risk models alone. Generally, efforts to combine PRS and
environmental risk factors have shown modest but appreciable
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improvements in discriminative performance (Table 1). Several
problems limit the value of adding environmental variables to
risk scores.

First, included variables may not represent truly causal
risk/protective factors. Although a large number of putative
environmental risk factors have been linked to MS, it remains
unclear whether some of these associations are spurious,
reflecting confounding and/or bias rather than causality.
Mendelian randomization (MR)-an instrumental variable
approach-can be used to provide further support for causality,
and has added weight to the concepts that childhood obesity and
low serum vitamin D are causal risk factors, whereas the evidence
for smoking has been less conclusive (55–60). Clearly, inclusion
of environmental risk factors which represent confounding or
bias rather than causal associations may increase the noise in
prediction scores and limit the utility of such scores.

Second, environmental risk factors are notoriously difficult to
capture and record accurately in large cohort settings. Precise
phenotype definitions, methods of testing, timing of the study
(prospective vs. retrospective), and various cultural influences
may lead to subtle heterogeneity in phenotype definition across
cohorts, and thus the effect estimates for the effect of a risk factor
in the original case-control/cohort setting may not be accurate
when applied to the testing or validation cohort.

Third, unlike genetic variants which are (largely) static
throughout life, environmental risk factors for MS are dynamic
and time-dependent. Thus, the timing of the exposure may
be critical in determining the effect on MS susceptibility.
For instance, converging evidence from observational and MR
designs suggests that obesity during adolescence is a risk
factor for MS (59, 61, 62). Crude risk scores which consider
environmental risk factors as static and binary, e.g., whether
or not an individual has ever smoked or had IM prior to MS
diagnosis, are a gross oversimplification and miss the time-
varying effects of such exposures on the risk of MS.

Some further general concerns apply to the use of
environmental risk scores, some of which also apply for
genetic risk scores. These concerns include the stability and
accuracy of effect estimates derived from finite sample sizes,
the somewhat arbitrary choice of which variables to include,
the difficulty in including relevant confounding covariates
without introducing multicollinearity (e.g., controlling for
socio-economic status to assess the effect of smoking status), and
whether to include interaction terms in the model or consider
effects as independent.

Interpreting Performance Statistics
Most studies report the discriminative performance of
PRS/hybrid risk scores, often quantified using the area under
the curve (AUC) of the receiver operating characteristic (ROC)
curve. The AUC can be thought of as the probability that a
randomly selected case will have a higher score than a randomly
selected control. Thus, the AUC is a relative measure of the
risk distribution in cases vs. controls, but gives no sense of the
absolute disease risk for any given individual at any point in
the risk score distribution. Similarly, other metrics of overall
PRS performance in a population disguise the fact that on an

individual basis, prediction accuracy at an individual level often
falls far short of that what would be required for a clinically-
useful test. Such metrics include model fit metrics such as
Nagelkerke’s pseudo-R2 (which quantifies the proportion of
variation in disease liability explained by the risk model) and the
odds ratios for disease at each given PRS quantile.

For relatively rare diseases such as MS (with a population
prevalence ∼0.2% in the UK https://www.gov.uk/government/
publications/multiple-sclerosis-prevalence-incidence-and-
smoking-status/multiple-sclerosis-prevalence-incidence-and-
smoking-status-data-briefing), the differences in absolute risk
between deciles of the risk score are generally very small. For
example, in our analysis of the >2,000MS cases and >480,000
controls in UK Biobank, we report an impressive-sounding AUC
of 0.71 for the best-performing PRS (including the MHC region).
However this metric hides the fact that the difference in disease
prevalence between the highest decile and lowest deciles of the
PRS was only 1% (1.2% in the highest decile vs. 0.2% in the
lowest decile) (37).

To illustrate this point, consider a sample population of 10,000
people with an MS prevalence of 0.5% (i.e., 50 people have
MS, 9,950 people do not have MS). If the PRS distributions in
cases and controls follow a standard normal, with mean = 0 in
controls and mean= 3 in cases (NB this is an unrealistically large
effect), amodel based on PRS alone could discriminate cases from
controls with an AUC of 0.98. For the purposes of a diagnostic
or predictive test, a threshold needs to be established such that
individuals over that threshold are considered high-risk, and
those below considered low-risk.

Selecting a PRS threshold that yields sensitivity and specificity
>90% identifies as high-risk all 50 people withMS (i.e., sensitivity
is 100%), but also identifies 975 healthy controls as high-risk.
Therefore, the positive predictive value (PPV) is only 5%, i.e.,
among individuals labeled as “high-risk” by the PRS cutoff, only
5% (50/975+ 50) would truly have MS.

The PPV, unlike sensitivity and specificity, depends on
population prevalence (for these same parameters, the PPV
would be 33% at a prevalence of 5, and 51% at a prevalence of
10%), and thus provides a more realistic means for appraising
the potential clinical utility of a risk score. This illustration
emphasizes why risk score prediction is more likely to be
clinically useful for common traits and diseases. We have
published a Shiny app to illustrate this problem (https://
benjacobs.shinyapps.io/PRS_individual_predictions/).

Case Definition for Validation of Risk
Models
The evaluation of predictive models requires a large sample
of cases and controls. Other than specialized disease biobanks
in which MS diagnoses are rigorously checked against the
McDonald criteria, case definitions for prediction studies are
often derived from electronic health record (EHR) data; this is
the case for most large biobanks, such as UK Biobank. Although
these biobanks offer large sample sizes, especially for controls,
there is a concern that EHR diagnoses may not be as accurate
as McDonald-defined MS, and that some individuals may be
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misclassified as having MS. The high rate of MS misdiagnosis in
clinical settings makes this a very real concern which could derail
efforts to validate predictive scores in this setting (63).

Reassuringly, there is substantial similarity between
individuals with self-reported MS and those with ICD-
coded MS in UK Biobank, and the results of our analyses are
unaffected by using more stringent criteria for classifying cases,
e.g., restricting to individuals who have more than one source
of diagnostic report (from self-report, GP records, Hospital
Episode Statistics, and other sources). Although this will never
achieve the accuracy of McDonald diagnosis, it is a necessary
and passable simplification in our view that allows researchers to
understand MS using biobank-scale data.

Modeling Stochastic Processes
Given a generous estimate of 50% for the broad-sense heritability
of MS and the individually small effects of environmental risk
factors (ORs <= 3.6) (2), it is likely that a sizable proportion
of MS susceptibility will remain unexplained. As discussed, there
are various explanations for this explanatory gap. A particularly
plausible argument is that the pathogenesis of complex diseases
like MS is akin to cancer in that it involves stochastic hits which
may vary from individual to individual, and are therefore difficult
tomeasure in large cohorts. The biological underpinnings of such
a process are open to speculation, but could plausibly involve
events such as somatic mutations in disease-relevant tissues,
aberrant breaking of immune tolerance by lymphocytes, or
encountering a particular pathogen (64). A recent controversial
modeling study supported this view (65). If correct, some
elements of MS pathogenesis may be near impossible to quantify
in a predictive model and would limit the maximum possible
performance of such a model.

PERSPECTIVES

Despite major advances in our understanding of environmental
and genetic risk factors for MS, efforts to combine this
information into predictive scoring systems has been

disappointing. There are several theoretical reasons for
this-the low population prevalence of MS, missing heritability,
imprecisely-measured environmental effects, and possibly a
stochastic contribution to pathogenesis which is challenging
to quantify. However, there are several challenges which could
be overcome. Novel approaches to polygenic risk scoring,
modeling interactions between genetic and environmental
factors, GWAS of non-European cohorts, and use of large
biobank-scale datasets to tune and validate scores offer exciting
avenues for MS prediction research. For reasons we have
discussed, we are unlikely to be able to predict MS on an
individual basis with an acceptable accuracy in the near
future. Risk scores may, however, be useful to identify high-
risk individuals to enrich populations for trials of preventive
therapies, such as an EBV vaccine. In our worked example,
we illustrate how a PRS could be used to identify a subset
of individuals with >10x the prevalence of MS compared to
the unselected population. Further work is required to ensure
broad applicability of risk scores across different ancestral
populations, to demonstrate the validity of such scores in
prospective work, and to work with people with MS and other
stakeholders to communicate the value of, and the considerable
caveats surrounding, the use of predictive scoring systems in
clinical settings.
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