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OBJECTIVES: Intraductal papillary mucinous neoplasms (IPMNs) are precursor lesions of pancreatic

adenocarcinoma. Artificial intelligence (AI) is a mathematical concept whose implementation

automates learning and recognizing data patterns. The aim of this study was to investigate whether AI

via deep learning algorithms using endoscopic ultrasonography (EUS) images of IPMNs could predict

malignancy.

METHODS: This retrospective study involved the analysis of patients who underwent EUS before pancreatectomy

and had pathologically confirmed IPMNs in a single cancer center. In total, 3,970 still images were

collected and fed as input into the deep learning algorithm. AI value and AI malignant probability were

calculated.

RESULTS: The mean AI value of malignant IPMNs was significantly greater than benign IPMNs (0.808 vs 0.104,

P < 0.001). The area under the receiver operating characteristic curve for the ability to diagnose

malignancies of IPMNs via AI malignant probability was 0.98 (P < 0.001). The sensitivity, specificity,

and accuracy of AI malignant probability were 95.7%, 92.6%, and 94.0%, respectively; its accuracy

was higher than human diagnosis (56.0%) and the mural nodule (68.0%). Multivariate logistic

regression analysis showed AI malignant probability to be the only independent factor for IPMN-

associated malignancy (odds ratio: 295.16, 95% confidence interval: 14.13–6,165.75, P < 0.001).

DISCUSSION: AI via deep learning algorithmmay be a more accurate and objective method to diagnosemalignancies

of IPMNs in comparison to human diagnosis and conventional EUS features.
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INTRODUCTION
Intraductal papillary mucinous neoplasms (IPMNs) are pre-
cursor lesions of pancreatic adenocarcinoma (1). Once IPMNs
progress to invasive cancer, the prognosis may be as poor as
conventional pancreatic ductal adenocarcinoma. Resection of
IPMNs, particularly in the stage of high-grade dysplasia, is pre-
sumed to provide a survival benefit (2). Endoscopic ultrasonog-
raphy (EUS), which could evaluate the pancreas with high
accuracy, is used to assess the malignancy of IPMNs. The in-
ternational consensus guidelines for the management of IPMNs
were proposed in 2012 and revised in 2017 (3,4). In the guidelines,
high-risk stigmata (HRS) that were highly suspected asmalignant
and worrisome features (WFs) that were suspected as malignant
were defined. Three criteria in HRS and 8 in WF were also

developed. The guidelines recommended the use of HRS andWF
to determine the medical treatment of IPMNs. The diagnostic
accuracy in detecting the malignancy of IPMNs was evaluated
using the guidelines, but it was not highly sufficient (5–7). In the
European guidelines, conservativemanagement and absolute and
relative indications for surgery in IPMN cases were defined using
potential prognostic factors (8). Several predictive techniques,
such as logistic regression analysis, nomogram, cyst fluid analysis,
and gene analysis, were used to diagnose the malignancy of
IPMNs more precisely. However, these techniques did not show
highly satisfactory results (70%–80%) (9–13).

Artificial intelligence (AI) is a mathematical predicting tech-
nique that automates learning and recognizing data patterns. Deep
learning is anAI algorithm and advanced type ofmachine learning
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method that uses neural networks (14). Deep learning provides
a high-performance prediction. It is frequently used for AI algo-
rithms and has been applied for medical diagnosis (15–18).

The aim of this study was to investigate whether preoperative
AI via the deep learning algorithm using EUS images of IPMN
could predict the diagnosis of malignancy and compare the di-
agnostic ability of IPMN malignancy via AI with that of human
preoperative diagnosis, conventional predictive techniques,
conventional EUS features, and other prognostic factors that were
reported in the guidelines.

METHODS
Patients

From June 1995 to September 2017, a retrospective study was
performed on 206 patients whounderwent EUS before pancreatic
resection and had pathologically confirmed IPMN after the sur-
gery. The patients whose EUS images of IPMN were recorded in
a digital format were included in this study. The following fea-
tures were evaluated: age at the time of the operation, sex, tumor
location, clinical symptoms (including history of pancreatitis),
preoperative laboratory values (serum amylase [AMY], carci-
noembryonic antigen [CEA], and carbohydrate antigen 19-9
[CA19-9] levels), imaging findings (mural nodule size, main
pancreatic duct [MPD] diameter, and cyst size), and pathological
findings. EUS was an essential preoperative assessment for all
patients. It was used to determine the mural nodule size, MPD
diameter, cyst size, and growth rate. All mural nodules were
confirmed using contrast-enhanced EUS and/or computed to-
mography. Human preoperative diagnosis was defined as the
preoperative diagnosis that doctors judged comprehensively us-
ing clinical information, laboratory values, and image findings.
Pathological diagnosis of IPMN was classified as low-grade dys-
plasia, intermediate-grade dysplasia, high-grade dysplasia, and
invasive carcinoma. Invasive carcinoma was defined as a histo-
logical transition that was clearly present between the IPMN and
pancreatic ductal adenocarcinoma. All regions were categorized
as benign (low- and intermediate-grade dysplasia) andmalignant
(high-grade dysplasia and invasive carcinoma) on the basis of the
pathological diagnosis after resection. To compare the diagnostic
performance of AI, human preoperative diagnosis and conven-
tional logistic regression analysis using conventional EUS fea-
tures and other prognostic factors that were reported in the
guidelines were evaluated (8,9).

This study was approved by the Institutional Review Board of
the Aichi Cancer Center (No. 2016-1-367, date: April 14, 2017)
and performed in accordance with the Declaration of Hel-
sinki (19).

EUS procedure

In all patients, EUS was performed using SSD-5500 or Pro-
sound SSD a-10 (Hitachi Aloka Medical, Tokyo, Japan) and
EU-ME2 (Olympus Corporation, Tokyo, Japan) ultrasound
system with GF-UC30P, GF-UC240P-AL5, GF-UCT260, or
GF-UCT240 curved linear echoendoscope (OlympusCorporation).
All patients underwent EUS, and a video clip of EUS images was
recorded.Fromthese images, all images of the IPMNswere stored as
digital still images (JPEG format).

Deep learning algorithm

TensorFlow version 1.8 (Google LCC, Mountain View) was used
for the deep learning algorithm. Deep learning is the process of

training a neural network (a large mathematical function with
millions of parameters) to perform a task (14). A neural network
is a machine learning technique that outputs the result mathe-
matically after inputting numeric values or image information. A
neural network consists of an input layer, a hidden layer, and an
output layer. All layers are connected in series or parallel. Input
data were converted to the output data by applying a weight to the
input data, adding the bias, and passing to the activation function
at each layer (Figure 1a). A neural network with multiple hidden
layers is called deep learning. During the training process of deep
learning, labeled information was put into the algorithm, and the
output values were then calculated. In this study, EUS images of
IPMN that were diagnosed pathologically were used for input
information. All EUS images were trimmed to the same size
square. After that, EUS images were converted into levels on
a gray scale (0–255) in each pixel. As a result, all EUS images were
converted to the mathematical information and were put into the
algorithm. The parameters of the algorithm (biases and weights)
were adjusted mathematically to decrease the error between the
real results and the output values. This process is called “training,”
which uses the optimization algorithm and is repeated many
times on each image in the training set (18). After training, the
deep learning algorithm is completed, and test data are evaluated
by this algorithm.

The convolutional neural network (CNN) was the specific
neural network architecture used in this work. The CNN has
proven to be an effectivemodel for a variety of visual tasks (20). In
the CNN, each pixel value of the input images was converted to
the feature maps by multiplying the filter weights and sliding the
filter over the input images (Figure 1b). Based on the CNN
technique, several high-performance algorithms, such as AlexNet
(20), GoogleNet (21), VGG16 (22), and ResNet (23), were gen-
erated. These algorithms are composed of several CNN layers,
other layers such as max pooling, global average pooling, or fully
connected layers (5–100 layers), and several activation functions.
ResNet is composed of residual blocks in which there are shortcut
connections between the CNN layers (Figure 1c). In this study,
the original deep learning algorithm that was based on the
ResNet50 algorithm was used (Figure 2) (23). The data were
labeled according to the manner in which IPMN was defined
(malignant, 1; benign, 0), according to the pathological results.
The EUS images of IPMN were input and then processed by
CNN, max pooling, and global average pooling layers. Swish
activation functions (24) were used for the hidden layers and
softmax function for the output layers. To speed up the training,
batch normalization (25) was used. To prevent overfitting, sto-
chastic depth (26), early stopping (27), data augmentation (28),
random cropping (20), and random erasing (29) were used. The
optimization algorithm used to train the network weights was
a momentum stochastic gradient descent estimation imple-
mentation (23). After training, the output value of deep learning
was calculated as the predictive value of malignant probability
using AI (AI value: continuous variables from 0 to 1) in the test
set. When the AI value became close to 1, malignant probability
became increased. In this study, each EUS image was put into the
deep learning algorithm, and the AI values were the output. To
compare the diagnostic ability of AI with other conventional EUS
features, AImalignant probability, whichwas defined as themean
AI value of all images in each patient, was calculated. In this study,
a 10-fold cross-validation (training/test set ratio: 90%/10%3 10)
was used to verify the validity of this algorithm. All images were
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randomly selected as test or training data, and all images of each
patientwere not divided into test and training data to prevent data
leakage.

The primary end point was the accuracy of the diagnosis
for the malignancy of IPMN via the AI value. The secondary
end points were the accuracy of the diagnosis for the malignancy
of IPMN via AI malignant probability, human preoperative

diagnosis, conventional logistic regression analysis, and relative
and absolute indications that were reported in the guide-
lines (8,9).

Statistical analyses

SPSS version 23.0 (SPSS, Chicago, IL) was used for all statistical
analyses. All tests were 2 tailed, and P , 0.05 was considered

Figure1.Thebasic concept of deep learning algorithm. (a) Layout of simple neural networks. A neural network consists of an input layer, a hidden layer, and
an output layer. Input data (Xa, Xb, Xc) were converted to the values at the hidden layer (X1, X2) by applying aweight (W) to the input data, adding the bias (b),
andpassing to the activation function [s(X)]. The values at the hidden layer (X1, X2) were then converted to the output data (U) using the sameprocedure (U
5 b31W1s(x1)1W2s(x2)). (b) Layout of CNN. In the CNN, the filter size and numberwere freely selected, and each pixel value of the input images (a1, a2,
b1, b2, etc.) was converted to the feature maps (y1, y2, y3, etc.) by multiplying the filter weights (w1, w2, w3, etc.) and sliding the filter over the input images
(e.g., y1 5 w1a11 w2a2 1 w3b11 w4b2). (c) Layout of residual block. In the residual block, there are 3 CNN layers, 2 filter sizes (13 1 and 33 3), 2 filter
numbers (n or 4n), and shortcut connection between the CNN layers. The input value (x) was converted to the output value [F(x)] by CNN layers. The final
output value of the residual block is F(x)1 x. CNN, convolutional neural network.

Figure 2. Layout of the deep learning algorithm. Data flow is from left to right: an image of EUS images (for example, benign intraductal papillary mucinous
neoplasm)was used. All EUS imageswere trimmed to equally-sized squares (1603160pixels). EUS imageswere then converted into levels on a gray scale
(0–255) in each pixel. Subsequently, all EUS images were converted to mathematical information and were input to the algorithm. EUS images were
processed by CNN,max pooling, and global average pooling layers. Swish activation functions were used for the hidden layers, whereas softmax functions
were used for the output layers. Passing through the algorithm, image sizes gradually became reduced and filter numbers increased. As a result, the output
value of deep learning was calculated as the predictive value of malignancy using AI (AI value: continuous variables from 0 to 1). AI, artificial intelligence;
CNN, convolutional neural network; EUS, endoscopic ultrasonography.
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statistically significant. Continuous variables were expressed as
mean and SD ormedian and range. The Fisher exact test was used
for categorical variables, and the Mann-Whitney U test was used
for continuous variables. A receiver operating characteristic (ROC)
curve was generated, and the area under the ROC curve (AUROC)
was calculated to determine the cutoff value for the diagnosis of
malignancy. AUROC accuracy was defined as low (0.5 to ,0.7),
moderate (0.7 to ,0.9), or high ($0.9). Cutoff values were de-
termined to maximize the Youden index (sensitivity1 specificity
2 1), and sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV), and accuracy were calculated for
these cutoff values. Using the cutoff values that were determined
using ROC analysis, upper limit of normal in this institute, or the
values that were defined in the guidelines, univariate relationships
between the malignancy of IPMN and patients’ characteristics
including the image findings (cyst size, mural nodule size, and
MPD diameter) and preoperative laboratory values (AMY, CEA,
and CA19-9) were evaluated via logistic regression analysis. A
multivariate logistic regression analysis was performed and in-
cluded the variables that were significantly related to the malig-
nancy of IPMN in the univariate analysis.

RESULTS
Among the 206 patients, 50 patients whose EUS images of IPMN
were recorded in a digital format were fully investigated in this
study. A total of 3,970 still images were collected from the 50
patients. Using the data augmentation technique, 508,160 still
images were generated and fully investigated.

Characteristics of patients

The characteristics of patients are shown in Table 1. The final
pathological diagnoses of IPMNs were benign (n 5 27) and
malignant (n5 23). The median age of all patients was 66 years
(range, 18–81), and sex was distributed equally (men 50%).
History of pancreatitis was observed in 5 patients (10%), whereas
jaundice and new onset of diabetes mellitus were not noted in all
patients. The surgical indications were suspected malignancy
(84%), pancreatitis (10%), and malignancy of other organs (6%).
The IPMNs were located in the head (n5 32), body (n5 6), and
tail (n 5 12). The IPMN types in all regions were branch duct
(n 5 14), main duct (n 5 6), and mixed (n 5 30). The median
mural nodule size of malignant IPMNs was significantly higher
than that of benign IPMNs (P 5 0.003). However, histories of
pancreatitis, AMY, CEA, CA19-9, MPD diameter, cyst size, and
the ratio of growth rate (.5 mm/yr) were not significantly dif-
ferent between benign and malignant IPMNs.

Diagnostic performance for the diagnosis of IPMN malignancy

The mean AI values (predictive value of IPMN malignancy in
each image) of benign and malignant IPMNs were 0.1046 0.279
and 0.808 6 0.367, respectively, and the AI value of malignant
IPMNs was significantly higher than that of benign IPMNs (P,
0.001). The AUROC for ability to diagnose the malignancy of
IPMN via the AI value was 0.91 (Figure 3). When an AI value of
0.49 was used as a cutoff point according to ROC analysis, the
sensitivity, specificity, PPV, NPV, and accuracy were 81.5%,
90.1%, 86.5%, 86.2%, and 86.2%, respectively. The mean AI
malignant probabilities (mean AI value of all images for each
patient) of benign andmalignant IPMNs were 0.1096 0.151 and
0.787 6 0.227, respectively, and AI malignant probability of
malignant IPMNs was significantly higher than that of benign

IPMNs (P , 0.001). The AUROC for ability to diagnose the
malignancy of IPMN via AI malignant probability was 0.98 and
was significantly greater than the ability to diagnose the malig-
nancy of IPMN via the mural nodule size (0.74, P , 0.001) and
conventional logistic regression analysis (0.73, P , 0.001)
(Figure 4). When AI malignant probability of 0.41 was used as
a cutoff point (according to the ROC analysis), the sensitivity,
specificity, PPV, NPV, and accuracy was 95.7%, 92.6%, 91.7%,
96.2%, and 94.0%, respectively. The diagnostic ability of AI ma-
lignant probability for predicting IPMN malignancy (accuracy:
0.94) was greater than human preoperative diagnosis (accuracy:
0.56), conventional logistic regression analysis (accuracy: 0.72),
and relative and absolute indications that were reported in the
guidelines (accuracy: 0.40–0.68) (Table 2).

Table 1. Patients’ characteristics

Benign

IPMN, n 5 27

Malignant

IPMN, n 5 23 P value

Age, yr, median (range) 69 (45–80) 71 (40–85) 0.626

Male sex, n (%) 13 (48) 12 (52) 1.000

History of pancreatitis,

n (%)

3 (11) 2 (9) 1.000

Surgical indication

Suspected malignancy 21 (78) 21 (91) 0.235

Pancreatitis 3 (11) 2 (9)

Malignancy of other

organs

3 (11) 0 (0)

Location, n (%)

Head 17 (63) 15 (65) 0.403

Body 2 (7) 4 (17)

Tail 8 (30) 4 (17)

Type, n (%)

Branch duct 13 (48) 1 (4) ,0.001

Mixed 12 (44) 18 (78)

Main duct 2 (7) 4 (17)

Serum AMY, IU/L,

median (range)

76 (36–297) 83 (54–290) 0.442

Serum CEA, ng/mL,

median (range)

2.7 (0.7–35.4) 2.4 (0.9–6.1) 0.447

Serum CA19-9, U/mL,

median (range)

14.4 (3.8–531.0) 13.3 (0.1–783.0) 0.189

Mural nodule size, mm,

median (range)

0.0 (0.0–20.0) 9.0 (0.0–33.0) 0.003

MPD diameter, mm,

median (range)

5.0 (2.0–20.0) 8.5 (2.0–18.5) 0.096

Cyst size, mm, median

(range)

26.4 (1.0–52.0) 32.0 (1.0–50.0) 0.815

Growth rate (.5 mm/yr)

n (%)

10 (37) 11 (48) 0.567

AMY, amylase; CA19-9, carbohydrate antigen 19-9; CEA, carcinoembryonic
antigen; IPMN, intraductal papillary mucinous neoplasm; MPD, main
pancreatic duct.
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Univariate and multivariate analyses of diagnostic performance

for the IPMN malignancy

In univariate analysis, IPMN type (mixed or MPD type), serum
CA19-9$38U/mL,mural nodule size$5mm, andAImalignant
probability $0.41 were significantly associated with the malig-
nancy of IPMN (Table 3). In multivariate logistic regression
analysis, AI malignant probability$0.41 was the only identified
independent factor for the malignancy of IPMN with an odds
ratio of 295.16 (95% confidence interval: 14.13–6,165.75, P ,
0.001) (Table 3).

DISCUSSION
AI is a new technique for the objective evaluation of image in-
formation. In this study, we found that the AI value evaluated
using the deep learning algorithm was significantly correlated
with the malignancy of IPMN. Moreover, we found that the di-
agnostic performance of AI was higher than human diagnosis,
conventional logistic regression analysis, and relative and abso-
lute indications that were reported in the guidelines. In the in-
ternational guidelines, several findings showwell-known risks for
malignancy, which have been used to assess the preoperative
malignancy in numerous studies (3–7,9). However, the findings
demonstrated inadequate performance, and several of them
(caliber change of the pancreatic duct and wall thickness) had
unclear objective criteria. Therefore, the determination of these
findings tends to be subjective. In contrast to the diagnosis of
IPMN, according to the guidelines, AI can objectively measure
the malignancy before surgery by only using the EUS image. This
study demonstrated that the assessment of malignancy of IPMN
via AI was superior to all risk factors according to the guidelines.
In the ROC curve analysis, the AUROC of AI malignant

probabilitywas greater than that of themuralnodule size,whichwas
only significantly different between benign and malignant IPMNs
in all risk factors of malignancy. Moreover, the accuracy of the AI
malignant probability was greater than that of human preoperative
diagnosis and conventional logistic regression analysis, indicating
the superior predictive ability of AI. In multivariate analysis, which
included various putative risk factors of malignancy, only AI ma-
lignant probability was identified as an independent risk factor for
IPMNmalignancy.These results indicated thatAI is a useful tool for
objective diagnosis of malignancy of IPMN.

This study is the first to attempt to diagnose the malignancy of
IPMN viaAI. AI has been used for the diagnosis of several diseases
(eye and skin cancer, breast tumors, and colorectal polyps) using
image information such as computed tomography, magnetic res-
onance imaging, and endoscopic images (15–18,30,31). The di-
agnostic performance of AI was reported to be higher than that of
human diagnosis. In pancreatic diseases, AI was used for the dif-
ferential diagnosis of pancreatic tumors using endoscopic elas-
tography images and contrast-enhanced ultrasonography images
(32,33). In these reports, the diagnostic performance of AI was
higher than that of only EUS findings.However, the algorithm that
was used in these studies was multilayer perceptron (MLP). The
input for MLP is a numeric value, such as laboratory values and
image findings, that was speculated to be important for diagnostic
treatment. By contrast, the input information of the deep learning
algorithm that was used in this study is image information itself.
Moreover, the diagnostic performance of the deep learning algo-
rithm is superior to that of MLP. Future prospective and consec-
utive studies are warranted to evaluate the diagnostic performance
among only image findings, MLP, and CNN.

Figure 3. AUROC for ability to diagnose the malignancy of IPMN of the AI
value. The output value of deep learning was calculated as the predictive
value of malignant probability using AI (AI value: continuous variables from
0 to1). TheAUROC for ability to diagnose themalignancyof IPMN via theAI
value was 0.91. AI, artificial intelligence; AUROC, area under the receiver
operating characteristic curve; IPMN, intraductal papillary mucinous
neoplasms.

Figure 4. AUROC for ability to diagnose the malignancy of IPMNs of AI
malignant probability, conventional logistic regression analysis, and the
mural nodule size. The AUROC was 0.73 in conventional regression
analysis, 0.74 in themural nodule size, and0.98 in AImalignant probability
(the mean AI value of all images in each patient). AI, artificial intelligence;
AUROC, area under the receiver operating characteristic curve; IPMN,
intraductal papillary mucinous neoplasms.
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The current study had several limitations. First, it was a retro-
spective single-center study. Prospective investigations conducted at
multiple institutions are necessary for validating the results obtained
in the current study. Second, only a small sample size was included.
Therefore, internal validation (10-fold cross-validation) was used to
evaluate the diagnostic performance for the malignancy of IPMN
because we could not collect enough patients to perform AI when
patients were separated into groups for training and test data. When
a diagnostic performance is evaluated, test data should be separated
from the training data, and the number of both training and test data
shouldbe large.AI techniques, suchasdataaugmentationandtransfer
learning, have been recently developed to overcome this limitation

(34). Using these new techniques, AI can achieve an adequate di-
agnostic performance in small sample sizes. In this study, the data
augmentation technique was used. Therefore, over 500,000 images,
which were enough for AI, were generated. However, to evaluate the
real diagnostic performance of AI, more patients from multiple cen-
ters are needed in future studies. Third, only surgical cases were in-
cluded in this study. In clinical practice, most patients with IPMN
undergo surveillance rather than surgical resection. Therefore, bias
may have occurred. However, several regions that were not suspected
as malignant were included in this study because the surgical in-
dication was not only suspectedmalignancy but also pancreatitis and
malignancy of other organs, which may have reduced the bias.

Table 2. Diagnostic ability of AI malignant probability to diagnose the malignancy of IPMN

Cutoff point Sensitivity Specificity PPV NPV Accuracy

AI malignant probability 0.41 0.957 0.926 0.917 0.962 0.940

Human preoperative diagnosis 1 0.957 0.222 0.512 0.857 0.560

Logistic regression analysis 65 0.739 0.704 0.680 0.760 0.720

Mural nodules 5 mm 0.739 0.630 0.630 0.739 0.680

MPD diameter 10 mm 0.435 0.704 0.556 0.594 0.580

Cyst size 40 mm 0.217 0.778 0.455 0.538 0.520

CA19-9 37U/mL 0.087 0.667 0.182 0.462 0.400

Growth rate .5 mm/yr 0.478 0.630 0.524 0.586 0.560

Pancreatitis 1 0.261 0.778 0.500 0.553 0.540

AI, artificial intelligence; CA19-9, carbohydrate antigen 19-9; IPMN, intraductal papillarymucinous neoplasm;MPD,main pancreatic duct; NPV, negative predictive value;
PPV, positive predictive value.

Table 3. Univariate/multivariate logistic regression analysis of relationship between malignancy of IPMN and patients’ characteristics

Univariable Multivariable

OR (95% CI) P value OR (95% CI) P value

Age ($70 yr) 1.89 (0.61–5.83) 0.268

Sex (male) 0.85 (0.28–2.59) 0.777

Pancreatitis 1.23 (0.34–4.53) 0.750

Location (body or tail) 1.09 (0.35–3.43) 0.879

IPMN type (mixed or MPD) 20.49 (2.40–173.89) 0.006 24.78 (0.57–1,084.64) 0.096

Serum AMY ($126 IU/L) 1.51 (0.32–7.17) 0.600

Serum CEA ($5.1 ng/mL) 1.83 (0.30–11.02) 0.511

Serum CA19-9 ($38 U/mL) 5.25 (1.00–27.5) 0.050 1.33 (0.04–41.97) 0.873

Mural nodule size ($5 mm) 4.82 (1.43–16.23) 0.011 4.53 (0.29–70.29) 0.281

MPD diameter

$5 mm, ,10 mm 0.26 (0.05–1.33) 0.106

$10 mm 2.48 (0.61–10.06) 0.205

Cyst size ($40 mm) 0.97 (0.25–3.73) 0.967

Growth rate (.5 mm/yr) 1.56 (0.50–4.83) 0.442

Human preoperative diagnosis 6.29 (0.69–56.72) 0.101

AI malignant probability ($0.41) 275.00 (23.31–3,244.31) ,0.001 295.16 (14.13–6,165.75) ,0.001

AI, artificial intelligence; AMY, amylase; CA19-9, carbohydrate antigen 19-9; CEA, carcinoembryonic antigen; CI, confidence interval; IPMN, intraductal papillarymucinous
neoplasm; MPD, main pancreatic duct; OR, odds ratio.
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In conclusion, the AI value measured via AI in patients who
had malignant IPMNs was higher than that in patients who had
benign IPMNs, and the accuracy via the AI value was 86.2%.
Among various clinical characteristics, the AI malignant proba-
bilitywas the only independent diagnostic factor that significantly
predicted the malignancy of IPMNs. The use of AI is recom-
mended for objectively assessing the preoperative malignancy of
IPMNs.
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Study Highlights

WHAT IS KNOWN

3 Difficult preoperative diagnosis of IPMN malignancy.
3 Deep learning provides a high-performance prediction and

has been applied for medical diagnosis.

WHAT IS NEW HERE

3 The accuracy via AI for malignancy diagnosis of IPMNs was
86.2%.

3 AI via deep learning increased the diagnostic accuracy in
detecting malignancy of IPMNs.

TRANSLATIONAL IMPACT

3 AI malignant probability was the only independent diagnostic
factor that significantly predicted the IPMN malignancy.

3 AI diagnosis for the malignancy of IPMNs was more accurate
than human diagnosis and conventional diagnosis methods.
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