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The evolution of intracranial pressure (ICP) of critically ill patients admitted to a neurointensive care unit (ICU) is dif-
ficult to predict. Besides the underlying disease and compromised intracranial space, ICP is affected by amultitude of
factors,many ofwhich aremonitored on the ICU, but the complexity of the resulting patterns limits their clinical use.
This paves the way for newmachine learning techniques to assist clinical management of patients undergoing inva-
sive ICP monitoring independent of the underlying disease.
An institutional cohort (ICP-ICU) of patients with invasive ICP monitoring (n=1346) was used to train recurrent ma-
chine learning models to predict the occurrence of ICP increases of ≥22 mmHg over a long (>2 h) time period in the
upcoming hours. External validation was performed on patients undergoing invasive ICP measurement in two pub-
licly available datasets [Medical InformationMart for Intensive Care (MIMIC, n=998) and eICU Collaborative Research
Database (n=1634)].
Different distances (1–24 h) between prediction time point and upcoming critical phase were evaluated, demonstrat-
ing a decrease in performance but still robust AUC-ROC with larger distances (24 h AUC-ROC: ICP-ICU 0.826±0.0071,
MIMIC 0.836±0.0063, eICU 0.779±0.0046, 1 h AUC-ROC: ICP-ICU 0.982±0.0008, MIMIC 0.965±0.0010, eICU 0.941±
0.0025). The model operates on sparse hourly data and is stable in handling variable input lengths and missingness
through its nature of recurrence and internalmemory. Calculation of gradient-based feature importance revealed in-
dividual underlying decisions for our long short time memory-based model and thereby provided improved clinical
interpretability.
Recurrent machine learning models have the potential to be an effective tool for the prediction of ICP increases with
high translational potential.
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Introduction
Data acquisition and storage has exponentially increased and de-
veloped in the medical field over the last 10 years. Medical data in-
clude vital parameters, laboratory values, imaging data, and
genetic information. The vast amount of available data brings
new complexity to the medical field. The ability to fully process
and interpret such big data is limited even for experienced specia-
lists. If patterns become toomultidimensional and complex, repro-
ducible conclusions and optimal decisions cannot be made
anymore. This is exactly where machine learning-based decision
support can help. Easy accessibility of medical data due to digital
storage in combination with recent developments in the field of
machine learning hold the potential for automatized data process-
ing tomake predictions, look for certain patterns, and classify these
data.1

Severely ill patients admitted to an intensive care unit (ICU) are
at risk to deteriorate within a short period of time and therefore
must be more closely monitored than any other patient in the hos-
pital. The medical regimen is adapted according to the alarms of
themonitoring system if parameters outside a pre-set range are de-
tected. Laboratory values, imaging data, and other information are
interpreted by physicians and allow for further treatment deci-
sions. Due to a great amount of constantly changing information,
which is acquired in real time, not all discrete changes, particularly
their combinations in all values, might be fully recognized by the
medical staff. Setting individual alarm thresholds often is not stan-
dardized, leading to alarm fatiguewhich jeopardizes alarm safety.2–
4 Furthermore, patterns which are believed to be unassociated with
the currentmedical problem can go unnoticed. For this reason, new
technologies hold the potential to improve treatment of severely ill
patients, as shown in sepsis5 therapy or the prediction of circula-
tory6 or renal failure.7

Neurointensive care units (Neuro-ICU) house a plethora of
neurological conditions, including intracerebral haemorrhage
(ICH), subarachnoid haemorrhage (SAH), ischaemic stroke, and
traumatic brain injury (TBI). Moreover, patient demographics, gen-
eral health statuses and comorbidities can vary.8,9 Many of diseases
treated in the Neuro-ICU can lead to an elevated intracranial pres-
sure (ICP). Clinical management of intracranial hypertension often
relies on invasive ICP measurement via external ventricular drain-
age or intraparenchymal probe.10–12 Long-sustained pressure
phases should be avoided to protect affected and non-affected sur-
rounding brain tissue from secondary deterioration or entrap-
ment.13–16 Clinical guideline recommendations for ICP thresholds
can vary between groups of patients, but treatment of an elevated
ICP should be initiated immediately in order to keep the periods
of an elevated ICP as short as possible.17–19 One of the most com-
mon reasons for an elevated ICP is cerebral oedema, which can de-
velop focally or in a diffuse way.20 Oedema, whether vasogenic or
cytotoxic, is greatest between 24–72 h after ictus.21 Unless a neuro-
surgical evacuation of a mass effect or treatment of an underlying
acute hydrocephalus are indicated, Neuro-ICU regimensmainly de-
pend on the usage of pharmacological agents for either the

treatment of a brain oedema or induction of a deep sedation for re-
duction of the brain metabolism. If these actions do not control the
ICP, a decompressive craniectomy can be considered.20,22,23

Machine learning has been used mainly to process the wave-
form signal obtained from invasive monitoring.24–26 Besides the
plain ICP signal, other waveform data like ECG or haemodynamics
have been used to support predictions of intracranial hypertensive
phases.26–28 Other studies have included clinical measurements
like the Glasgow Coma Scale (GCS),29 the time-series summary sta-
tistics of the first 24 h30 ormultiscalewaveformmetrics.31 A 30-min
time window to an critical ICP increment was chosen to be suffi-
cient for clinical decision-making.32 Recent approaches try to inte-
gratemedical imaging information to predict ICP33,34 or intracranial
pathologies.35 On the other hand the ICP signal itself can be used to
predict ventriculitis with machine learning.36 Recurrent machine
learning in contrast to other machine learning methods, is better
suited to learn time-dependent information since the output is
fed back into the input of the model during training.37

This study aims to explore the potential of recurrent machine
learning to predict an elevated ICP in Neuro-ICU patients.
External validation is confirmed in publicly available Medical
Information Mart for Intensive Care (MIMIC) and eICU
Collaborative Research Database (eICU). Besides the goal of robust
models for ICP prediction, methods to calculate individual feature
importance are used to reflect underlying decisionsmade by the al-
gorithm to improve clinical acceptance and translational value.

Materials and methods
Study design and setting

Model development and internal validation were performed in a
retrospective single centre cohort. Our institutional and interdis-
ciplinary department of intensive caremedicine operates 140 high-
care ICU beds and treats �8200 patients per year.

Ethical approval and patient consent

The study protocol was reported to the local ethics committee (ref-
erence number WF-059/20) and was conducted according to the
Declaration of Helsinki. Written informed consent was waived for
this kind of study since all datasets have been de-identified prior
to processing and evaluation for the purposes of the study.

Participants and data sources

The ICU is equippedwith DrägerMonitoring systems. Patient infor-
mation, laboratory values, blood-gas samples, and vital parameters
are stored centrally in the Dräger® supported Software Integrated
Care Manager (ICM). Dräger® supports a tool to search for certain
treatments and situations applied; the tool is called ICMiq. It
searches in a passively saved reporting database. All patients
with a parenchymal ICP probe (Codman Microsensor, Integra
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LifeSciences) during the study period (01/2008–01/2020) were
included.

Preprocessing

Figure 1A demonstrates the workflow of the inclusion criteria, the
preprocessing, training, and extraction of feature importance of
the study. The obtained de-identified data were preprocessed
with R (Tidyverse package38). The detailed preprocessing procedure
can be obtained through the publicly available GitHub repository:
https://github.com/agschweingruber/icp. Blood gas analysis (BGA)
and laboratory values are stored directly and automatically in the
system. Certain laboratory values are obtained once a day (e.g.
CRP, white blood cells) and blood gas analysis at least every 4 h in
patients under invasive ventilation. Sampling was performed
more often when patients e.g. suffer under critical invasive breath-
ing situations or present an increase in the ICP. Compared to the ex-
ternal cohorts, the institutional dataset (ICP-ICU) cohort had a
much higher frequency of laboratory measurements. All physi-
cians and nursing staff are trained in the documentation system,
and vital signs are digitally documented at least once every hour
or in case of special events by the nursing staff. Medication is as-
signedmanually in the system and does not change automatically.
Scores are applied by drop-down menus in the software interface.
Only continuous medication was considered for model training.
Groups of drugs were defined through their active ingredients
(e.g. narcotics with propofol or ketamine). A dictionary of defined
groups based on their strings is also supported in the study reposi-
tory. The preprocessing was evaluated through a dimensionality
reduction to find the fewest differences between datasets
(Supplementary Fig. 1). All values were averaged when available
over 1 h and this average was used as Input. Vital parameters like
the ICP were available one to two times in the ICP-ICU dataset
and on a 5-min resolution in the MIMIC and eICU dataset. More in-
formation about the general preprocessing and alignment to the
external datasets (MIMIC-III and eICU) procedure can be obtained
from the Supplementarymaterial and the public GitHub repository.

Defining intracranial hypertensive phases: targets

Targets, which are the variable to be predicted by themodel, reflect
critical ICP phases and were defined based on hours with a critical
ICP event. An hour was defined as a critical phase if at least one ICP
measurementwas≥22 mmHg. This thresholdwas chosen based on
the distribution of all ICP measurements (both internal and exter-
nal) in surviving patients, which indicated 21 mmHg as the 95th
percentile. A maximum of two consecutive critical hours were de-
fined as a short critical phase. More than two consecutive critical
hours were defined as a long critical phase (Fig. 4A). The targets
were defined according to the temporal proximity of the critical
phase (1–10 and 24 h). Targets were only defined when ICP mea-
surements were available. Nevertheless, the complete ICU trajec-
tory of a patient was used for training purposes.

Supervised recurrent learning

Acommonapproach to dealwith sequential data in themedical do-
main is to break sequences into fixed-size blocks. A model such as
gradient boosted trees or even simple linear regressions can then
operate over all time steps at once. Sequences that are shorter
than the block size can be padded to match, but very long se-
quences require a prediction for every part of it. This hinders the
model from learning long-term dependencies unless heavy feature

engineering is applied, such as adding the long-term variance of
features from the time-steps before the block.

The study aimed at creating a model that is robust to missing
features and to raw datasets from various clinical sources. A long
short-term memory (LSTM)31 cell is a recurrent neural network
unit that can operate on arbitrary sequence lengths and decide
what information to remember or forget.

The training and tuning took place on 80% of the data from the
ICP-ICU dataset (training set). The validation took place on 20% of
the ICP-ICU dataset (test set) and the whole external cohorts. For
more information about the training, tuning, hardware, software
and used packages refer to the Supplementary material.

Statistics

To obtain the receiver operating characteristic (ROC) and precision
recall (PR) curve, the according sensitivity (recall), specificity, and
precision were calculated. Predictions of deep learning models
range continuously between zero and one and a threshold must
be set to classify a prediction into true or false. To visualize the per-
formance of machine learning models independently from a set
threshold, ROC and PR are used. ROC curves simulate the trade-off
between specificity and sensitivity (a perfect classifier would have
the AUC-ROC of one). PR curves demonstrate the trade-off of preci-
sion (positive predictive value) and recall (sensitivity), the higher
the sensitivity the lower the positive predictive value will be [a per-
fect classifier would also have the area under the curve (AUC)-PR of
one].

To calculate a possible accuracy of the model predicting long
critical phases, the optimal threshold was chosen for the highest
value, when the false positive rate (1 − specificity) was subtracted
from the true positive rate (sensitivity).

The AUC was calculated (yardstick R-Package). The mean and
the standard deviation (SD)were calculated based on the prediction
of five independent models. Visualization was done using ggplot2
and patchwork. Tables were created using the package gt table.
Post-finishing (layout and alignment of text) was done using
Adobe Illustrator.

Feature importance

Neural networks can have complex architectures (multiple differ-
ent layers) and certain randomness in classification (bias). In es-
sence and practical terms, feature importance of recurrent
machine learning models indicates a potential role of an input fea-
ture for a certain prediction. In contrast to normal statistical mod-
els, neural networks can have a certain randomness of prediction
and that is also true for their consideration of input features. A fea-
ture importance method normally repeats its calculation several
times to build an average importance of each feature. The main
goal of this study was to be able to calculate a feature importance
for every individual input timestep and over the whole individual
past of a patient. These individual feature importances are an im-
portant factor as to why the present study was based on a
sequence-to-sequence LSTM. To calculate feature importance the
recently introducedmethod SmoothGrad (SG)38 and integrated gra-
dients (IG)39 was used. See the Supplementarymaterial for detailed
information. Feature importance for the prediction of long and
short phases by five independent models was calculated on the
ICP-ICU test set, the MIMIC dataset, and the eICU dataset.
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Data and material availability

Publicly available data (MIMIC-III and eICU) can be found:
PhysioNet.org (for credentialed users only).40 The local dataset is
not publicly available because no informed patient consent or eth-
ical approval exist for this purpose. If other investigators are inter-
ested in performing additional analyses, requests can be made to
the corresponding author and analyses will be performed in collab-
oration with the University Medical Centre Hamburg-Eppendorf.

Code availability: https://github.com/agschweingruber/icp.

Results
Study population

In total, 1346 patients with an invasive ICP monitoring were admit-
ted to our institutional ICU between January 2008 and January 2020.
The cumulative time of these patients accounted for the treatment
of �63.5 years (Table 1). The most common diagnoses among the
study cohort were TBI (33.9%), ICH (20%), stroke (16.1%), SAH
(11.1%), and tumours (4.4%) (Table 1). The ICP course over time dif-
fered among diagnoses, datasets, and outcomes reflecting the het-
erogeneity of the study cohort (Fig. 1B and C and Supplementary
Tables 1 and 2). Patients with TBI (12.5 ±9.5 mmHg) and deceased
outcome (14.7 ±15.8 mmHg) had the highest mean ICP during the

entire ICU stay. The local dataset ICP-ICUdemonstrated the highest
average of ICP measurements compared to the publicly accessible
ICU datasets MIMIC and eICU. Outcome was comparable between
the ICP-ICU and the MIMIC dataset (both with 27.2% deceased pa-
tients, Table 1). The ICP-ICU cohort comprised the most severely
ill patient population reflected by a lower GCS (median 3 IQR: 4)
throughout the entire stay (Supplementary Table 2).
Approximately half of the cumulative ICU stay took place without
invasive ICP monitoring (ICP-ICU 57.5% MIMIC 65.8% and eICU
55%) (Table 1). Short (≤2 h) critical phaseswere similarly distributed
across outcome groups (deceased 1.4–2.7%, survived 0.8–2.3%).
Long phases (>2 h) were more prevalent in the deceased outcome
group (deceased 2.3–8.5%, survived 0.8–2%) (Table 1).

Different distances between prediction time point
and upcoming critical phase

To evaluate the influence of the temporal distance between predic-
tion time point and target, different models were trained up to 24 h
in advance (Fig. 2). An extension of the temporal proximity to 24 h
resulted in a robust ROC performance (AUC-ROC ICP-ICU test set =
0.826±0.0071, MIMIC=0.836±0.0063, eICU=0.779± 0.0046) indicat-
ing a sufficient prediction. However, extension of the temporal dis-
tance led to a reduced PR (AUC PR ICP-ICU test set = 0.29 ±0.0069,
MIMIC=0.18± 0.0049, eICU=0.30± 0.0089). Reducing the time to

Figure 1 Overview of study design and ICP dynamics. (A) Workflow of data acquisition, preprocessing, and training. The institutional dataset is la-
belled as ICP-ICU which was processed the same as the external datasets: MIMIC-III (Medical Information Mart for Intensive Care) and the eICU
(eICU Collaborative Research Database). Invasive measurement of intracranial pressure (ICP) and treatment in ICU were the main inclusion criteria.
(B–D) ICP values over thefirst 15 days in ICU (mmHg) are depicted according to the diagnosis (B), to the dataset (C), and to the outcome.Values are shown
as a generative additive model with standard deviation in grey.
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target to 1 h outperformed the other proximities according to
AUC-ROC (ICP-ICU test set = 0.98± 0.0008, MIMIC=0.965±0.0010,
eICU = 0.941 ± 0.0025) (Supplementary Table 3). In line with the
AUC-ROC, the accuracy of the model improved for the ICP-ICU
test set from the 24 h distance [75.1% (confidence interval, CI
74.4–75.8%)] to the 1-h distance [93.1% (CI 92.9–93.3%)]. This
was also true for the validation on MIMIC [24 h: 76.2% (CI 75.6–
76.7%), 1 h: 90.7% (CI 90.1–91.2%)] and eICU [24 h: 71.2% (CI
70.6–71.9%), 1 h: 87.1% (CI 86.6–87.6%), Supplementary
Table 4]. The specificity between the 1 h and the 2 h model
showed only little differences [1 h: ICP-ICU 91.6% (CI 90.7–
92.5%), 2 h ICP-ICU 89.0% (CI 87.3–90.5%)] compared to larger
differences in sensitivity [1 h: ICP-ICU 94.6% (CI 93.9–95.3%),
2 h ICP-ICU 89.0% (CI 87.5–90.5%), Supplementary Table 4]. For
further in-depth analysis of model performance the 2 h distance
to target was chosen, since the clinically more relevant longer
distance of 2 h to the critical event outweighs the decrease in
sensitivity and specificity.

Model performance on the prediction of long critical
phases 2 h in advance

Themodel with 2 h proximity to predict long (>2 h) and short (≤2 h)
critical phases had anAUC-ROCof 0.95 (±0.0009) in the test set [with
the best PR for long phases (AUC-PR) 0.71 (±0.0067)] (Fig. 3 and
Supplementary Table 5). Additionally, the transition of results
from ICP-ICU cohort to the publicly available, external validation
datasets was robust (MIMIC, n=998, 50 treatment years, with an
AUC-ROC of 0.948±0.0025 and eICU, n=1440, 60 treatment years
with an AUC-ROC of 0.903± 0.0033). Besides the validation in

external datasets, predefined subgroups were then analysed con-
cerningmodel performance. Themodel performancewas stable re-
garding outcome and weeks of treatment. PR was higher in the
deceased group (death on ICU, AUC-PR 0.73 ±0.0054, survived
0.456±0.0121) and in the first week of treatment (first week
AUC-PR 0.593 ±0.008, third week 0.371±0.0228). The days of all pa-
tients’ ICU trajectorieswere partitioned into two groups to estimate
model performance with missing data. A day was defined as ‘Less
Missing’when it had fewer than 700 data-pointsmissing from a to-
tal of �2016 possible data-points per day, splitting the days into
49.8% (Less Missing) and 50.2% (More Missing). Themodel perform-
ance was better when less data were missing (Less Missing:
AUC-ROC 0.956 ±0.0012 and More Missing: 0.899±0.0045) (Fig. 3E
and Supplementary Table 5) and especially in the first week of
ICU surveillance [AUC-ROC 0.922 (±0.0024) Fig. 3F]. Concerning dif-
ferent diagnoses, the performance was best in patients suffering
from TBI (AUC-ROC 0.918±0.0018, Fig. 3D). For the institutional co-
hort (ICP-ICU) the accuracy was 89.2% (CI: 88.9–89.5%) with a sensi-
tivity of 88.6% (CI: 88.2–89.1%) and a specificity of 89.8% (CI: 88.9–
90.7%). MIMIC had an accuracy of 80.7% (CI: 80.0–81.4%) and eICU
of 78.3% (CI: 77.2–79.3%) (Supplementary Table 4).

Feature importance

To demonstrate the advantage of the applied method to calculate
feature importance, an individual example of an ICP trajectory
was depicted (Fig. 4A). This patient demonstrated a long critical
ICP phase in the beginning and a few short phases at the end of
the invasive ICP measurement period (Fig. 4A). The according indi-
vidual feature importance is shown as a heat map to provide an

Figure 2 Performance of models with different distances between prediction time point and upcoming critical phase. (A) Five independent models
were trained on different splits of training data from our institutional dataset to predict critical phases up to 24 h in advance. The AUC of ROC curves
and (B) PR curves with the corresponding standard deviation of five independent models (ribbon) are depicted for each trained hour (1–10 h and 24 h).
Performance on the underlying test set of the institutional dataset (ICP-ICU in red) and external datasets MIMIC (green) and eICU (blue) are depicted
separately.
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overview of all important features that accounted for a given pre-
diction (Fig. 4B). Higher ICP and cerebral perfusion pressure (CPP)
values were positively, and higher haemodynamic parameters
were negatively correlated with the occurrence of long phases.
The total GCS was positively correlated with the occurrence of
long phases.

Aggregating all the feature importances (ICP-ICU test set,
MIMIC, eICU) revealed that the prediction of long critical phases re-
liedmainly on ICP and for short critical phases themodel tookmore
input features into account (Fig. 4C and Supplementary Fig. 4). The
ICP, the mean arterial pressure (MAP) and the CPP were the most
important dynamic predictors for critical long phases. Therefore,
a higher ICP, MAP or CPP correlates with a critical phase 2 h for
both long and short phases. For BGA, sodium and bicarbonate cor-
relate with the occurrence of long critical phases, and higher glu-
cose and chloride was negatively correlated with the prediction of
long phases. Continuous medication also demonstrated an influ-
ence on the model prediction. A higher continuous dosage of
opioids correlated with upcoming critical phases, while narcotics
like propofol showed the opposite effect. Laboratory values are
less frequently acquired but can influence the model prediction.
The most important values were thrombocytes, erythrocytes,
mean corpuscular haemoglobin (MCH) and blood urea nitrogen
(BUN) (Fig. 4C). To visualize the overall feature importance over

time, a heat map was drawn to show possible time dependent
changes in feature importance and all datasets (Supplementary
Fig. 4B).

Discussion
The present study demonstrates that recurrent machine learning
techniques can effectively be used to predict critical phases of
intracranial hypertension in patients with invasive ICP measure-
ment. This was achieved by the usage of stored real-world data
from theNeuro-ICUover the past decade and the validation onpub-
licly available open-source ICU data. The prediction for critical long
phases was still sufficient when it was done 24 h in advance. A clo-
ser distance to the critical phase resulted in a more precise
prediction.

A forerun of 2 h to react upon a prediction appeared reasonable
uponpresented results. Twohours is enough time to prepare an an-
ticipated reaction in clinical settings, like adapting sedative medi-
cation, addressing invasive breathing conditions, or considering
other more invasive procedures. Comparable proximities for the
predictions of sepsis were chosen and have already been evaluated
in prospective studies to significantly reduce mortality.41 When
implemented in Neuro-ICU, models with different prediction

Table 1 Patient characteristics

Dataset ICP-ICUa MIMICb eICUb

Descriptive
Years of age 54.8 (±17.8) 55.8 (±18.9) 54.8 (±17.7)
Weight, kg 79.8 (±15.0) 80.2 (±18.7) 83.6 (±23.7)
Height, cm 173.4 (±9.3) 170.8 (±8.3) 170.3 (±10.9)

Outcome
Deceased 381 (27.2%) 266 (27.2%) 284 (17.4%)
Survived 1021 (72.8%) 713 (72.8%) 1350 (82.6%)

Gender
Female 562 (40.1%) 447 (45.7%) 733 (44.9%)
Male 840 (59.9%) 532 (54.3%) 901 (55.1%)

Diagnosis
TBI 475 (33.9%) 240 (24.5%) 270 (16.5%)
ICH 294 (21.0%) 160 (16.0%) 375 (22.9%)
Stroke 226 (16.1%) 64 (6.5%) 135 (8.3%)
Miscellaneous 190 (13.5%) 186 (19.0%) 567 (34.7%)
SAH 156 (11.1%) 252 (25.7%) 179 (11.0%)
Tumour 61 (4.4%) 77 (7.9%) 108 (6.6%)

ICP values
Deceased, mmHg 19.5 (±18.5) 10.8 (±6.4) 10.3 (±14.6)
Survived, mmHg 11.6 (±5.9) 10.2 (±5.7) 7.9 (±7.4)

Critical phases: deceased, h
Overall time 95084 (100.0%) 49509 (100.0%) 50 001 (100.0%)
No ICP measurement 44 612 (46.9%) 24912 (50.3%) 20 391 (40.8%)
Not critical 39 651 (41.7%) 22720 (45.9%) 24 796 (49.6%)
Long phase 8221 (8.6%) 1151 (2.3%) 3483 (7.0%)
Short phase 2600 (2.7%) 726 (1.5%) 1331 (2.7%)

Critical phases: survived, h
Overall time 480 783 (100.0%) 311786 (100.0%) 448 625 (100.0%)
No ICP measurement 274 435 (57.1%) 204169 (65.5%) 243 971 (54.4%)
Not critical 192 982 (40.1%) 102428 (32.9%) 184 847 (41.2%)
Long phase 4980 (1.0%) 2527 (0.8%) 9342 (2.1%)
Short phase 8386 (1.7%) 2662 (0.9%) 10 465 (2.3%)

ICH= intracerebral haemorrhage; SAH = subarachnoid haemorrhage.
aICP-ICU is an institutional database that was used for training.
bMIMIC, eICU are publicly accessible databases not used for training.
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proximities could be combined to reach a higher certaintywhen the
critical target approaches.

Missingness of data in clinical routines is an issue in real-world
settings.42 Whole data streams can suddenly be interrupted due to
varying andunexpected reasons. Recurrentmachine learningmod-
els can make predictions on very long and very short input se-
quences, making it more robust towards sudden missing data at
certain points of individual time courses. Implementing as many

input features as possible supports possible predictions when cer-
tain inputs drop.

Another advantage of the presented approach, besides using the
underlying real-world data, is the broad spectra of pathologies lead-
ing to intracranial hypertension. Previous studies training models
to predict ICP increment are mainly trained on data from patients
suffering from TBI.25,27,30,32,43–46 The presented approach does not
discriminate between different diagnoses. Generally, the relevant

Figure 3 Predicting critical phases 2 h in advance. (A) ROC curves are shown of themodel predicting critical phases of ICP values of≥22 mmHg formore
than two consecutive hours (>2 h) and are referred to as long critical phases. (B) Critical phases under 2 h (≤2 h) are referred to as short critical phases. A
whole hourwas defined as critical (target)when one single ICP valuemeasurement that hourwas≥22 mmHg. Ribbons represent the standard deviation
offive independentmodels.Model performance on external datasets is also shownMIMIC (blue) and eICU (red) (A andB). Model performance according
to certain subgroups was drawn as a PR curve. Outcome (C) is defined as deceased on ICU stay. (D) Diagnosis is defined bymain diagnosis of ICD-10. (E)
Missing data dichotomy was done by defining two groups of days per patient. One group had fewer than 77% missing data-points (of a total of 2016
possible data-points per day), splitting the days into two groups (49.8% Less Missing and 50.2% More Missing). (F) To show a possible decline in model
performance over the time course of ICU stay, all days are grouped according to their week. For each group or subgroup drawn in a different colour, the
corresponding AUC and the standard deviation are shown in the legend.
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diagnosis is already available upon Neuro-ICU admittance and this
information played an important for the prediction of critical
phases (Fig. 4C).

Aiming at clinical implementation of machine learning-based
decision support, a real time visualization of features influencing
the individual prediction of the model will be important. The pro-
posed visualization of feature importance can serve as an example
of how a clinical software interface for decision support could be
designed (Fig. 4A and B). This presented approach for explainable
artificial intelligence will play a crucial role in implementing these
tools in direct patient care. The Neuro-ICU team must be informed
about underlying decisions made by the models to predict critical
ICP phases. A clinician should see individual feature trajectories
of patients suffering ICP at one glance.

Implementing themodel in clinical routine could lead to amuch
more preventive handling of patientswith invasive ICPmonitoring.
An ICP-driven management of TBI patients is suggested to be
associated with a lower 6-month mortality.12 Besides the sole
ICP measurement a common clinical approach is a multimodal
neuromonitoring in specialized Neuro-ICUs.47 Indices of the ICP
waveform and blood pressure monitoring can be used to calculate
an optimal CPP.48 The distance of actual and optimal CPP is asso-
ciatedwith ahighermortality.49 Othermodalities like near-infrared

spectroscopy (NIRS),50 transcranial Doppler ultrasound (TCD)51 and
cerebralmicrodialysis52 can beused to get an information about the
cerebral blood flow, the underlying autoregulation or tissue oxy-
genation of patients on Neuro-ICU. All modalities can lead to a
much more precise and individual management of ICP on
Neuro-ICU. Besides being a further block in this chain of modalities
to ICP guidance, the presented recurrent machine learning ap-
proach could be augmented by the integration of multimodal neu-
romonitoring to achieve an even better performance for the
prediction of critical ICP phases in the future. This though presup-
poses larger clinical real-world databases of multimodal neuromo-
nitoring data to train and validate new machine learning
architectures. Nevertheless, its advantage compared to common
clinical practice needs to be evaluated in prospective randomized
controlled trials and cannot be stated at this point.

The feature importance shed light into limitations of the pre-
sented study. Data-driven bias that has been learned by themodels
can be unveiled. Examples could be the pupil size or the gender of
the patients. On both longer and shorter phases, the left pupil
size seems to have a negative influence on the prediction of long
phases (Supplementary Fig. 4). The pupil size in the underlying
trainings cohort was wider in the group of patients that died (left
pupil deceased 2.84± 1.32 mm and survived 2.49± 0.89 mm). The

Figure 4 Feature importance of the prediction of long and short critical phases of intracranial pressure. (A) A representative ICU trajectory of an indi-
vidual patientwith invasive ICPmonitoring is presented, having a long critical phase in the beginning and several shorter critical phases at the end. The
individual ICP course is depicted over time (h); the horizontal dashed line represents our threshold for the definition of critical phases (ICP 22 mmHg).
(B) Gradient based saliencies were calculated from five independentmodels based on the prediction 2 h in advance of the critical phases. All other fea-
tures which had a low influence are not shown for that trajectory. The lines connecting the saliency and ICP plot demonstrate the predictive horizon.
The prediction takes place 2 h in advance and the important features for that prediction at that time are demonstrated. The colour scale is continuous
between −1 (blue) and 1 (red). Values being positive are red (to be considered as bad) because their higher values are positively correlated with the pre-
diction of critical phases. Negative values (blue) represent negatively correlated values with the positive prediction. (C) To have a broader view on the
top features over all validation datasets (ICP-ICU test set, MIMIC and eICU), the sum of all saliencies per timestep were calculated. The top (red) and
bottom (blue) two features are shown for each group. Descript. = patient characteristic, diagnosis, vital signs, BGA, medication, laboratory value; and
for each target long (left) and short (right) critical phase. The lower and upper hinges of box plots correspond to the first and third quartiles (the 25th
and 75th percentiles) the middle line of the median. The upper and the lower whisker extends from the hinge to the largest and smallest value no fur-
ther than 1.5 × IQR from the hinge.
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external cohorts show a wider pupil in the surviving cohort (eICU
left 3.04 ±0.90 mm MIMIC left 3.07 ±0.77 mm). Though the training
process was sufficient to achieve generalizable results, the model
focusing on the left pupil can be misleading based on this learned
bias. Gender and race discrimination plays a big role in recent crit-
ical discussions about biased decisions made by machine learning
models. This bias can also be found in the predictions made by the
proposed model.53 Male gender was predominant in the training
cohort (59.9%) but also in external validation (MIMIC 54.3% and
eICU55.1%). According to the outcome, female patients died less of-
ten (deceased female ICP-ICU: 39.3%, MIMIC: 44.7%, eICU: 35.6%).
This points to a less precise performance of the presented models
in female patients (AUC-PR female 0.473± 0.0136 and male 0.596±
0.0101). One answer to this could be a more diverse dataset and a
local retraining of models if they were pre-trained on biased data.
Until then, a constant evaluation of predictions is necessary also
considering potentially changing composition of cohorts in an un-
certain future.

Shorter phases were much harder to predict since a quite strict
definition of critical targets was taken. An hour was determined to
be criticalwhenonly one ICPmeasurementwas≥22 mmHg. ICP can
rise easily to ≥22 mmHg in the context of physiological body func-
tions. Nevertheless, it seems quite intuitive to have a time depend-
ency in the prediction made by the model. Long-sustained critical
phases need different clinicalmanagement than a few short critical
phases. A stricter definition of short phases concerning ICP incre-
ment in future studies based on larger cohorts could lead to a better
performance to predict shorter critical phases.

Based on the presented results, the hypothesis can be generated
that recurrent machine learning-based prediction of critical ICP
phases can lead to amuchmore precise and anticipated treatment.
Prospective studies will be conducted next to evaluate presented
models for their performance in clinical settings. No statement
can be made about influence on patients’ outcomes when these
models are used to make predictions in the Neuro-ICU. There is a
need for prospective evaluation on the underlying predictions con-
cerning patient safety and outcomes, but also on acceptance by
Neuro-ICU treating staff.

Conclusion
Predicting critical ICP phases with recurrent machine learning has
several advantages such as dealingwith variable input length, bias-
free imputation and individual per time step calculable gradient-
based feature importance. Recurrent machine learning models
are feasible and could become an effective tool for the prediction
of ICP increases with high translational potential for the prospect-
ive use in clinical studies.
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