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Abstract
Background  Whole muscle hypertrophy does not appear to be negatively affected by concurrent aerobic and strength training 
compared to strength training alone. However, there are contradictions in the literature regarding the effects of concurrent 
training on hypertrophy at the myofiber level.
Objective  The current study aimed to systematically examine the extent to which concurrent aerobic and strength training, 
compared with strength training alone, influences type I and type II muscle fiber size adaptations. We also conducted sub-
group analyses to examine the effects of the type of aerobic training, training modality, exercise order, training frequency, 
age, and training status.
Design  A systematic literature search was conducted according to the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) [PROSPERO: CRD42020203777]. The registered protocol was modified to include only 
muscle fiber hypertrophy as an outcome.
Data Sources  PubMed/MEDLINE, ISI Web of Science, Embase, CINAHL, SPORTDiscus, and Scopus were systematically 
searched on 12 August, 2020, and updated on 15 March, 2021.
Eligibility Criteria  Population: healthy adults of any sex and age; intervention: supervised, concurrent aerobic and strength 
training of at least 4 weeks; comparison: identical strength training prescription, with no aerobic training; and outcome: 
muscle fiber hypertrophy.
Results  A total of 15 studies were included. The estimated standardized mean difference based on the random-effects model 
was − 0.23 (95% confidence interval [CI] − 0.46 to − 0.00, p = 0.050) for overall muscle fiber hypertrophy. The standardized 
mean differences were − 0.34 (95% CI − 0.72 to 0.04, p = 0.078) and − 0.13 (95% CI − 0.39 to 0.12, p = 0.315) for type I and 
type II fiber hypertrophy, respectively. A negative effect of concurrent training was observed for type I fibers when aerobic 
training was performed by running but not cycling (standardized mean difference − 0.81, 95% CI − 1.26 to − 0.36). None 
of the other subgroup analyses (i.e., based on concurrent training frequency, training status, training modality, and training 
order of same-session training) revealed any differences between groups.
Conclusions  In contrast to previous findings on whole muscle hypertrophy, the present results suggest that concurrent 
aerobic and strength training may have a small negative effect on fiber hypertrophy compared with strength training alone. 
Preliminary evidence suggests that this interference effect may be more pronounced when aerobic training is performed by 
running compared with cycling, at least for type I fibers.
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1  Introduction

Concurrent training refers to the combination of aerobic 
and strength training to simultaneously develop aerobic 
capacity and muscle strength and/or hypertrophy. Current 
physical activity guidelines recommend that all children, 
adolescents, and adults engage in concurrent training to 
promote significant health benefits [1]. Concurrent train-
ing is also typically recommended for individuals who need 
effective countermeasures against physical deconditioning, 
e.g., because of aging, disease, or injury. Apart from the 
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Key Points 

In this meta-analysis, we report that concurrent aerobic 
and strength training can attenuate muscle fiber hypertro-
phy compared with strength training alone.

This interference effect is relatively small and may be 
more pronounced when aerobic training is performed by 
running compared with cycling, at least for type I fibers.

None of the other subgroup analyses (concurrent training 
frequency, training status, training modality, and training 
order of same-session training) revealed any differences 
between concurrent training and strength training alone.

training increases muscle fiber size, whereas long-term aero-
bic training induces morphological and metabolic changes in 
skeletal muscle that result in improved endurance and fatigue 
resistance, but have comparatively little effect on fiber size 
[8]. Acute studies attempting to find mechanistic expla-
nations for an interference effect on muscle hypertrophy 
have shown conflicting results [9–11]. Although Babcock 
et al. reported that concurrent aerobic and strength exercise 
attenuated the satellite cell response compared with strength 
exercise alone [12], subsequent studies failed to demonstrate 
that the anabolic effect induced by aerobic-type exercise was 
antagonistic to the molecular response induced by strength 
exercise [13, 14]. Considering that assessment of myofibril-
lar protein content and the measurement of fiber size are 
associated with large inter-biopsy variations, and that the 
concurrent training studies reporting them generally suffer 
from small sample sizes, it is possible that some of these 
contradictory results may be explained by methodological 
shortcomings.

Aside from the notion that fiber hypertrophy after con-
current training may be affected differently than changes in 
whole muscle size, previous studies suggest that the effect 
of concurrent training may also be modulated by training 
design variables such as training modality, volume/fre-
quency, and training status [13–15]. Therefore, it is reason-
able to also examine the effects of plausible moderators of 
fiber type-specific hypertrophy during concurrent training. 
To overcome the above limitations and knowledge gaps, the 
current study aimed to systematically examine the extent to 
which concurrent aerobic and strength training, compared 
with strength training alone, influences type I and type II 
muscle fiber size adaptations. We also conducted subgroup 
analyses to examine the effects of the type of aerobic train-
ing, training modality, exercise order, training frequency, 
age, and training status.

2 � Methods

2.1 � Systematic Literature Search

This study reports a subgroup analysis of a previously reg-
istered systematic review and meta-analysis (PROSPERO: 
CRD42020203777). For the purposes of this study, the reg-
istered protocol was modified to include only muscle fiber 
hypertrophy as an outcome. Therefore, some of the methods 
presented here have been described previously [4].

A systematic literature search was conducted according 
to the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA). The PubMed/MEDLINE, 
ISI Web of Science, Embase, CINAHL, SPORTDiscus, 
and Scopus databases were systematically searched using a 
search string specifically adapted to the search requirements 

health perspective, many sports require athletes to simulta-
neously incorporate divergent training modalities into their 
training regimen. Because the typical adaptations to aerobic 
and strength training alone represent opposite ends of the 
adaptation continuum, the question has been raised as to 
whether skeletal muscle can comply with concurrent aero-
bic and strength training stimuli, without compromising the 
desired adaptations [2, 3].

To address this issue, we recently conducted an updated 
systematic review and meta-analysis examining the effects 
of concurrent aerobic and strength training on gains in 
muscle mass, maximal strength, and explosive strength 
[4]. The results showed that although the increase in explo-
sive strength may be attenuated by concurrent aerobic and 
strength training, whole-muscle hypertrophy, muscle mass, 
and maximal strength development do not seem to be com-
promised. However, a thorough examination of the indi-
vidual studies we reviewed for our meta-analysis revealed 
that there are great inconsistencies in the literature regard-
ing the effects of concurrent training on muscle hypertro-
phy. More specifically, none of the individual studies that 
reported an interference effect on muscle hypertrophy used 
the most reliable techniques to assess muscle size (i.e., mag-
netic resonance imaging [MRI] or computed tomography 
[CT]). Instead, all except one study [5] used fiber size as the 
outcome measure for muscle hypertrophy. This raises the 
question of whether fiber hypertrophy might be affected dif-
ferently compared to changes in whole muscle size follow-
ing concurrent training. In support, de Souza et al. reported 
that increases in fiber size were attenuated with concurrent 
training, whereas measurements at the whole muscle level 
showed no interference effect [6].

There are several possible reasons for these contradictory 
findings. At the muscle fiber level, it is generally agreed 
that strength training, but not aerobic training, augments 
myofibrillar protein accretion [7]. Thus, long-term resistance 
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for each database (Table S1 of the Electronic Supplementary 
Material [ESM]).

The search was conducted on 12 August, 2020, and 
updated on 15 March, 2021. The literature search was per-
formed independently by two researchers and included 
saving the online search, removing duplicates, and screen-
ing titles, abstracts, and full texts. Potential conflicts were 
resolved by consulting with a third author. In addition, a gray 
literature search was performed by screening Google Scholar 
and the reference lists of previously identified eligible full 
texts. A flowchart of the search process and study selection 
is shown in Fig. 1.

2.2 � Eligibility Criteria

Inclusion criteria were defined based on the Population, 
Intervention, Control and Outcomes (PICO) criteria [16]. 
The population included healthy adults with no sex or age 
restrictions. The intervention had to consist of supervised 
combined aerobic and strength training of at least 4 weeks. 
For a comparison, eligible studies had to include a group 
performing strength training alone with an identical strength 
training prescription. Outcomes of interest were defined as 
hypertrophy of type I and type II fibers. Exclusion crite-
ria included languages other than English and German, 
abstracts and dissertations, cross-sectional studies assess-
ing only acute exercise responses, and observational studies.

2.3 � Data Extraction

Data extraction was performed independently by two 
authors. The following data were extracted from each 
included study: (1) the general characteristics (e.g., 
author(s), year of publication, and aim of the study); (2) par-
ticipant information (e.g., sample size, training status, and 
age); (3) intervention data for all groups (e.g., intervention 
duration, type of interventions); and (4) specific outcomes 
(changes in both type I and II muscle fiber hypertrophy). 
If the mean and standard deviation of each group were not 
provided, authors of the primary studies were contacted to 
request the data at baseline and post-intervention. If data 
were presented in a graph and no additional data were 
provided upon request, mean and standard deviation were 
extracted using WebPlotDigitizer version 4.4 (Pacifica, CA, 
USA) [17].

2.4 � Data Synthesis and Analyses

Standardized mean differences (SMD) for each group were 
calculated using the mean difference divided by the pre-
test standard deviation for each group separately, whereby 
the difference between these effects is considered the SMD. 
An inverse variance-weighted random-effects model was 

fitted to the effect sizes and 95% confidence intervals (CIs) 
were calculated around the mean. This model was selected 
because variance was expected owing to the heterogeneity 
in study designs. Additionally, log variability ratios were 
calculated. Meta-analyses were performed using R (3.6.2), 
RStudio (1.2.5033), and the metafor package (version 2.4.0) 
[18]. Effect sizes were calculated for pre-test post-test con-
trol group designs using raw score standardization as previ-
ously recommended [19, 20] and the exact sampling vari-
ance of effect sizes was calculated as recommended [19].

Heterogeneity (i.e., τ2), was estimated using the restricted 
maximum-likelihood estimator [21]. To complete the hetero-
geneity analyses, the Q test for heterogeneity [22] and the 
I2 statistic [23] were also calculated, with values of 20%, 
50%, and 75% indicating low, moderate, and high heteroge-
neity, respectively [24]. Studentized residuals and Cook’s 
distances were examined to assess whether studies might be 
outliers and/or overly influential [25]. A trim-and-fill funnel 
plot was created to estimate the number of studies that might 
be missing from the meta-analysis (Fig. S1 of the ESM). 
The rank correlation test [26] and regression test [27] using 
the standard error of the observed outcomes as the predictor 
were used to examine the SMDs for funnel plot asymmetry.

Effect sizes from studies with more than two intervention 
or control groups were combined in accordance with the rec-
ommendations of the Cochrane Handbook by recalculating 
the mean and pooling the standard deviation of each inter-
vention group [28], except for a subgroup analysis where 
different interventions from individual studies were included 
in separate subgroups. Similarly, pre-data and post-data from 
studies that assessed variances of type II fibers (e.g., type 
IIa and IIb/IIx fibers) were combined for an interindividual 
comparison.

Subgroup analyses were conducted for aerobic train-
ing type (i.e., cycling vs running), concurrent training fre-
quency (i.e., low frequency of 4.5 ± 0.8 vs high frequency of 
6.3 ± 0.8 weekly sessions, equating to 2.2 ± 0.3 vs 3.2 ± 0.4 
weekly sessions in the strength training-only group), training 
status (i.e. untrained vs active), and training modality (i.e. 
concurrent training on different days vs concurrent train-
ing on the same day vs concurrent training in the same ses-
sion). The thresholds for training frequency were determined 
with the aim of comparing two balanced groups. Because 
of inconsistent reporting in the original articles, no further 
distinctions in terms of training status were made. For stud-
ies comparing concurrent training in the same session, we 
also compared the training order (i.e., aerobic training before 
strength training vs strength training before aerobic train-
ing) if a sufficient number of studies was available. Stud-
ies were placed into subgroups based on the description 
provided in the manuscript. This was particularly true for 
training status: studies were classified as “untrained” if par-
ticipants were clearly described as “sedentary,” “previously 
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untrained,” or “inactive”. Conversely, all other studies were 
classified as “active” (i.e., “recreationally active,” “trained,” 
and “well-trained”).

2.5 � Assessment of Methodological Quality

Risk of bias for the included studies was assessed using 
the Physiotherapy Evidence Database (PEDro) scale 

Fig. 1   Flowchart of the search process and study selection
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independently by two authors. The PEDro scale has previ-
ously been assessed as a valid measure of the methodologi-
cal quality of randomized trials [29]. Studies with scores > 6 
were considered to be of “high quality,” studies with scores 
of 4–5 were considered to be of “medium quality,” and stud-
ies with scores < 4 were considered to be of “low quality”. 
The following sources of bias were considered: selection 
(sequence generation and allocation concealment), perfor-
mance (blinding of participants/personnel), detection (blind-
ing outcome assessors), attrition (incomplete outcome data), 
reporting (selective reporting), and other potential bias (e.g., 
recall bias). The risk of bias scores for the included stud-
ies are shown in Table S2 of the ESM. The mean score for 
criteria 2–11 of the PEDro-scale was 4.3 ± 0.8, indicating a 
medium quality.

3 � Results

3.1 � Study Characteristics

The final analysis included 15 studies that examined both 
type I and II fiber hypertrophy. A total of 300 participants 
were included, of which 153 participants performed super-
vised combined aerobic and strength training and 147 par-
ticipants performed strength training alone. Among the 
included studies, cycling was the most common type of aero-
bic training (12 studies), followed by running (three studies).

3.2 � Overall Muscle Fiber Hypertrophy

A total of 15 studies [6, 30–43] were included in the quan-
titative analysis. The SMDs ranged from − 1.71 to 1.13, 
and the estimated SMD based on the random-effects model 
was − 0.23 (95% CI − 0.46 to − 0.00, p = 0.050). The forest 
plot showing the observed outcomes and the estimate based 
on the random-effects model is shown in Fig. 2. The Q test 
revealed that the true outcomes appear to be heterogeneous 
(Q(29) = 68.42, p < 0.001, τ2 = 0.24, I2 = 58.6%). The esti-
mated average log variability ratio based on the random-
effects model was − 0.12 (95% CI − 0.26 to 0.02, p = 0.097).

3.3 � Type I Muscle Fiber Hypertrophy

The SMD for type I fiber hypertrophy ranged from − 1.71 
to 1.03. The estimated SMD for the random-effects model 
was − 0.34 (95% CI − 0.72 to 0.04, p = 0.078). The Q test 
revealed that the true outcomes appear to be heterogene-
ous (Q(14) = 44.96, p < 0.001, τ2 = 0.40, I2 = 70.4%). Of all 
selected predictors, the number of concurrent training ses-
sions accounted for 34.6% of the observed heterogeneity, 
while the type of aerobic training (i.e., cycling, running) 
accounted for 7.3% of the heterogeneity. Subgroup analyses 

revealed no statistically significant differences between 
groups (Figs. 3, 4, 5, 6, 7; Figs. S2–S6 of the ESM).    

3.4 � Type II Muscle Fiber Hypertrophy

The SMD for type II fiber hypertrophy ranged from − 1.49 
to 1.13. The estimated SMD based on the random-effects 
model was − 0.13 (95% CI − 0.39 to 0.12, p = 0.315). The 
Q test for heterogeneity was not significant (Q(14) = 22.04, 
p = 0.078, τ2 = 0.08, I2 = 29.7%). Subgroup analyses revealed 
no statistically significant differences between groups 
(Figs. 3, 4, 5, 6, 7; Figs. S7–S11 of the ESM). Furthermore, 
between-group analyses comparing type I and II fiber hyper-
trophy within each subgroup revealed no statistically signifi-
cant differences (p ≥ 0.05).

4 � Discussion

The aim of this study was to evaluate the compatibility 
of concurrent aerobic and strength training in relation to 
muscle fiber hypertrophy adaptations. Concurrent training 
resulted in a small (SMD − 0.2, p = 0.05) attenuation of mus-
cle fiber hypertrophy when both type I and type II fibers 
were combined. The observed heterogeneity was significant 
only for type I fibers and this was partially explained by the 
overall training frequency and the type of aerobic training. 
Indeed, a significant interference effect was observed for 
type I fibers when aerobic training was performed by run-
ning but not cycling. None of the other subgroup analyses 
(i.e., based on concurrent training frequency, training status, 
training modality, and training order of same-session train-
ing) revealed a statistically significant interference effect for 
fiber hypertrophy.

Considering that our previous analysis showed no inter-
ference effect on whole muscle hypertrophy [4], our finding 
of interference in muscle fiber size adaptation is intrigu-
ing. Because the gold standard measures of muscle size, 
i.e., MRI and CT, measure the anatomical cross-sectional 
area of the whole muscle, it is possible that early changes in 
fiber size are associated with changes in muscle architecture, 
such as increased pennation angle, mask early hypertrophic 
effects that are not detected on MRI or CT. Although both 
aerobic and strength training affect pennation angle [44], 
few studies have examined the effects of concurrent train-
ing on muscle architecture. While Shamim et al. found no 
differences in the change in pennation angle with concur-
rent training compared to strength training alone [44], others 
found a significant increase after concurrent, but not sole, 
strength training [43]. Thus, while it is still unclear whether 
architectural changes actually contribute to explaining the 
discrepancy between fiber and whole muscle hypertrophy, 
a preferential increase in pennation angle with concurrent 
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training could result in an increased physiological cross-
sectional area that is not detected when an anatomical cross-
sectional area is assessed on MRI or CT.

Another possibility could relate to the recruitment pattern 
of each fiber type. This is partly supported by the results 
of the current study, as the interference effect seems to be 
mainly owing to the less significant adaptations in type I 
fibers compared with type II fibers (SMD − 0.3 vs − 0.1), 
as was also shown by a larger heterogeneity in type I fibers. 
On the basis of the size principle of motor unit recruitment, 
endurance training at low-to-moderate intensity recruits 
mainly type I fibers, whereas at greater intensity (or higher 
effort level) the recruitment of type II fibers may succes-
sively increase [45]. Thus, it is possible that interference 
induced by aerobic training mainly affects type I fibers, at 

least during short-term training periods. This could also 
explain why the observed heterogeneity was lower in type 
II fibers compared with type I fibers. Considering that type 
I fibers typically account for a relatively smaller total area 
of muscle compared with type II fibers in the thigh [46], this 
supports the idea that it may take longer to detect interfer-
ence effects at the whole muscle level compared with the 
fiber level. In this regard, it should be noted that in the study 
by de Souza et al. that examined both fiber size and whole 
muscle adaptations, interference in muscle fiber hypertrophy 
was not confirmed at the whole muscle level [6].

Another interesting finding was that running seemed to 
exacerbate the interference effect in type I fibers compared 
with cycling. This could be attributed to the different nature 
of running compared to cycling, as running is associated 

Fig. 2   Forest plot comparing differences in hypertrophy of type I and type II fibers. CI confidence interval, SMD standardized mean difference, 
RE random effects model
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with repetitive eccentric loading and stretch–shortening 
activities, whereas cycling provokes a higher emphasis 
on concentric work and a longer time under tension. This 
may, in turn, be associated with greater inflammatory stress 
induced by running as compared with cycling [47], possibly 
increasing redox and metabolic stress that may blunt the 
responsiveness to strength exercise. A direct comparison of 
muscle hypertrophy induced by aerobic training confirms 
that cycling can indeed elicit increased muscle size, whereas 
the effect of running is negligible [48, 49]. However, in the 

present meta-analysis, the effects of running were based on 
only three studies. Although caution should be exercised 
when interpreting these findings, it can be recommended 
that athletes and fitness enthusiasts seeking to increase mus-
cle mass should consider cycling rather than running as an 
aerobic training modality.

We also note that many of the studies included in this 
analysis were small and that the reliability of muscle fiber 
size measurements is rather low. A recent study examined 
the variability of histochemical measurements of muscle 

Fig. 3   Forest plot comparing differences in hypertrophy of type I and II fibers between low and high training frequency. CI confidence interval, 
SMD standardized mean difference
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fiber within subjects and found a coefficient of variation 
of 13% for fiber area measurements [46]. The authors con-
cluded that if fiber hypertrophy is of particular interest, it is 
preferable to analyze and average two or more biopsies from 
different sites to obtain more reliable results. Overall, this 
demonstrates that caution should be exercised when inter-
preting muscle fiber size data from single biopsies. It should 
also be noted that the majority of included studies were of 
only moderate quality, while two studies were of poor qual-
ity and only one was of good quality. Thus, future studies 
with adequate power, including both whole muscle and fiber 
measurements from two biopsy sites, may shed further light 
on the potential difference in the time course of hypertrophic 
effects of concurrent training and sole strength training.

5 � Conclusions

Our results suggest that concurrent aerobic and strength 
training may induce attenuated muscle fiber hypertrophy 
compared with strength training alone, but this does not nec-
essarily translate into differences in whole muscle hypertro-
phy. Furthermore, we provide preliminary evidence that this 
interference effect may be more pronounced when aerobic 
training is performed by running compared with cycling, at 
least in type I fibers. Future studies are needed to elucidate 
possible differences in the time course of the hypertrophic 
effect at the whole muscle and fiber levels, and to clarify 
whether there are fiber type-specific effects of concurrent 
training.

Fig. 4   Forest plot comparing differences in hypertrophy of type I and II fibers separated by type of aerobic training. CI confidence interval, SMD 
standardized mean difference
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Fig. 5   Forest plot comparing differences in hypertrophy of type I and II fibers between active and untrained participants. CI confidence interval, 
SMD standardized mean difference
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Fig. 6   Forest plot comparing differences in hypertrophy of type I and II fibers between different day training, same day training, and same ses-
sion training. CI confidence interval, SMD standardized mean difference
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Fig. 7   Forest plot comparing differences in hypertrophy of type I and II fibers between different exercise orders during same-session training. CI 
confidence interval, SMD standardized mean difference
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