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Abstract

Many methods have been developed for statistical analysis of microbial community profiles,

but due to the complex nature of typical microbiome measurements (e.g. sparsity, zero-infla-

tion, non-independence, and compositionality) and of the associated underlying biology, it is

difficult to compare or evaluate such methods within a single systematic framework. To

address this challenge, we developed SparseDOSSA (Sparse Data Observations for the

Simulation of Synthetic Abundances): a statistical model of microbial ecological population

structure, which can be used to parameterize real-world microbial community profiles and to

simulate new, realistic profiles of known structure for methods evaluation. Specifically, Spar-

seDOSSA’s model captures marginal microbial feature abundances as a zero-inflated log-

normal distribution, with additional model components for absolute cell counts and the

sequence read generation process, microbe-microbe, and microbe-environment interac-

tions. Together, these allow fully known covariance structure between synthetic features

(i.e. “taxa”) or between features and “phenotypes” to be simulated for method benchmark-

ing. Here, we demonstrate SparseDOSSA’s performance for 1) accurately modeling

human-associated microbial population profiles; 2) generating synthetic communities with

controlled population and ecological structures; 3) spiking-in true positive synthetic associa-

tions to benchmark analysis methods; and 4) recapitulating an end-to-end mouse micro-

biome feeding experiment. Together, these represent the most common analysis types in

assessment of real microbial community environmental and epidemiological statistics, thus

demonstrating SparseDOSSA’s utility as a general-purpose aid for modeling communities

and evaluating quantitative methods. An open-source implementation is available at http://

huttenhower.sph.harvard.edu/sparsedossa2.
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Author summary

Researchers have linked the human microbiome (collection of microbes residing on or

within human tissues) with a wide range of health and disease conditions, establishing

these microorganisms as a vital component of our well-being. However, studies on the

microbiome require careful technical considerations, as invalid approaches can (and have

been reported to) cause under-detections or false discoveries. To this end, a mathematical

model can be used both to describe microbiomes, and to simulate how computational

tools might behave for them. For example, researchers could test analysis approaches on

simulated microbiomes, thus informing designs and method deployment for real-world

studies. This has not previously been possible, due to multiple technical challenges with

microbiome data; these are a) often constrained to sum up to a constant (“composi-

tional"), b) enriched for zero measurements (zero-inflated), and c) composed of many,

potentially interacting microbes (high-dimensional). We present a statistical model aimed

at describing and simulating microbiome datasets, with components targeting all these

issues, as well as the accompanying computational algorithm and implementation. The

freely available implementation, named SparseDOSSA, is validated through extensive sim-

ulation and real-world examinations, and will hopefully be of broad theoretical and practi-

cal use to researchers in microbiome epidemiology and microbial ecology.

This is a PLOS Computational BiologyMethods paper.

Introduction

Microbial community research has increasingly benefited from study designs inspired by

molecular epidemiology, particularly with the goal of associating features of the human micro-

biome with health and disease [1]. This has enabled discoveries ranging from overall ecological

dysbiosis in gut community structure during inflammatory bowel disease (IBD) [2] to specific

microbial species, strains, and gene families linked to colorectal cancer (CRC) [3]. However, in

almost all cases, existing statistical methods for genetic, transcriptional, metabolomic, or other

molecular epidemiology cannot be accurately applied directly to microbiome measurements,

due to their unique measurement error, noise, zero-inflation, compositional, and non-inde-

pendence properties [4,5]. This has led to inaccuracy issues in the literature, such as confound-

ing, uncorrected population structure, batch effects, and a high rate of false positives [6–9].

There is thus an unmet need for statistical frameworks capable of capturing all aspects of

microbiome epidemiology, both for the sake of accurately parameterizing and testing real

community profiles, and for “reversing” parameterized models to simulate controlled, syn-

thetic microbiomes for accurate methodology evaluation.

Transcriptional biomarker discovery has a similar history, in which early statistics to associ-

ate gene expression patterns with human phenotypes were met with challenges of noise,

dimensionality, and test appropriateness [10]. This led to some of the first models for gene

expression integrating features of underlying transcriptional biology, different assay platforms,

and measurement noise [11]. These were in turn also “reversed” to provide simulated expres-

sion data for methods evaluation under guaranteed, controlled circumstances [12], permitting

some of the first truly quantitative transcriptional epidemiology and comparative methods

evaluation [13].
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Models of microbial community structure are similarly important, and both their biological

structure and measurement technologies are quite distinct from those for other sources of

short-read sequence generation [14]. Microbial community profiles can be derived roughly

equivalently from either amplicon (e.g. 16S rRNA gene) or metagenomic shotgun sequencing,

and they consist of the (typically compositional) counts or proportions of taxa, genes, path-

ways, or other features derived from the source sequencing data. Like other types of molecular

epidemiology profiles, they are typically a) high-dimensional (number of features equivalent to

or surpassing sample size) [1] and b) require both feature-feature and sample-sample biologi-

cal interactions (i.e. correlations or population structure) to be accounted for [15].

Additionally, microbiome data possess further unique properties that prohibit direct appli-

cation of models from other molecular epidemiology research. They are considerably more

sparse, i.e. zero-inflated, both due to low sequencing depth and biological absence [1]. As a

result, in different settings, either biological presence/absence of microbial features or their

abundances can be linked to phenotypes [16]. Microbial abundances from sequencing are also

near-universally available only on a relative (compositional) scale, thus constrained to sum up

to a constant. The combination of general high-dimensional statistical challenges with those

unique to ecological profiles have impeded the development of a single, universal model of

microbial feature structure.

As such, most previous strategies for modeling or simulating microbial community profiles

(typically for methods evaluation) have been relatively simple [5]. Here, we will use “features”

and “profiles” to refer to the quantification of taxa or other entities (e.g. genes or pathways) as

counts or relative abundances from microbial community sequencing. McMurdie and Holmes

[5] adopted deterministic mixing and multinomial sampling for simulating microbial taxa

count observations; it thus does not allow for interaction between microbial features, nor does

it model biological (as opposed to technical) absences. Similarly, Thorsen et al. [17] adopted

random resampling of real-world data for simulating “new” microbial features and samples,

indirectly violating compositionality and, again, excluding possible feature-feature interac-

tions. In recent works, metaSPARSim [18] adopted a formal statistical model specifically for

simulation of 16S rRNA gene amplicon-sequenced microbial observations (here abbreviated

16S), namely, the gamma-multivariate hypergeometric (gamma-MHG) distribution. However,

the gamma-MHG model, itself an over-dispersed version of the multinomial model, still does

not allow for biological absences or feature-feature interactions. Additionally, the model’s sam-

pling implementation requires iteration over read depth for a given sample, which induces

impractically high computation burdens to achieve realistic sequencing depths [1]. Prost et al.
[19] proposed a zero-inflated multivariate Gaussian copula model (see Methods section Iden-

tifiability), but for the different goal of microbial feature interaction inference and with a sub-

stantially different optimization process. None of these frameworks formally capture microbial

covariation with real or simulated covariates. In addition to other uses of such models, this is

perhaps the most important aspect needed for benchmarking applications, where it enables

estimation of power, false discovery rates, and effect sizes for microbiome epidemiology.

To address these gaps, we present SparseDOSSA (Sparse Data Observations for the Simula-

tion of Synthetic Abundance), a statistical model that can be used to capture and, in turn, sim-

ulate realistic microbial community profiles. Motivated by the biological and technical data

generation mechanisms and properties of microbial abundance observations, SparseDOSSA

has model layers for a) zero-inflated marginal microbial abundances, b) penalized estimation

of high-dimensional feature-feature interactions, c) enforced normalization to address compo-

sitionality, and d) spiking-in of controlled microbe-microbe and microbe-environment

covariation for benchmarking. We demonstrate through validations that the current imple-

mentation version, SparseDOSSA 2, accurately captures microbial community population and
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ecological structures across different environments, host phenotypes, and sequencing technol-

ogies, and is capable of recapitulating comparable, realistic synthetic profiles (note that we sub-

sequently include the version number only when indicating an implementation-version-

specific feature). We also show example applications in microbiome study design power analy-

sis and in recapitulating a complex end-to-end mouse microbiome feeding experiment. An

open-source implementation of and documentation for SparseDOSSA 2 are available through

R/Bioconductor and at http://huttenhower.sph.harvard.edu/sparsedossa2.

Results

A statistical model for microbial community profiles

SparseDOSSA is a hierarchical model for microbial count and relative abundance profiles (Fig

1), with components specifically accommodating the major distributional characteristics of

such data, namely zero-inflation, compositionality (and thus sequencing depth), feature-fea-

ture non-independence, feature-environment interactions, and high-dimensionality. Briefly

(Fig 1A, details in Methods), the model a) specifies zero-inflated log-normal marginal distri-

butions for each microbial feature to allow for both biological and technical absences, b)

imposes distributions on the “absolute”, i.e. pre-normalized, microbial abundances to satisfy

compositionality (similar to models such as the Dirichlet [20] or gamma-MGH [18]), c) mod-

els feature-feature correlations through a multivariate Gaussian copula [21], and d) adopts a

penalized fitting procedure to address high-dimensionality [22]. Conditional on feature rela-

tive abundances and total read depth, count observations are modeled with a standard multi-

nomial sampling procedure, and per-sample read depth is modelled with a log-normal

distribution. For implementation, we adopted a penalized Expectation-Maximization proce-

dure for model fitting, and we have evaluated and provided options for cross-validated selec-

tion of the optimal penalization parameter (Methods). SparseDOSSA 2 is implemented as an

R/Bioconductor package (http://huttenhower.sph.harvard.edu/sparsedossa2). Note that this

differs somewhat from our previous implementation of SparseDOSSA that was already pub-

licly available; we provide a summary of changes between the versions in Methods. Sparse-

DOSSA can be accurately fit to a wide variety of different microbial community structures to

capture both (inferred) absolute and relative count observations (Fig 1B and 1C, details

below).

SparseDOSSA accurately recapitulates real-world microbial community

structures

We validated SparseDOSSA’s ability to accurately capture realistic microbial community fea-

ture profiles by quantifying its performance across a variety of real-world datasets (Fig 2 and

S1 and S2 Tables). The studies used include: 1,2) taxonomic profiles from shotgun sequenced

metagenomes of healthy human stool and posterior fornix samples from the HMP1-II, hereaf-

ter referred to as “Stool” and “Vaginal” [23], 3) shotgun sequenced stool metagenomes of

inflammatory bowel disease (IBD) patients from the HMP2 Inflammatory Bowel Disease

Multi-omics Database (IBDMDB, abbreviated as “IBD”) [2], and 4) 16S rRNA gene sequenced

murine distal gut communities after diet perturbation [24]. By evaluating the model in differ-

ent cohorts, we established its robustness under different community phenotypes, habitats (i.e.

body sites), overall ecological structures, and sequencing technologies (S1 Table).

SparseDOSSA 2 captured community parameters and re-simulated microbial profiles with

overall community structures that accurately reflected those of the original, real-world ecolo-

gies, better than alternative methods (Fig 2A and 2B), across all human datasets (murine study
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results reported in separate section). Overall, simulated communities yielded the same patterns

of global beta-diversity as were contained within each modeled dataset (Fig 2A). This was

quantitatively compared against alternative models (Dirichlet-multinomial, DM [20] and

gamma-MGH, namely metaSPARSim [18]) with the PERMANOVA R2 statistic [25] (Meth-

ods). We calculated ecological Bray-Curtis dissimilarities between real-world microbial pro-

files and those simulated by each evaluated method. We then quantified the total variability in

the combined dissimilarities that could be attributed to real-world versus simulation

Fig 1. A hierarchical model for microbial community feature profiles. A) SparseDOSSA comprises a hierarchical model to capture the generation mechanism of

microbial sequencing counts, including components for “hidden” absolute abundances, sequencing depth (and thus compositional relative abundances), zero inflation,

and feature-feature and feature-environment interactions. Notations not defined in the figure: FAj ð�Þ: cumulative density function (CDF) for the absolute abundance of

feature Aj. μD, s2
D: mean and variance of the log normal sequencing depth distribution. B) SparseDOSSA can be fitted to varied microbial community types using cross-

validation procedures by users; the software also provides pre-trained models are provided for human microbiome template datasets. This allows for C) simulation of

either null or "true positive" association spiked-in synthetic datasets, to facilitate microbiome benchmarking or power analysis studies.

https://doi.org/10.1371/journal.pcbi.1008913.g001
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difference, expressed as the PERMANOVA R2. Smaller R2s thus indicate less deviation of the

simulated community structures from the real-world target and better performance of the

model.

Across almost all evaluated community types, SparseDOSSA 2 generated significantly

smaller R2 statistics over 25 simulation iterations than existing methods (Wilcoxon rank sum

tests p< 0.05), indicating better fit to and recapitulation of the targeted communities (Fig 2B,

testing results in S3 Table). Notably, this was consistent in both the human gut (Stool, IBD),

where community structure forms continuous “gradients” of microbial composition [9], and

the human vaginal environment (Vaginal), where communities are often characterized by a

few discrete types with dominant species [26]. Only for the Stool dataset did SparseDOSSA

slightly underperform when compared to metaSPARSim in terms of R2 statistic, while still out-

performing with respect to per-feature distributions (Fig 2D). Additionally, metaSPARSim’s

Fig 2. SparseDOSSA accurately recapitulates different microbial community structures. We compared SparseDOSSA 2 simulated microbial counts versus those of

three human microbiome training template datasets (Stool, Vaginal, and IBD). A) Bray-Curtis ordination shows global agreement between SparseDOSSA simulated

microbial abundance profiles and those of their originating real-world populations. B) This was quantified by PERMANOVA R2 statistics, showing that SparseDOSSA

simulated samples were significantly less systematically differentiated from their targets than existing DM and metaSPARSim methods in almost all cases (Wilcoxon

rank sum test p-values included in S3 Table). R2 compared against randomly split original real-world data are included as baseline controls. C) Representative features

from each environment are similarly distributed between real-world and SparseDOSSA simulated samples, as shown in empirical cumulative distribution functions

(CDFs) of log-10 relative abundances (with pseudo value 1e-6 to visually represent zeros). D) Per-feature Kolmogorov-Smirnov summary statistics quantify that

SparseDOSSA outperforms existing methods in simulating realistic feature-level relative abundance distributions. First, the similarity between the model-simulated

feature abundance distribution versus that in the real-world dataset is quantified with K-S statistics. Then, the K-S statistics for SparseDOSSA and the other two models

(DM and metaSPARSim) are plotted on the x- and y-axis, respectively (each point representing one feature, smaller K-S statistics represent better approximation). Lastly,

the K-S statistics of SparseDOSSA versus other models are formally tested using Wilcoxon signed rank tests (p-values are significant and included in S4 Table).

https://doi.org/10.1371/journal.pcbi.1008913.g002
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simulation procedure can take as much as ~10x longer than SparseDOSSA 2 (S1 Fig), which is

prohibitive for realistic data sizes (especially for benchmarking or power-analysis efforts

requiring multiple simulations per parameter configuration, or for Monte-Carlo calculations).

Based on the above comparative performance results, we conclude that, when evaluated for

overall community structures, SparseDOSSA can capture microbial feature profiles that closely

resemble those of real-world microbiomes.

The SparseDOSSA model also provided the best recapitulations of individual features’ rela-

tive abundances (Fig 2C and 2D). For representative features in each environment, the empir-

ical cumulative distribution function (CDF) curves of samples show that SparseDOSSA

simulated abundances closely resemble those of the real-world data (Fig 2C). Quantitatively,

for each set of microbial features, we measured the difference of distributions between re-sim-

ulated and real-world (modeled) relative abundances with the Kolmogorov-Smirnov summary

statistic (K-S, see Methods). The resulting K-S summaries provides a distance between the dis-

tribution of each feature’s relative abundances across simulated vs. modeled real-world com-

munities. Smaller K-S statistics thus indicate better performance of the model. SparseDOSSA

better approximated the targeted real-world per-feature distributions than existing methods

across all evaluated datasets (Fig 2D), reaching statistical significance in each case (S4 Table,

Wilcoxon signed rank tests p< 0.05). In addition to simulating existing microbial features,

SparseDOSSA 2 also provides the functionality to simulate new features that resemble the tar-

geted environment’s ecological characteristics (Methods) and was validated to generate

“Stool-like”, “Vaginal-like”, or “IBD-like” new features in terms of prevalence, abundance, and

variability for each of the tested datasets (S2 Fig). Thus both in overall community structure

modeling and in per-feature models, SparseDOSSA was able to accurately capture and re-sim-

ulate realistic microbial observations better than alternative approaches.

SparseDOSSA captures covariation among microbes and with real or

simulated “phenotypes”

Once the SparseDOSSA model is fit to a real-world microbial community profile, the

“reversed” version of the model can be used not only to simulate similar, controlled ecologies,

but to introduce artificial, known feature-feature or feature-covariate associations to the simu-

lated profiles (i.e. metadata “spike-ins”). This is implemented by first capturing the “null” state

of targeted real-world studies as described above and by subsequently modifying the fit model

parameters to induce artificial associations. Compared to existing spiking-in paradigms

[5,17,18], the model includes two important improvements (Methods). First, SparseDOSSA

can model a wide variety of covariates—discrete, continuous, or any combination thereof—

with multivariable linear modelling, and can thus accommodate simulations of realistic micro-

biome population study designs with multiple phenotypes, exposures, or confounders [1]. Sec-

ond, associations with both non-zero (abundance) and zero-inflated (prevalence) components

of microbial features can be captured, along with clearly defined effect sizes (fold change or

odds ratio, see Methods). This enables rigorous evaluations of, for example, differential abun-

dance testing methods for their statistical performance (e.g. power or false positive rates).

Based on models fit to the Stool and Vaginal communities, SparseDOSSA 2 accurately

introduced, or “spiked-in” associations for control phenotypes in a new, simulated population

(Figs 3 and S3). Specifically, for the Stool dataset, we introduced a binary covariate (similar to

e.g. a case / control contrast) with non-zero effects on 16 (5% of the total 332) microbial fea-

tures’ abundances (Fig 3A) and prevalences (Fig 3B). Features were selected to ensure the

highest effective sample size (Methods). For simulated associations of the “phenotype” with

feature abundances, log fold change of non-zero relative abundances largely agreed with the
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target effect sizes within 95% confidence levels (Fig 3A). Prevalence log odds ratios were also

as targeted (Fig 3B), with effects in relative abundances mostly agreeing with the prescribed

effect sizes. Similar abundance and prevalence results were consistently reproduced in the

Vaginal environment (S3 Fig).

In addition to modeling associations between microbial features and external covariates, Spar-

seDOSSA can also model community ecological interactions (i.e. correlations between microbial

features, or feature-feature “spike-ins”, Figs 3C and S4). First, we note that SparseDOSSA simu-

lated microbial communities naturally recapitulate important synergies within modeled environ-

ments, such as Firmicutes-Bacteroidetes gradients in the human gut and co-exclusion of

dominant Lactobacillus species in the vaginal microbiome (S5 Fig). For introducing artificial cor-

relation among microbial features, we extended the feature-covariate spiking process above to

synthetically associate multiple features with the same hidden covariate (Methods). First, a null

model fit to the Stool/Vaginal communities contains no true feature-feature associations, only

those that manifest spuriously due to compositionality. Starting with this, we modified the model

to induce increasingly large feature-feature “ecological” interactions. SparseDOSSA 2 produced

both only and exactly the expected true feature-feature associations among absolute abundance

components, and the correct induced compositional correlations after simulating the sequencing

assay process (Fig 3C for subset of Stool results; full Stool/Vaginal results in S4 Fig). These results

support SparseDOSSA’s ability to modify baseline, null community structures by the introduc-

tion of interactions among features or with controlled covariates, which together enable the eval-

uation of a wide range of statistical approaches to microbiome analysis [15,27,28].

Modeling environment-specific benchmarking and power estimation

Since most microbiome analysis methods make simplifying assumptions that may or may not

be suited to particular ecologies, SparseDOSSA’s flexible model enables power and accuracy

estimation in a habitat-specific manner (Fig 4). Specifically, by spiking only a limited set of

known feature-phenotype associations into an otherwise guaranteed-null model, differential

abundance methods can be compared directly to each other in a controlled setting (more

details in [29]), enabling targeted method benchmarking (Fig 4A) or power analysis (Fig 4B).

To demonstrate SparseDOSSA’s use for benchmark comparison of microbial community

statistical tests, we again simulated synthetic datasets based on the Stool profiles with "pheno-

typic" associations spiked-in for 5% of features at varying effect sizes (as in Fig 3A). Multiple

replicates of the same parameter set were performed to provide performance metric mean and

standard errors (Methods). Using the resulting gold standards, the performances of three dif-

ferent association tests–limmaVOOM [30], ANCOM [31], and MaAsLin 2 [29]—were similar

for power, but false discovery rates varied strikingly (Fig 4A). Notably, the MaAsLin 2 general-

ized linear model showed good FDR control at small to moderate effect sizes. At higher effect

Fig 3. SparseDOSSA can add feature-phenotype and feature-feature associations to modeled microbial community simulations. A,

B) SparseDOSSA 2 correctly simulated feature-phenotype associations targeting the prescribed non-zero relative abundance (A) and

prevalence (B) effect sizes of the spiked features, while maintaining non-associations of null features. True associated (spiked) microbial

features (red) are well differentiated from null features (black), through Bonferroni corrected p-values (non-significant features marked

in gray; test based on linear/generalized linear regression against the spiked metadata variable, see Methods for details). The horizontal

dashed lines indicate true spike-in effect sizes: red lines for the positive and negative true effect sizes, respectively, and the black line for

null effect (0). C) SparseDOSSA can also prescribe feature-feature associations. Bottom right triangles are Spearman correlations in the

simulated absolute abundances. As prescribed, only true association feature pairs are correlated. Top right triangles are Spearman

correlations in the corresponding, simulated relative abundances. Note that in this example, Spearman correlation does not differentiate

between true (“biological”) covariations versus those induced spuriously due to compositionality (as is also the case in the underlying

data on which SparseDOSSA’s model is fit). As expected, both true signals and spurious correlations caused by compositionality can be

observed for such data. TP: true positives.

https://doi.org/10.1371/journal.pcbi.1008913.g003
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sizes, non spiked-in (“null”) features are also called by MaAsLin 2 as differentially abundant.

Interestingly, this is because SparseDOSSA’s spike-in effects are imposed on features’ simu-

lated absolute abundances (Methods), and high effect size spike-ins thus also induce relative

abundance change in null features due to compositionality. This highlights the important dif-

ference between true differential abundance effects corresponding to microbes’ biological vari-

ation, versus changes post normalization that are driven by other features.

In contrast, ANCOM [31] was designed to account for compositionality and draw inference

about hidden absolute abundances; it successfully and maintained FDR under moderate to

strong effect sizes. Arguably as a result, however, its performance suffered for small to null

effects, presumably because in such cases it is difficult to distinguish between “driver” micro-

bial features with true absolute effects versus those with changes in their relative abundances

due to compositionality. Lastly, limmaVoom [30], designed primarily for RNA-Seq data, had

inflated FDRs across all cases.

To demonstrate SparseDOSSA’s use for power analysis during microbial community study

design, we focused targeted simulation datasets with spiked-in effects on a feature modeled on

Escherichia coli, as a microbe commonly associated with dysbiosis in the human gut [2]. Using

this approach, SparseDOSSA 2 can be used to estimate each association method’s expected

power for similar biomarkers and populations. In this example, MaAsLin 2 has high power to

detect a two-fold abundance change in "E. coli" for a sample size of at least ~500 individuals,

but greatly reduced power for smaller fold-changes (Fig 4B). Since model power for differen-

tial abundance testing in sparse, compositional data is extremely difficult to determine para-

metrically, SparseDOSSA thus provides a way to do so by simulation tailored to any

community type or feature of interest, and we provide basic guidelines for this in Methods.

SparseDOSSA reproduces an end-to-end diet-microbiome analysis

In many cases, SparseDOSSA thus captures the properties of microbial community ecologies

well enough to reproduce surprisingly specific aspects of their membership and distributions,

Fig 4. SparseDOSSA enables comparative benchmarking and power analysis of microbial community statistical association tests. For any originating community

type of interest, datasets simulated based on a SparseDOSSA model fit can be spiked with known "phenotypes" and feature effect sizes to estimate methods performance

(power, FPR, etc.) during (A) benchmarking as well as (B) power analysis, across controlled combinations of potential effect sizes and sample sizes. Points indicate

average performance across simulation repetitions and error bars indicate standard error (Methods).

https://doi.org/10.1371/journal.pcbi.1008913.g004
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which we next demonstrated by reproducing an end-to-end example from a longitudinal,

interventional diet study investigating the effects of diet on the murine gut microbiome [24]

(Fig 5). Carmody et al. [24] used 16S rRNA gene sequencing to profile changes in the mouse

distal gut microbiome under different dietary treatments (chow, raw and cooked tuber, and

meat). To determine whether SparseDOSSA could accurately model the microbes, phenotypes,

and associations observed over time in these settings, we fitted model parameters for each sam-

ple type at different time points and under different treatment assignments (Methods).

After re-simulating communities based on these models fits, ordinations of SparseDOSSA

results closely mimic the originally observed clustering structure of dietary effects, and even

the longitudinal effects of time under treatment (Fig 5A, corresponding to Fig 1A of [24]). For

quantitative differential abundance effects, based on the observed difference of raw diet (TRF)

samples when compared against cooked/free-fed (TCF) and cooked/restricted (TCR) within

the tuber diet group [24], we additionally applied SparseDOSSA 2’s spike-in procedure to sim-

ulate a ~2x fold increase in the abundance of Bacteroidetes OTUs in TCF/TCR when com-

pared to TCF samples, and a ~2x fold decrease in Firmicutes OTUs (Methods). Consequently,

the simulated samples displayed similar differential outcomes in community diversity as mea-

sured by Shannon index, as well as Firmicutes/Bacteroidetes ratios, as seen in the original

study (Fig 5B and 5C, corresponding Fig 1F–1G of [24]).

Interestingly, even though per-feature absolute abundances are theoretically unidentifiable

in the SparseDOSSA model (Methods), we note the spiking-procedure recapitulated the

decreased total cell counts in TRF (Fig 5D, corresponding to Fig 1H of [24]) that [24] also

observed via quantitative PCR. The difference between chow versus tuber diets, on the other

hand, is completely attributable to SparseDOSSA’s framework, as one can arbitrarily modify

the average absolute abundances of our fit to the chow or tuber diet samples, but still yield

Fig 5. SparseDOSSA correctly models the effects of diet and time on the murine gut microbiome by reproducing effects from amplicon sequencing profiles. A)

SparseDOSSA 2 was fitted to subsets of samples from [24] that included up to three time points each from collections of mice fed chow, raw or cooked tubers, and meat.

The resulting models were then used to simulate controlled microbial community profiles, which correctly reproduced the beta-diversity structures present in the

original study (MDS ordination by Bray-Curtis dissimilarities, corresponding to Fig 1A of [24]). The SparseDOSSA model was also able to model and synthetically

replicate changes in "Bacteroidetes" and "Firmicutes" phyla in response to raw vs. cooked diets, including B) overall community alpha-diversity (Shannon index), C) the

resulting "Firmicutes" vs. "Bacteroidetes" ratio, and D) overall whole-community effective biomass. These correspond to [24]’s Fig 1F–1H, respectively. TRF = raw tuber

(free-fd); TCF = cooked tuber (free-fed); TCR = cooked tuber (restricted ration).

https://doi.org/10.1371/journal.pcbi.1008913.g005
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exactly the same relative abundance profiles. These real-world application results highlight

SparseDOSSA’s adaptability to community phenotypes and treatment effects, as well as dem-

onstrate its performance for amplicon sequence datasets and microbial communities associ-

ated with non-human hosts.

Discussion

Here, we have developed a statistical model, implemented in the R package SparseDOSSA 2,

for fitting and/or simulating microbial community profiles. These can comprise taxonomic

abundances (i.e. relative abundances or counts) from shotgun metagenomic or amplicon

sequencing; although not evaluated here, the model is in principle also appropriate for other

microbial feature abundances (e.g. genes or pathways). The model can be fit to communities

with different host-associated or environmental ecological structures, and it accurately cap-

tures their fundamental characteristics, including the distribution of abundances across com-

munity members and the diversities of microbial composition across populations. In addition,

to support quantitative benchmarking of new methods for microbial community statistics and

epidemiology, SparseDOSSA is able to reliably induce user-specified correlation structures

involving feature-covariate or feature-feature associations in simulated ecologies. This was

demonstrated not only in silico, but by end-to-end reproduction of results paralleling those in

an interventional mouse feeding study. The underlying generative model thus efficiently and

effectively summarizes real microbial communities and recapitulates their latent structure in a

manner that is both computationally efficient and statistically principled.

The SparseDOSSA model assumes that the characteristics of a template (real) microbial

community are well-captured by the distributions it includes for each component (individual

features, feature-feature relationships, sparsity, etc.) More specifically, this requires that 1) the

non-zero component of absolute abundances is approximately log-normal, 2) that feature-fea-

ture association structure is sparse (as captured by the penalized estimation procedure), and 3)

that intrinsic population substructure among samples are absent in the template dataset (i.e.

before SparseDOSSA 2 itself optionally spikes-in any such structure). The last assumption 4)

that sequencing depths within study are themselves log-normal typically has minimal impact

on model fitting or usage. The third assumption holds reasonably well even when any correla-

tion structure originally present is weak or rare relative to overall microbial variance, or affects

only a small proportion of features, similar to the assumption of “few differential transcripts”

used in most RNA-seq models [32]. Second, inasmuch as the read count of each feature

depends on its own observed mean, variance, and sparsity, SparseDOSSA 2’s simulated data

will replicate the marginal distribution of the originating template community. This guarantee

on the null distribution of subsequently generated communities allows correlation structure

(with samples or among features) to be optionally added in isolation for evaluation of micro-

bial community analysis methods. The first assumption is most approximate—it is generally

true for ecologically diverse communities, which empirically follow power-law or log-normal

behaviors (with a few abundant organisms and a long tail representing the increasingly rare

biosphere). However, as discussed above, its violation leads to small residual systematic biases

(<0.5%) in communities where tails of rare organisms are more truncated than expected.

Perhaps the greatest strength of the model is its application in simulating microbial com-

munity profiles, which we have emphasized and validated here. Most previous methods for

associating microbial features with covariates [31,33–35] or with each other [15,28,36,37] have

relied on heterogeneous, one-off models not necessarily reflective of any one “real” microbial

community type, or of the diversity of ecological configurations observed in the wild (e.g. the

human gut vs. vaginal microbiome vs. soil). By providing a model that can accurately capture
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many different community types, remove any existing structure through null distributions,

and re-introduce known, controlled structure (microbial or covariate), we hope to provide a

convenient, unified framework with which statistical methods can be validated specifically for

their environments of interest (e.g. human microbiome epidemiology vs. environmental eco-

logical interactions). In addition to this application, while not emphasized here, the model’s

parameterization can be used to directly inspect or compare microbial communities. For

example, the estimates of absence probabilities πj for important microbes j of interest in spe-

cific human populations (e.g. Prevotella in the Westernized vs. non-Westernized gut [38]), or

the relationships between πj vs. mean log-abundance μj across microbes (i.e. prevalence vs.

abundance) are directly informative as to their neutral dispersal vs. selection [39]. To some

degree this is evident from the murine feeding example above, but most such applications

remain to be demonstrated in broader “real-world” datasets.

Relatedly, SparseDOSSA successfully reproduced reported dietary effects on the mouse gut

microbiome [24], without assuming such differences a priori (Fig 5). By fitting our model on

microbial observations of separate treatment groups and time points, we allowed Sparse-

DOSSA to adapt to each subset independently, but without assumptions on the existence or

magnitude of differences between them. The emergent reproduction of differentiation by diet

in the resulting synthetic communities and features (Fig 5A) exemplifies SparseDOSSA’s util-

ity in capturing environment- or treatment-specific dynamics of real-world microbial commu-

nities. In parallel, by introducing effects within each dietary group, SparseDOSSA’s per-feature

spike-in procedure was able to reproduce structural microbial community changes such as

overall diversity and whole-phylum abundance trade-offs. Together, this end-to-end real-

world case study highlights SparseDOSSA’s two key functionalities while also testing a non-

human, amplicon-sequenced application context: generating realistic microbial community

profiles that closely mimic the targeted environment, and introducing covariate spiked-in

microbial perturbations to simulate treatment effects.

With respect to this second use case (covariate effects spike-in), existing simulation models

often adopt the simplistic approach of modifying the abundances of taxa in the null commu-

nity to introduce known associations [5,18]. SparseDOSSA, in comparison, utilizes rigorous

perturbation models to explicitly specify the marginal means of taxa as functions of chosen

covariates. This a) enables much more flexible applications such as the inclusion of confound-

ers or random effects (by incorporating them as covariates), and b) yields spiked-in datasets

that are strictly compatible with the standard assumptions of (generalized) linear models.

Alternatively, differentiation between simple binary (case-versus-control) contrasts could be

achieved with our current model by training SparseDOSSA separately on the two correspond-

ing population subsets, given that each was sufficiently large to serve as a template.

Our modeling and simulation procedure for generating feature-feature correlations is, in

turn, directly based off the feature-covariate model and comparatively more restrictive; we

expect to explore more rigorous and flexible approaches in future work, since any one “cor-

rect” way to model ecological associations in absolute vs. relative abundance space is not clear

a priori [36]. Another related area for future work is in the specific model used for absolute

abundances, which are not well-understood from currently available data; our current assump-

tion holds if the total biomass of “typical” communities does not change under “typical” cir-

cumstances, but this is obviously quite qualitative. Direct measurements of microbial biomass

in some environments such as the human gut have sometimes shown this within approxi-

mately one fold change [40,41], but not in all cases, and certainly not during extreme perturba-

tions such as antibiotics [42].

Thus the SparseDOSSA model simultaneously provides a conceptual framework with

which to capture key aspects of microbial ecologies and their members, a simulation system
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for benchmarking statistical methods that assess correlation structure in microbial community

profiles, and a set of marginal parameters for each community and community type of lower

dimensionality and potentially reduced noise relative to raw data. The last, while again not yet

explored, could allow sample metadata covariates to be more accurately tested for association

with microbial features, or tested for association with microbial community features indirectly

(e.g. via their prevalence or mean when present). In addition to the areas discussed above, future

expansions of the model might include longitudinal structure or other interdependencies among

samples (i.e. population substructure), as well as diversifying the application areas for the model

(e.g. for power calculations during study design). We note that for introducing correlation

among samples with the current implementation (e.g. for simulating longitudinal observations),

the user can already create subject-specific “random effect” metadata variables, which then induce

tunably non-independent microbial abundances through the existing metadata spike-in proce-

dure. This creates artificial subject-specific effects for the simulated microbial profiles and thus

within-subject longitudinal correlations. As currently implemented, SparseDOSSA 2 provides an

end-to-end system that enables reproducible and efficient validation of quantitative methods

applied to microbial community taxonomic profiles, allowing fair comparisons to be made

between different methods or studies to establish a consistent baseline for statistical validation.

Methods

The SparseDOSSA model

SparseDOSSA uses the following data generation mechanism to parameterize microbial com-

munity profiles: a) environments/samples contain microbes with absolute abundances A b)

these are normalized to relative abundances X, which c) can be measured via sequenced counts

C. As detailed in Fig 1A, our model specification for these components is:

• For the unobserved absolute abundances A = (A1, A2, . . ., Ap), we specify a Gaussian copula

model [21] with zero-inflated log normal marginal distributions. Specifically, this involves

assuming hidden multivariate Gaussian variables g = (g1, g2, . . ., gp) for the microbial features

and a mapping of these variables to the corresponding absolute abundances (A1, A2, . . ., Ap):

� g ~MVN(0, O−1). That is, each gj is a standard N(0, 1) variable and their correlation

matrix isO−1.

� Each gj is mapped to Aj such that Aj follows a zero-inflated log-normal distribution,

parameterized by absence probability (πj) and mean and variability of non-zero log abun-

dances (μj, σj2):

■ Aj = 0 if gj<Φ−1(πj)

■ Aj ¼ FAj
� 1ðFðgjÞjpj; mj; sj2Þ if gj� Φ−1(πj)

Where Φ is the standard normal cumulative density function and FAj is the cumulative density

function of the zero-inflated log-normal distribution, parameterized by πj, μj, σj2.

It follows from our model specification that, marginally, Aj follows the prescribed zero-

inflated log-normal distribution exactly:

� With probability πj, Aj = 0

� With probability 1 − πj, log Aj ~ N(μj, σj2)

Jointly, correlations between microbial features’ absolute abundances are characterized

through the copula parameter O. The benefit of adopting a copula model is to separate the
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parameterization and estimation of a joint distribution into its marginal and correlation com-

ponents; this is illustrated in the model fitting subsection below.

• Relative abundances are directly normalized from absolute abundances: Xj ¼
AjPp

k¼1
Ak

. This

by definition satisfies compositionality (
Pp
j¼1
Xj ¼ 1). Also note that because Aj’s are zero-

inflated, this directly induces zero-inflation (i.e. biological absence) in Xj’s.

• For a given sample i with sequencing depth Di, its per-feature read counts (Ci1, Ci2, . . ., Cip)
are assumed to follow a multinomial distribution with individual features’ probabilities

given by Xij. That is, (Ci1, Ci2, . . ., Cip) ~MultiNom(Di, Xi1, Xi2, . . ., Xip), thus also allowing

technical zeros.

• Lastly, we assume the sequencing depth Di across samples follows a log-normal distribution.

That is, Di ~ LogN(μD, σD2).

Model likelihood

It is helpful to clarify the likelihood of our model given its parameterization. First, we derive fA,

the likelihood for the unobserved absolute abundances A. The likelihood of observed data, as

we show later, is an integration of fA. For illustration purposes, we first note the special case

where Aj are not zero-inflated. That is, πj = 0 for all j’s. In this case, we have that:

fA A1; � � � ;Apjp1; m1; s1
2; � � � ; pp; mp; sp

2;O
� �

¼ fg g1; � � � ; gpjO
� �

�
Y

j

fAjðAjjpj; mj; sj
2Þ

�ðgjÞ

Where gj is as defined above: gj ¼ F
� 1ðFAjðAjÞÞ and ϕ(�) is the standard normal density

function. The equality follows by noting that the second term (the product) is the Jacobian of

the mapping g ! A : Aj ¼ FAj
� 1ðFðgjÞÞ. When one or more Aj’s are zero-inflated, the map-

ping g!A is not one-to-one, and the right hand side of the equality requires integration over

gj’s that map to zero-valued Aj’s:

fAðA1; � � � ;Apjp1; m1; s1
2; � � � ; pp; mp; sp

2;OÞ

¼

Z

gj�F� 1ð1� pjÞ;j2fj:Aj¼0g

fgðg1; � � � ; gpjOÞdg �
Y

j2fj:Aj>0g

fAjðAjjpj; mj; sj
2Þ

�ðgjÞ

To derive the likelihood for relative abundances X, we note that X, jointly with the total

absolute abundance AS (AS≔∑jAj), forms a one-to-one mapping with the absolute abun-

dances A (A = ASX). Thus, the density function for X, fX, can be obtained through integration

of fAS;X , which is simply fAmultiplied by the Jacobian of the transformation:

fXðX1; � � � ;Xpjp1; m1; s1
2; � � � ; pp; mp; sp

2;OÞ

¼
R
fAðA

SXjp1; m1; s1
2; � � � ; pp; mp; sp

2;OÞ � ðASÞjfj:Aj>0gj� 1dAS ð1Þ

Lastly, for the observed microbial count data C, the proper likelihood is:

fCðC1; � � � ;Cpjp1; m1; s1
2; � � � ; pp; mp; sp

2;OÞ

¼

Z

fCjXðCjXÞfXðXjp1; m1; s1
2; � � � ; pp; mp; sp

2;OÞdX
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Where fC|X(C) is the multinomial likelihood for microbial counts given their relative abun-

dances. In practice, to simplify computation, during model fitting we replace this likelihood

with

fCðC1; � � � ;Cpjp1; m1; s1
2; � � � ; pp; mp; sp

2;OÞ � fXðbX jp1; m1; s1
2; � � � ; pp; mp; sp

2;OÞ � const ð2Þ

Where bX is the multinomial MLE for X given observed C, i.e., bX ¼ CP
j
Cj

, const is a normal-

izing constant not involving the parameters. The approximation is acceptable because with

modern sequencing depth [1], fC|X(C|X) (as function of X) is highly concentrated around bX .

The right-hand side of (2) is what we aim to maximize for estimation of our model’s parame-

ters, π1, μ1, σ1
2,� � �,πp,μp,σp2, and O.

Identifiability

It is important to note that likelihood (1) is unidentifiable. That is, there exist different values

of the parameter set (π1, μ1, σ1
2,� � �,πp, μp, σp2, O) that yield the same likelihood fX (and conse-

quently fC). Intuitively, this is because X are normalized from absolute abundances A, and dif-

ferent A values can map to the same normalized relative abundances X—this is thus typical of

any compositional setting. Regarding the identifiability of our parameters, we build on the

results of [43], which is a special case of our model where πj = 0 for all j’s. Specifically, we note

that:

• πj’s are identifiable, as Xj = 0, Aj = 0

• μ1,� � �,μp are identifiable up to a constant. That is, μ1,� � �,μp and μ1+c,� � �,μp+c lead to the same

likelihood, for any constant c. For this reason, in our model estimation we impose the (arbi-

trary) constraint that ∑jμj = 0.

• σ1
2,� � �,σp2 are identifiable, given μ1,� � �,μp and O. One can note that when πj = 1 for all j’s, our

likelihood degenerates to that in [43] with explicit analytical forms.

• O is not identifiable. Again, consider the special case that πj = 1 and σj = 1, the form of fX is

explicit and involves O �
O1p1p

0O

1p
0O1p

, which is a multiple-to-one mapping from O. The issue of

non-identifiable correlation matrices for microbiome abundance data has been noted and

addressed in many previous works; refer to [15,27,28,43] for a partial list. We adopt the tech-

nique used in many of these previous works, namely L1 penalization on O, to simultaneously

address the identifiability issue as well as high-dimensionality for generic estimation of large

covariance matrices [22].

We note that, importantly, good performance of SparseDOSSA does not require correct

estimation of its non-identifiable parameters. Rather, so long as SparseDOSSA provides a con-

figuration of estimated parameters that yields a joint distribution of relative abundances

(X1,� � �,Xp) that closely approximates that of the original data, its application case for capturing

or simulating microbial observations is achieved. Thus, our proposed solution for non-iden-

tifiability, though not guaranteed to correctly estimate the unknown true parameters, does sat-

isfy typical applications.

Model fitting

Given our model specification and its (non-)identifiability, we propose to minimize the follow-

ing penalized negative log-likelihood function for solving the parameter setΘ = (π1, μ1, σ1
2,� � �,

πp, μp, σp2,O) (the sequencing depth parameters (μD, σD2) can be fitted independently on per-
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sample read depths with maximum likelihood):

Xn

i¼1

� log fXð bXi jp1; m1; s1
2; � � � ; pp; mp; sp

2;OÞ þ ljjOjj1

Subject to the constraint for μj as specified above: ∑jμj = 0. As such, λ>0 is a penalizing tun-

ing parameter, which we choose with K-fold cross-validation in practice (five folds by default).

bXi can be either existing relative abundance estimations or, as specified above, normalized

from count observations (bXij ¼
CijP
j
Cij

).

As specified in (1), the likelihood function fX involves integration over AS and is not analyt-

ically tractable. Numerically, we propose the following penalized expectation-maximization

algorithm [44] for model fitting:

1. Initialize bYð0Þ ¼ bp1

ð0Þ
; bm1

ð0Þ
; bs1

ð0Þ
; � � � ; pp

ð0Þ; mp
ð0Þ; sp

ð0Þ;O
ð0Þ

by fitting a multivariate log-nor-

mal distribution on bXis.

2. During the r-th iteration:

a. E-step: calculate expectation lðrÞðXjYÞ ¼
P

iEAS i jXi ;bYðr� 1Þ
log fAðAS iXijYÞ � ðASiÞ

jfj:Aij>0gj� 1
.

b. Penalized M-step: maximize −l(r)(X|Θ)+λ||O||1 with respect toΘ to obtain bYðrÞ. Note

that bp js do not require updates. bm j
ðrÞ

and bs j
ðrÞ

can be solved analytically. bOðrÞ can be

solved with standard graphical lasso [22].

3. Iterate until convergence.

Generating synthetic microbial observations and simulating new features

Given that our model is fully parametric, synthetic microbial observations, including (hidden)

absolute abundances, normalized relative abundances, and sequencing counts, can be gener-

ated following the same specifications as described above. To provide model parameters, the

user can adopt one of the pre-trained sets included with the software or use the SparseDOSSA

2 training procedure to estimate parameters from any microbial template dataset suited for

their simulation case.

Users may also be interested in generating “new” microbial features from the same ecologi-

cal environment. For this, SparseDOSSA additionally models the per-feature parameters (πj,
μj, σj2) with a three-dimensional non-parametric distribution F. That is, across features, (πj, μj,
σj2)~F. Given a set of SparseDOSSA fitted results ðbp1; bm1; bs

2
1
; . . . ; bpp; bmp; bs

2
pÞ, F can be esti-

mated with a three-dimensional normal kernel density estimator [45]. The estimated bF can

then be used to simulate new microbial features that follow the ecological characteristics (i.e.,

prevalence, abundance, and variability) of the fitted environment (S2 Fig).

Association spike-in

SparseDOSSA adopts linear and generalized linear models for flexible spiking-in in both

microbial features’ non-zero abundances and prevalences, based on covariates. Let Zi be the

vector of covariate(s) for sample i and β be the targeted corresponding effect sizes (coeffi-

cients). To spike in associations between feature j’s abundance and covariates Zi, we modify

the feature’s non-zero mean log absolute abundance parameter μj across samples. Specifically,
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the post spike-in mean log abundance is modified as

mij ¼ mj þ Zi
0babundance

For the i-th sample, Aij can be generated with ZILogN(πj, μij, σj2) instead of the original

ZILogN(πj, μj, σj2). This dictates that Aij’s are associated with Zi in their mean non-zero log

abundances. As μij are specified on the log scale, βabundance, by definition, corresponds to log

fold changes.

The prevalence spike-in similarly is specified via the logistic model; we modify the presence

probability parameter (1−πj) across samples:

logð
1 � pij

pij
Þ ¼ logð

1 � pj

pj
Þ þ Zi

0bprevalence

And generate Aij’s correspondingly. This introduces an association between the covariates

Zi and feature j’s prevalence, with βprevalence corresponding to log odds ratios of the feature

being present. The multivariate linear modelling approach for specifying the association effects

for both abundance and prevalence allows us to flexibly incorporate different variable types

(e.g. binary, continuous, etc.) and study designs (e.g. existence of confounders).

We note that, importantly, our spiking-in procedure is performed on the absolute abun-

dances, A, which induces differential effects in relative abundances X (Fig 3A and 3B). The

main benefit of this approach is that both the spiked-in microbial features and the “null” (i.e.

non-spiked features) are clearly defined. The alternative—specifying effects for Xj—is concep-

tually difficult. As X is compositional (sums to 1), prescribing enrichment effects (higher abun-

dance or prevalence) for some microbial features must by definition lead to depletion effects

for certain other features. This renders it difficult to clearly define and separate the set of "true

positive" spiked-in microbial features and the set of null features. SparseDOSSA’s definition of

effects for absolute abundances in its spike-in procedure align with recent efforts to rigorously

characterize microbial differential abundance effects under the constraint of compositionality

[31,46]. Empirically, we note that prescribed log fold changes or odds ratios for Aj often lead to

similar effect sizes in the relative abundances Xj for the spiked-in feature j’s (Fig 3A and 3B).

Lastly, we note that the spiking-in procedure with metadata variables can be used to simu-

late association effects between pairs of microbial features (Fig 3C). Specifically, we first simu-

late a hidden covariate Z with standard normal distribution. For a pair of features j1, and j2, to

enforce positive correlations between the two absolute abundances Aj1 and Aj2 , we simulate for

them to be associated with Z in the same direction:

mij1 ¼ mj1 þ Zibabundance

mij2 ¼ mj2 þ Zibabundance

logð
1 � pij1
pij1

Þ ¼ logð
1 � pj1
pj1
Þ þ Zibprevalence

logð
1 � pij2
pij2

Þ ¼ logð
1 � pj2
pj2
Þ þ Zibprevalence

Where βabundance = βprevalence = β can be viewed here as the effect size specifying the strength

of correlation between Aj1 and Aj2 . To spike in negative correlation between the two, we simply

keep β as the effect for one of the features and use −β for the other.
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Comparison between SparseDOSSA and SparseDOSSA 2

A previous implementation of SparseDOSSA has also been publicly available [47]. To help the

reader understand the difference between SparseDOSSA’s old and new versions, we list the

major updates below:

1. In the new version, zero-inflated log-normal modelling of microbial feature abundances is

imposed on absolute abundances Aij, instead of directly on the relative abundances Xij, to

better satisfy compositional constraints of such data types.

2. Microbial feature-feature correlations are now explicitly modelled with the Gaussian copula

component; this was not present in the previous version.

3. For simulating new microbial features, which requires modelling of the triplet (πj, μj, σj2),

the previous implementation adopted a log-normal distribution on μj, with corresponding

linear and logit link functions for σj and πj. This is relaxed in the new version with the

three-dimensional nonparametric Gaussian kernel density estimator to allow for additional

flexibilities.

4. For spiking-in of association microbial features and metadata variables, the previous ver-

sion only allows for abundance association spike-in. It also specifies effect sizes through a

non-linear transformation that can be difficult for the user to interpret. The new version

expanded this functionality by allowing both abundance and presence spiking-in; it also

specifies effect sizes directly through linear and generalized linear models (log fold change/

odds ratio), allowing more straightforward interpretations.

5. The necessary algorithm and implementation changes for the aforementioned model

updates, including our new EM algorithm for model fitting, updated and expanded real-

world templates for direct simulation, and software interface updates.

Evaluation with real-world datasets

For evaluation and comparison of microbiome simulation methods, we examined three real-

world datasets with different host environments and disease statuses (S1 Table) [2,23]. We

subset publicly available species level profiles from [23] (all healthy) to baseline time point

stool (Stool) and posterior fornix (Vaginal) samples, and those from [2] to baseline time point

IBD samples (IBD, including Crohn’s disease and ulcerative colitis patients). We additionally

removed samples with lower than ~3,000 reads mapped to identified taxa and features present

in less than 3 samples. The datasets’ dimensions (sample size, number of features), post pro-

cessing and filtering, are included in S1 Table. A summary of all simulation evaluations per-

formed in this work is included in S2 Table. Evaluation scripts used are publicly available at

https://github.com/biobakery/sparsedossa_paper.

To evaluate the performance of individual methods, we randomly partitioned each dataset

(Stool, Vaginal, IBD) into halves for five iterations. For each partitioning, we fit the parameter-

ization/simulation methods (DM, metaSPARSim, and SparseDOSSA 2) on one half of the data

(training). We then simulated synthetic microbial observations with the same sample size

using the fitted results. Lastly, we compared the synthetic observations with the other half of

the partitioned data (testing) in terms of both overall dissimilarity with PERMANOVA [25]

and per-feature distribution differences (methods detailed below). Within each partitioning,

this simulation was also performed five times for each method. That is, each method was used

to randomly simulate five synthetic datasets for comparison with the testing half. The parti-

tioning procedure allows us to evaluate method performance without a model overfitting
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effect. The DM was fitted using R package “dirmult” and metaSPARSim was fitted using the

implementation referred to in its publication [18]. For metaSPARSim fitting, the percent not

zero filter for features was set to 0 instead of the default 0.2. In our evaluation this led to an

observed performance increase (thus a favorable assessment), likely due to the existence of

many highly zero inflated microbial species.

To evaluate overall dissimilarity between the original and synthetic samples, for each parti-

tioning we combined the testing half of the original samples with the simulated datasets (five

for each fitted method). We calculated the sample-to-sample Bray-Curtis dissimilarity matrix

D on the combined dataset. The univariate PERMANOVA model, D~I{Sample is simulated}
was fitted. The corresponding R2 statistic quantifies the percentage of variability between sam-

ples attributable to the difference between original "real-world" as compared to simulated sam-

ples. Smaller R2 statistics indicate less difference, and better performance of the simulation

method. For each method, a total of 25 PERMANOVA evaluations (5 original dataset parti-

tioning × 5 simulation) was performed for each real-world dataset. Lastly, we additionally eval-

uated the R2 between the training and testing halves of a dataset for each partitioning; this

yields an estimation of minimum achievable R2’s for each dataset. R2’s between methods are

compared with Wilcoxon rank sum tests (S3 Table).

To evaluate the difference between distributions of individual features in the original and syn-

thetic datasets, we simply combined the synthetic datasets generated across all partitioning and

simulation repetitions. An individual feature was compared for its relative abundance distribution

between the original real-world data and combined synthetic samples. This was quantified with

the Kolmogorov-Smirnov (K-S) summary statistic, which is defined as the largest absolute differ-

ence between the empirical cumulative distribution functions of the real-world and synthetic

abundances. Smaller K-S statistics indicate better approximation of the targeted real-world distri-

butions with the simulation method. To compare overall per-feature performance between mod-

els, the paired K-S summary statistics between SparseDOSSA 2 and alternative models (DM and

metaSPARSim) were compared using Wilcoxon signed rank tests (matched by features, S4 Table).

Association spike-in evaluation

We simulated spiked-in associations between microbial features and a synthetic case/control

variable, based on the SparseDOSSA 2 fitted results. A total of 1,000 synthetic samples were

simulated (500 cases and 500 controls). For non-zero abundance spike-in (Fig 3A), the top 5%

(16 total) most prevalent features were selected for spiking-in; this yields the highest effective

sample size for the selected features because our abundance spiking-in targets only the non-

zero component of a feature’s distribution. Half of the features were spiked for a targeted log

fold change (βabundance) of 1 in cases compared to controls, and the other half were spiked for a

log fold change of -1. Actual log fold changes in the simulated relative abundances, along with

95% confidence intervals, were calculated by performing a linear regression on the log trans-

formed non-zero relative abundances for each feature.

Similarly, for prevalence spiking-in (Fig 3B), the top 5% features with prevalence closest to

0.5 were selected; as with abundance spike-ins, this was to ensure the spiked-in features had

the highest effective sample size, as the association between a binary outcome (presence/

absence here) and a binary covariate (case/control) is best-powered when the sample distribu-

tion is balanced across all different outcome/covariate combinations [48]. Again, half of these

features were spiked for a targeted log odds ratio (βprevalence) of 1 in cases compared to controls,

and the other half were spiked for a log odds ratio of -1. Actual log odds ratios of the simulated

feature prevalence, along with 95% confidence intervals, were calculated by performing a logis-

tic regression on the presence for each feature.
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For simulation of feature-feature associations, we first set the correlation between feature

pairs in SparseDOSSA 2 to zero (i.e.,O = I where I is the identity matrix). This ensures that fea-

ture absolute abundances are independent in the “null” dataset (Fig 3C left panel, bottom

right), whereas spurious correlation still exists in relative abundances due to compositionality.

Two random pairs (four features) in the top ten most abundant features were selected for non-

zero feature-feature association spike-in. As specified in Methods above, we simulated two

independent normal synthetic hidden metadata variables, one for each feature pair to be asso-

ciated. For the first feature pair, they were spiked in both abundance and prevalence with the

same effect (β = βabundance = βprevalence) at varying sizes, for positive association. The second

pair were spiked with opposing effects (β for one, −β for the other) for negative association.

We used Spearman correlation to estimate the empirical association between feature pairs in

the simulated absolute and relative abundances. Target association effect size was also varied

(β of 0, 1, 2, and 5) to showcase the relative signals of “true” associations that exist for both

absolute and relative abundances, and spurious associations that are only induced in relative

abundances due to compositionality (Figs 3C and S4).

Benchmarking

Since “true” associations with prescribed effect sizes are known for SparseDOSSA synthetic

datasets, they can be used for benchmarking microbiome analysis methods as well as for

power analysis of microbiome study designs. For benchmarking analysis (Fig 4A), we again

selected the top 5% (16 total) most prevalent features in the Stool dataset to perform abun-

dance spike-in, such that the selected features had the highest effective sample size. A total of

200 microbial profiles were simulated to be associated with a balanced binary metadata (100

cases, 100 controls). We varied effect sizes with half spiked features at βabundance = (0, 0.5, 1.2)

and the other half with βabundance = (0, −0.5, −1, −2), correspondingly (in the effect size 0 case

no spike-in was performed and microbial profiles are generated independently of metadata).

A total of 500 random simulations were performed for each parameter combination. We

applied existing differential abundance analysis methods to detect the spiked-in features in

each simulation dataset [29–31], with individual method configurations as reported in our pre-

vious benchmarking analysis [29]. We summarized the empirical power and FDR of a method

in one simulation dataset, across the twenty random replicates for each parameter configura-

tion, and reported the mean and standard error in Fig 4A.

Power analysis

For showcasing SparseDOSSA’s utility in a power analysis, we spiked in non-zero abundance

associations with a balanced case-control variable for a simulated species parameterized by fit-

ting Escherichia coli. This was performed at varying effect sizes (log fold change, βabundance =

(0.5, 1, 2)) and sample sizes (100 to 1000). For each parameter configuration, a total of 500 rep-

licates were simulated. The empirical power and its standard error of using MaAsLin 2 to

detect the differential abundant effect in "E. coli" was summarized across the 500 replicates and

reported in Fig 4B; this was repeated for each effect size/sample size configuration.

While it remains to build a more formal power analysis using these models, we recommend

the following guidelines if using SparseDOSSA directly:

• Based on the planned study design, if a pilot data set is available, the fitting functionality can

be used to estimate the parameters that would generate similar data sets. Otherwise,

researchers can adopt one of the pre-fitted templates that best approximate their target

environment.
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• Researchers can then simulate many datasets (e.g. hundreds or thousands) with the fitted

parameters, across a range of spike-in effect sizes and sample sizes. We note that the Sparse-

DOSSA 2 effect size has straightforward quantitative interpretations: log fold changes for

abundance spike-in, and log odds-ratios for prevalence spike-in (details on model in Associ-

ation spike-in subsection of Methods).

• This should be followed by conducting the hypothesis testing that is planned for the study

on each of the simulated datasets. This allows for a measure of how often the “true” (spiked-

in) associations are detected for a given sample size (i.e. statistical power). Additionally, the

researcher can investigate whether other methods of testing can deliver comparable results

to simulation-based estimates from SparseDOSSA 2.

Murine diet microbiome analysis

We applied SparseDOSSA 2 to the longitudinal diet dataset of the mouse gut microbiome in

[24], to show that our method is capable of reproducing a complex study’s findings. To reca-

pitulate the longitudinal diet effect as reported in [24]’s Fig 1A, we fitted SparseDOSSA 2 sepa-

rately on 1) the control Chow diet samples at baseline, 2,3) Tuber diet samples at day 1 and

day 5, separately, and 4,5) Meat diet samples at day 1 and day 5, separately. This approach

allows SparseDOSSA 2 to independently fit subsets of the data, without assuming a priori the

observed differences noted in [24]. We then used SparseDOSSA 2 fitted results to simulate

synthetic observations for each diet/timepoint combination, with five times the original sam-

ple size (to reduce variability due to random sampling). Bray-Curtis MDS ordination on these

synthetic data displayed a striking resemblance to that observed in [24] (Fig 5A), in that a)

communities cluster according to dietary treatment, and 2) this response is consistent after

one day of switching from chow to whole-food diets and is strengthened at day 5.

We next reproduced the differential gut microbial profiles observed in mice fed raw versus

tuber diets as presented in [24]’s Fig 1F–1G. [24] adopted three different types of Tuber diet:

the raw/free-fed (TRF), the cooked/free-fed (TCF), and the cooked/restricted (TCR). This

study presented that on the phylum level, TRF induced enrichment of Bacteroidetes and deple-

tion of Firmicutes when compared to TCF/TCR. We applied SparseDOSSA 2’s feature spike-

in procedure to approximate this effect. Specifically, we generated a balanced, three category

(TRF/TCF/TCR) variable. Based on our fitted model of the Tuber diet at day 5, we spiked in a

two-fold (βabundance = log 2) increase in the non-zero abundance of Bacteroidetes OTUs and a

two-fold decrease in Firmicutes OTUs (βabundance = −log 2) in TRF samples when compared to

TCF/TCR samples. This roughly agrees with the presented results in [24] Fig 1D. We next sim-

ulated SparseDOSSA synthetic datasets for both the baseline Chow diet samples (sample

size = 20), and the spiked-in Tuber diet samples (60 samples total, 20 each for TRF/TCF/TCR).

We calculated the Shannon index and Firmicutes/Bacteroidetes ratios of these samples, and

show in Fig 5B that they agreed with the corresponding findings presented in [24] Fig 1F–1G.

Supporting information

S1 Fig. Computation time comparison between SparseDOSSA 2 and metaSPARSim, and

SparseDOSSA 2’s fitting and simulation processes. All computation evaluated as run on sin-

gle Intel "Cascade Lake" cores. A) SparseDOSSA 2 simulation is faster than metaSPARSim

across the evaluated real-world datasets. Results were aggregated across the 25 simulation eval-

uations (5 original dataset partitionings × 5 simulations) for each dataset. Note that here the

simulation sample size n are halved compared to the actual sample size per dataset because

only half the samples were simulated according to the training-testing partitioning paradigm
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(Methods). B) SparseDOSSA 2 fitting requires significant computation costs up front com-

pared to its simulation process, analogous to sequence search database indexing. These are

evaluated across the grid of tuning parameter λs per real-world dataset (fitting and simulation

performed for full datasets). We note that the fitting costs can be potentially alleviated by 1)

the algorithm is parallelizable and implemented as such, and 2) for a target template the fitting

needs to be performed only once, whereas numerous simulation repetitions are required for

e.g. benchmarking or power analysis.

(PDF)

S2 Fig. SparseDOSSA 2 simulated features have characteristics parameters distributed

similarly to those of the real-world targets. In each case, “new” microbial features were simu-

lated with SparseDOSA 2’s three-dimensional Gaussian kernels, and compared with the origi-

nal features by examining the distribution of their absence probability πj (logit transformed),

mean log non-zero abundance μj, and standard deviation of log non-zero abundance σj.
(PDF)

S3 Fig. SparseDOSSA 2’s spike-in procedure introduced targeted per-feature differential

abundance and prevalence effects in the Vaginal dataset.

(PDF)

S4 Fig. SparseDOSSA 2’s feature-feature correlation spike-in can induce covariation (as

measured by Spearman correlation) of feature absolute abundances at different targeted

effect sizes, and consequentially correlation in relative abundances while confounded by

compositionality. Top row: stool community results; bottom row: vaginal community results.

(PDF)

S5 Fig. SparseDOSSA simulated microbial profiles preserve important feature covaria-

tions in the human gut and vaginal environments. We simulated 100,000 microbial abun-

dance profiles each based on the SparseDOSSA Stool and Vaginal models and examined the

resulting simulated feature-feature Spearman correlations. Note that Spearman correlation

does not differentiate between feature-feature correlations induced by biological interaction

and compositionality; it is used purely to characterize co-variation patterns in the simulated

microbial profiles, as opposed to making biological claims as to whether they are biological vs.

technical. A) Simulated Spearman correlations in the top five most abundant Firmicutes-

derived features (bottom left, abundance increasing top to bottom), and the top five most

abundant Bacteroidetes-derived features (top right, abundance increasing bottom to top) from

the Stool SparseDOSSA model. Strong positive correlations were observed among the Firmi-

cutes species, whereas negative ones can often be observed between Firmicutes and Bacteroi-

detes species, as expected [9]. B) Simulated Spearman correlations in the top eight most

prevalent and abundant species’ models from the Vaginal SparseDOSSA fit (bottom to top, left

to right decreasing in average abundance). We observe strong co-exclusions between domi-

nant Lactobacillus features, and positive correlations among a few less dominant species indic-

ative of joint presence in the absence of Lactobacilli.

(PDF)

S1 Table. Sample characteristics of the three real-world studies used for evaluating Sparse-

DOSSA 2’s performance.

(XLSX)

S2 Table. Summary of all simulation evaluation analyses performed in the manuscript.

(XLSX)
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S3 Table. Wilcoxon rank sum test p-values for the difference of R2 statistics comparing

SparseDOSSA 2 against the two existing methods (corresponding to Fig 2B).

(CSV)

S4 Table. Wilcoxon signed rank test p-values for the difference of Kolmogorov-Smirnoff

statistics comparing SparseDOSSA 2 against the two existing methods (corresponding to

Fig 2D).

(CSV)
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