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Abstract

A new method for hemoglobin (Hb) deoxygenation, in suspension or within red blood cells

(RBCs) is described using the commercial enzyme product, EC-Oxyrase®. The enzymatic

deoxygenation method has several advantages over established deoxygenation methodol-

ogies, such as avoiding side reactions that produce methemoglobin (metHb), thus eliminat-

ing the need for an inert deoxygenation gas and airtight vessel, and facilitates easy re-

oxygenation of Hb/RBCs by washing with a buffer that contains dissolved oxygen (DO). The

UV-visible spectra of deoxyHb and metHb purified from human RBCs using three different

preparation methods (sodium dithionite [to produce deoxyHb], sodium nitrite [to produce

metHb], and EC-Oxyrase® [to produce deoxyHb]) show the high purity of deoxyHb pre-

pared using EC-Oxyrase® (with little to no metHb or hemichrome production from side reac-

tions). The oxyHb deoxygenation time course of EC-Oxyrase® follows first order reaction

kinetics. The paramagnetic characteristics of intracellular Hb in RBCs were compared using

Cell Tracking Velocimetry (CTV) for healthy and sickle cell disease (SCD) donors and oxy-

gen equilibrium curves show that the function of healthy RBCs is unchanged after EC-Oxy-

rase® treatment. The results confirm that this enzymatic approach to deoxygenation

produces pure deoxyHb, can be re-oxygenated easily, prepared aerobically and has similar

paramagnetic mobility to existing methods of producing deoxyHb and metHb.
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Introduction

The magnetic properties of hemoglobin (Hb) and its derivative forms have been documented

since the 1930’s [1, 2] and the magnetic separation of red blood cells (RBCs) using paramag-

netic intracellular Hb is a continued pursuit in biomedical engineering. Many groups are

investigating label-free methods to remove RBCs from whole blood by exploiting the diamag-

netic properties of white blood cells and the paramagnetic properties of RBCs when the intra-

cellular Hb is converted to the deoxygenated Hb (deoxyHb) or methemoglobin (metHb) state

[3–18]. Another approach suggests it is possible to fractionate units of packed RBCs to posi-

tively separate RBCs with high magnetic susceptibility, containing the most Hb, before a trans-

fusion to reduce the risks of transfusion associated circulatory overload, alloimmunization

(particularly common with sickle cell patients) and increase post-transfusion RBC recovery

above the 75% threshold for a “successful” transfusion [19–21]. We have developed, and con-

tinue to pursue, novel strategies to isolate RBCs and cell-free Hb from fresh and stored blood

that aim to decrease the need for donated packed RBC units and improve patient outcomes.

Sickle cell disease (SCD) is a monogenic disorder where the patient is a heterozygous or

homozygous carrier for the βS allele. This mutation causes a single amino acid substitution

from glutamic acid to valine in the β-globin chain of Hb and the resulting β6 substitution

results in hydrophobic interactions with adjacent sickle cell Hb (HbS) molecules to yield HbS

polymers. This polymerization process is triggered at low partial pressures of O2 (pO2) and is

also dependent on intracellular HbS and HbF (fetal Hb) concentrations and pH. Studying how

HbS is influenced by these parameters creates pathways for new diagnostic and therapeutic

techniques. One specific need is a rapid test to treat a SCD “crisis”, in which rigid, sickled

erythrocytes adhere to the endothelium and cause painful vaso-occlusion crises (VOC).

The primary treatment of SCD patients is to routinely receive exchange red blood cell

exchange transfusions. During an exchange transfusion, allogenic normal RBCs are transfused

to the SCD recipient while an apheresis device simultaneously removes the autologous RBCs

from the transfusion recipient and returns plasma. Unfortunately, the removed blood contains

a mixture of previously transfused normal cells and the patient’s SCD blood [22–24]. A useful

improvement of this therapy would be to exploit a difference in magnetic susceptibilities (or

other physical characteristics, such as size, density, deformability or response to inertial fluid

forces) within a RBC population and discard only the HbS containing RBCs.

A common chemical reaction that yields metHb containing RBCs, is the addition of sodium

nitrite to oxygenated Hb (oxyHb) containing RBCs in a simple, single step and has a conver-

sion near 100% and is stable after several washing steps [9, 13, 18, 25, 26]. However, metHb

containing RBCs is not a useful therapeutic, since metHb cannot bind to oxygen. Furthermore,

the globin structure destabilizes upon metHb conversion to hemichrome when reacted with

hydrogen peroxide (a byproduct of the reaction with nitrite) or diazine. MetHb can react with

semiquinones to form oxyHb once again, but the formation of metHb is stable over a long

period of time and is irreversible for practical uses such as paramagnetic RBCs separation with

subsequent characterization of the RBCs [26]. Winterbourn demonstrated a reaction with

superoxide to yield metHb, but this reaction is slow and simultaneously proceeds in the oppo-

site direction [27, 28]. Di Iorio [29] and others prepare metHb using potassium ferricyanide

but this method requires a second chemical reaction to yield oxyHb, as does sodium nitrite.

In contrast to placing a RBC in the met state chemically, there are two commonly reported

ways to put a RBC in a deoxy state: chemically consuming the oxygen in the suspending buffer,

or removing the oxygen from the buffer through gas stripping with a stripping gas. The com-

mon chemical method is the use of sodium dithionite [5, 15, 16, 30]. In an aqueous solution,

sodium dithionite reacts with oxygen and water to produce sodium bisulfite and hydrogen
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peroxide. If used in dilute Hb solutions, hydrogen peroxide, and subsequently free radicals,

become more abundant. In the solid phase, sodium dithionite will react with ambient oxygen

to produce sulfite and thiosulfate, making weight measurement of the salt inaccurate. The

actual amount dissolved into a sample must be determined from titration with a standard fer-

ricyanide solution and following reduction at 420 nm (or measuring absorption at 314 nm,

which is less accurate) [29, 30]. Lastly, dithionite has been shown to increase the 800 nm iso-

sbestic point between oxyHb and deoxyHb due to side reactions [31]. The second isosbestic

point, at 680 nm, absorbs much more weakly than at 800 nm. These points make sodium

dithionite experimentally inaccurate and risky in clinical settings.

Deoxygenated RBCs can be achieved by bubbling N2, Ar, or another oxygen-free inert gas

through the RBC solution or via application of a gentle vacuum [32, 33]. Moore et al. [17] used

a hollow fiber deoxygenator to deoxygenate RBCs, but methods such as this that involve gas

exchange must keep the system sealed from the atmosphere to properly deoxygenate the RBC

solution. The oxygenation kinetics of deoxyHb containing RBCs and cell-free deoxyHb are

discussed in Coin and Olson [34] and several other studies have described kinetic models and

rate constants for other reactions involving Hb derivatives [25, 35, 36].

In contrast, and to the best of our knowledge, no reports exist on the use of the commercial

enzyme product, EC-Oxyrase1 (referred to as Oxyrase moving forward, not to be confused

with the company name), to deoxygenate RBCs. In brief, Oxyrase refers to an enzyme system

that allows radiation-damaged cells to divide, without entering or further damaging the cell.

With addition of a proton donor, the enzyme consumes dissolved oxygen and converts it to

water in media and deoxygenates the media without airtight containers or flushing the solu-

tion with inert gases [37]. The rate of dissolved oxygen removal is highly pH dependent, with a

maximum activity at pH 8.4 and 55˚C [38]. Other uses of Oxyrase include growing anaerobic

cells, increasing cell growth in the log phase, increasing maximum titer and protecting certain

biomolecules from reactions with oxygen [37, 39].

The active components of Oxyrase have been shown to repair damaged cells, accelerate cell

growth and consume dissolved oxygen. These enzymes, which also originate from the cyto-

plasmic membrane fraction of E. Coli, have high reactivity with NADH and succinate [37].

These processes are due to active electron transport chain (ETC) complexes by which ATP is

produced from NADH or succinate and H+ ions from within the cell. Mechanisms in eukary-

otic and prokaryotic are similar, however they take place in different spatial domains. Eukary-

otic ETC reactions take place across the inner membrane of the mitochondria, between the

matrix and inner membrane space while still within the outer membrane of the cell. Prokary-

otic ETC reactions takes place across the membrane, between the cytoplasm and outside of the

cell. Five complexes (CI, CII, CIII, CIV, CV) are involved. Briefly, CI and CII catalyze the reactant

(NADH or succinate for CI and CII, respectively) into ubiquinone (QH2) and transport the

product to CIII. CIII and CIV are cytochromes, which contain active heme molecules (six for

CIII and two for CIV). CIII transports 2H+ to CIV via cytochrome c. Cytochrome c is a mobile

electron carrier, while the transport chain from CI or CII to CIII occurs within a supercomplex

of CI-CIII-CIV or CII-CIII-CIV. CIV reduces dissolved oxygen with the ions from cytochrome c

to produce H2O [40–42].

This study evaluates the performance of Oxyrase to remove oxygen from intracellular Hb

contained inside RBCs and cell-free Hb; resulting in changes in the magnetic susceptibility,

and correspondingly when the Hb is inside RBC, the RBC magnetic susceptibility. The results

from the use of an Eppendorf BioSpectrometer Basic, and the Winterbourn equation [27] and

CTV [8, 18, 43–46], were used to experimentally quantify the deoxygenation of suspended Hb

and Hb retained within RBCs, respectively. The motivation for this current study is to develop
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a convenient, easily reversible, nontoxic, single step deoxygenation of RBCs to magnetically

separate RBC samples based on iron content for autologous re-transfusion.

Materials and methods

Human subjects

Blood samples were drawn from two healthy male (M1, M2) and female (F1, F2) donors with

informed consents according to a protocol approved by the Institutional Review Board (IRB)

of The Ohio State University (protocol number 38334). RBCs from SCD patients were pro-

vided by Dr. Irwin at the University of Colorado Anschutz Medical Campus as apheresis waste

from three patients undergoing scheduled red blood cell exchange transfusions. These SCD

blood samples contain a mix of normal donor RBCs and SCD patient RBCs. These samples

were considered waste products and deidentified.

Blood collection

These donors’ blood was collected into EDTA-coated vacutainers. SCD RBC samples were

obtained from citrated solution. Samples were then diluted 1:100 in PBS, pH 7.4. After dilu-

tion, RBC concentration and size were measured in a Multisizer 4e Coulter Counter (Beckman

Coulter).

RBC and free Hb deoxygenation and oxidation

Oxygenated RBCs or cell-free oxyHb were converted to the deoxygenated state by adding Oxy-

rase (Oxyrase Inc.) with 60 wt.% sodium DL-lactate to maintain a pH suitable for a rapid deox-

ygenation rate. For comparison, deoxyRBCs or deoxyHb were obtained using 783 μM sodium

dithionite (without using an inert gas), and 5 mM sodium nitrite was used for oxidation of Hb

into the metHb form. Oxyrase and lactate were mixed by pipette and left in an aerobic envi-

ronment for 30 minutes, and dissolved oxygen was confirmed to be< 1.0% using a Thermo-

Fisher Orion 083005MD dissolved oxygen (DO) probe. Cell-free Hb and RBCs were added to

PBS containing either Oxyrase/lactate, sodium dithionite, or sodium nitrite while exposed to

the atmosphere. The manufacturer of Oxyrase defines 1 unit of EC-Oxyrase1 as the “amount

of Oxyrase that, under defined conditions, reduces dissolved oxygen at the rate of 1% per sec-

ond” [47]. In this study, we do not report Oxyrase in units defined by the manufacturer but

rather the volume fraction of Oxyrase in the sample. In a reaction to eliminate dissolved oxy-

gen, Oxyrase acts as the enzyme for dissolved oxygen reduction to water in the presence of an

appropriate hydrogen donor. In the present case, Oxyrase and lactate are mixed beforehand to

prepare the anaerobic solution before oxyHb is added.

Preparation of cell-free Hb

Cell-free Hb was prepared by lysing healthy RBCs in a -86˚C freezer and thawing it in a bath

of room temperature water. Cell lysate was centrifuged at 2,000 RCF for 5 minutes in an

Eppendorf 5415c centrifuge. Spectrophotometry was performed by adding the supernatant to

cuvettes containing the appropriate salt or enzyme in an Eppendorf BioSpectrometer Basic,

while measurements were taken at chosen time intervals.

CTV was performed as previously described [8, 18, 43–46] to characterize deoxyRBCs and

metRBCs. During this experiment, CTV samples were measured at a position within the mag-

net with a magnetic energy gradient (Sm) value of 224.9 TA/mm2 (6.47 mm from the converg-

ing axis of the pole pieces). The Hb content on a cellular basis was calculated using CTV data

and the method presented by Chalmers et al. [46]. Briefly, a force balance on RBCs (assuming
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Stokes drag and disc-shaped particles) accounts for the volumetric susceptibility of paramag-

netic heme, diamagnetic globin and buffer, Sm, viscosity, density, RBC trajectory and cell size

to solve for intracellular Hb for each recorded particle on the CTV. During this analysis, the

concentration of erythrocyte iron was calculated to be several orders of magnitude greater

than the iron contained in the enzyme (presumably cytochrome c oxidase) and therefore the

susceptibility of the RBCs and carrier fluid are unchanged by this addition.

Spectrophotometry of Hb

For cell-free deoxyHb samples prepared with dithionite and Oxyrase, the percentage of oxyHb

and deoxyHb was calculated using the method presented in [48]. A linear correlation of the

percentage of oxygen saturation as a function of a ratio of the extinction coefficients ε575/ε505

was obtained by measuring oxygen-saturated Hb and a completely anaerobic sample of deox-

yHb. Using equal Hb concentrations, the extinction coefficients in the Beer-Lambert law can

be replaced with the absorbance measured via spectrometry. A control 100% oxyHb was

diluted with PBS exposed to air because if left in an anaerobic buffer, deoxygenation would

take place. Measurements were taken every 10 seconds after adding oxyHb to the deoxygen-

ated buffer and continued until the absorbances at 505 and 575 nm remained steady for several

consecutive measurements, which determines the 0% oxygenated point. OxyHb samples and

those treated with sodium nitrite (suspected of also containing metHb and hemichrome) were

evaluated using the equation reported by Winterbourn [27].

Determination of oxygen equilibrium parameters

Oxygen equilibrium curves were measured using a Hemox Analyzer (TCS Scientific Corp)

while maintaining the temperature at 37˚C. For samples using Oxyrase, a temperature-con-

trolled sample without Oxyrase and lactate was bubbled to 100% oxygenation using air, flushed

out and refilled with a sample containing Oxyrase that was placed in a separate 37˚C tempera-

ture bath and the measurements proceeded without bubbling nitrogen. During these experi-

ments, the sample temperature deviated sightly (1.5˚C to 3.0˚C) from the setpoint.

Results and discussion

Reactions with free hemoglobin from healthy donors

Publications studying deoxygenated Hb reacting with oxygen and several biomolecules includ-

ing spinach ferredoxin, horse metmyoglobin, horse heart ferricytochrome with dithionite

report reactions occurring on the order of milliseconds [49]. While using a basic spectropho-

tometer rather than a robust, airtight stopped-flow spectrophotometer, we qualitatively

observed a very rapid deoxygenation of Hb, confirming literature observations. The spectra

and relative oxygenation state over time for 13.4 ± 2.7 μM Hb for three different reactions are

shown in Fig 1A and 1B, respectively. Fig 1A is presented as a normalized absorption intensity;

spectra for dithionite treated Hb has a notable shoulder at 630 nm, consistent with the pres-

ence of metHb. Di Iorio [29] has reported that unstable dithionite produces H2O2, which can

oxidize oxyHb into metHb [27]. In contrast, the reaction with Oxyrase shows no unwanted

secondary peaks. As expected, the reaction in Fig 1B with dithionite is completed on the order

of seconds, the reaction with sodium nitrite is on the order of 1 minute and the reaction with

Oxyrase is completed on the order of 5–10 minutes. Overlaid spectra from deoxyHb treated

with Oxyrase shows no significant change to the isosbestic point at 505 nm reported in [48].

Fig 2A and 2B present the percent oxygenation of Hb over time with varying lactate molari-

ties and Oxyrase concentrations. Deoxygenation proceeds fastest with low sodium lactate and
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higher enzyme concentration. This observation is consistent with the measured DO in Fig 3A.

At high lactate concentration, DO remains in the mixture and slow or incomplete conversion

of oxyHb to deoxyHb may occur. Additionally, the amount of enzyme has a significant effect

on DO. This result corroborates the effects of lactate molarity in Fig 2A and 2B. Fig 3B presents

the solution pH as a function of lactate concentration and volume percent Oxyrase, and sup-

ports the conclusions that less lactate, higher pH (closer to the reported optimal pH for Oxy-

rase at 8.4) results in DO measurements that are near zero [39, 47]. Interestingly, pH increases

with increasing enzyme in the buffer at low lactate concentrations but is unaffected by the

amount of enzyme at high concentrations.

Reactions with RBCs and CTV

Fig 4 presents the magnetic velocity characteristics of paramagnetic RBCs from healthy

donors. These graphs include the settling velocity, us, versus the magnetic velocity, um, scatter

Fig 1. A. Spectra of oxyhemoglobin, deoxyhemoglobin and methemoglobin. The spectra of Hb is compared between an untreated,

oxygenated sample (black) deoxygenated with 0.78 mM dithionite (red) with a secondary shoulder around 630 nm, suggesting

metHb is also present. 6% Oxyrase and 0.4 M lactate (green) curve shows pure deoxyHb and the 5 mM nitrite (blue) curve shows

pure metHb. B. OxyHb consumption over time between three Hb reactions. Free oxyHb is treated with 0.78 mM dithionite (red), 6%

Oxyrase and 0.4 M lactate (green) and 5 mM nitrite (blue). The percentage of oxyHb is calculated over time using the Tsao method

for deoxyHb (dithionite and Oxyrase) and the Winterbourn method (nitrite).

https://doi.org/10.1371/journal.pone.0257061.g001

Fig 2. A. OxyHb consumption over time using 4% vol Oxyrase with different lactate concentrations. Hb is treated with 4% vol Oxyrase

and lactate and the % oxyHb is calculated using the Tsao method for deoxyHb. B. OxyHb consumption over time using 6% vol Oxyrase

with different lactate concentrations. Hb is treated with 6% vol Oxyrase and lactate and the % oxyHb is calculated using the Tsao

method for deoxyHb.

https://doi.org/10.1371/journal.pone.0257061.g002
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plot with appropriate histograms aligned along the side and top, respectively. The range in dis-

tribution presented here is consistent with what we have reported earlier in a study of 17

healthy donors [45]. Ongoing studies are investigating the significance of the sub-populations

of cells that make up these distributions in healthy, anemic and SCD donors.

Fig 3. A. 3-dimensional map of DO mapped over lactate molarity and vol% Oxyrase. DO measurements are mapped as a function of added lactate and Oxyrase

concentrations in PBS. B. 3-dimensional map of pH mapped over lactate molarity and vol% Oxyrase. pH measurements are mapped as a function of added lactate and

Oxyrase concentrations in PBS.

https://doi.org/10.1371/journal.pone.0257061.g003

Fig 4. A. CTV data for two healthy male and two healthy female donor RBCs. Scatter plots with offset histograms and cumulative curves for the um (x-axis) and us (y-

axis) for RBCs from four healthy donors that are treated with sodium nitrite (black), sodium dithionite (red) and Oxyrase (green). B. CTV data for three SCD donor

RBCs of unknown gender. Scatter plots and histograms comparing three paramagnetic preparation methods on RBCs from three SCD patients of unknown gender are

shown.

https://doi.org/10.1371/journal.pone.0257061.g004
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The histograms indicate that the distributions in both velocities nearly overlap for all three

treatment methods across all four donors. However, due to increased viscosity of the lactate

added to the Oxyrase-deoxygenated samples, the magnetic and settling velocities appear offset

from the dithionite and nitrite samples, which can clearly be seen by following the smooth

cumulative curves. This trend is more pronounced in the y-axis (settling velocity) than in the

x-axis (magnetic velocity) and can be attributed to side reactions producing diamagnetic hemi-

chrome (around 540 nm) due to over-oxidation in the case of nitrite. For example, the spectra

of Hb in suspension (Fig 1A) indicates high amounts of hemichrome contaminating the

metHb solution produced from exposure to nitrite. There are no other derivative forms of Hb

present in these samples.

Fig 4B represents the same data for the three SCD donors. The scatter data for SCD RBCs

are significantly wider than the um-us scatter data for healthy RBCs. A large distribution in

RBC size is suggestive of hypoxia and iron deficiency [50, 51], however this metric in our anal-

ysis does not differentiate these healthy and SCD donors using CTV (i.e., these samples, as

stated above, are from the waste after a RBC exchange transfusion). Data in Fig 4A and 4B sug-

gest similar distributions between us (which can be converted to cell size, assuming a constant

cell density) histograms for healthy and SCD donors but shows that CTV is able to recognize a

much wider um (analogous to pgHb/cell, potentially more clinically relevant) histogram for

SCD donors compared to heathy ones. It is noteworthy that scatter plot data for SCD donors

shows a correlation between um and us, indicating that smaller/less dense cells have lower

mobility, and therefore less Hb than larger/denser cells.

Although the gender and genotype of the SCD patients are unknown, scatter plot data in

Fig 4B suggest that the SCD RBCs have a similar size to healthy RBCs, and not the rigid, elon-

gated, polymerized homozygous HbSS RBCs.

Converting CTV data from Fig 4 to pgHb per cell [46], Fig 5A and 5B calculate the amount

of Hb per cell for healthy and SCD donors, respectively. In this analysis, we account for the

increased viscosity of Oxyrase and lactate in the reaction medium as well as us variations due

to size. For each donor, the viscosity of the buffer is calculated to match the average us between

Fig 5. A. Picograms of Hb per cell for healthy donors. Using data from Fig 4 and the experimentally calculated Oxyrase viscosity from us comparisons within a donor,

CTV data are converted to histograms showing the intracellular mass of Hb; sodium nitrite (black), sodium dithionite (red) and Oxyrase (green). B. Picograms of Hb

per cell for SCD donors. Overlaid histograms and cumulative curves of three SCD patients compare intracellular Hb concentrations for three treatments.

https://doi.org/10.1371/journal.pone.0257061.g005
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the dithionite and nitrite samples was calculated, while using 0.9883 mPa�s for water at 20.5˚C

for dithionite and nitrite. The experimentally calculated viscosities for Oxyrase/lactate CTV

samples for all donors are presented in Table 1 along with average and standard error of the

donor’s iron status [52]. All calculated viscosities are within 15% of that of PBS and the added

viscous transport limitation to the reaction is assumed to be negligible compared to pH

dependence.

Fig 6 compares average intracellular masses of Hb between preparation methods for each

healthy and SCD donor. Interestingly, the average iron content between healthy and SCD

donors is quite similar. SCD originating from the β-globin chain mutation polymerizes HbS

and Fig 5A and 5B suggest that HbS-containing RBCs retain their intracellular Hb in this

form. Lastly, it is suggested that CTV results for deoxygenated RBCs, induced by eliminating

Table 1. Intracellular hemoglobin and experimental viscosities.

Donor Gender Status Source Average pgHb/Cell pgHb/Cell SE Number of Cells Tracked Oxyrase Calculated

Viscosity (Pa�s)Nitrite Dithionite Oxyrase Nitrite Dithionite Oxyrase Nitrite Dithionite Oxyrase

M1 Unknown Healthy Donor 23.3 32.7 26.4 0.59 0.67 0.55 208 309 477 1.10E-03

M2 Unknown Healthy Donor 22.8 26.6 24.2 0.59 1.44 0.40 403 255 1156 1.18E-03

F1 Unknown Healthy Donor 24.4 30.5 29.1 0.41 0.47 0.35 479 830 802 1.15E-03

F2 Unknown Healthy Donor 17.4 21.9 24.9 0.61 0.76 0.36 336 280 1206 1.14E-03

SCD4 Unknown Sickle

Cell

Apheresis 31.2 32.9 30.4 0.62 0.43 0.41 449 1134 1153 9.87E-04

SCD5 Unknown Sickle

Cell

Apheresis 28.8 35.6 36.6 0.30 0.29 0.35 1317 1554 1123 1.06E-03

SCD6 Unknown Sickle

Cell

Apheresis 24.4 36.3 33.0 0.26 0.29 0.42 1441 2060 1478 1.03E-03

Measured Viscosity (Pa�s) 1.78E-03

Literature Viscosity (Pa�s) 1.12E-03

https://doi.org/10.1371/journal.pone.0257061.t001

Fig 6. Average pgHb per cell for all donors. CTV data for all donors and conditions in Fig 5 are summarized in a bar

graph.

https://doi.org/10.1371/journal.pone.0257061.g006
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DO reflect the amount of iron that is available for oxygen binding and dissociation. If this is

the case, magnetic mobility measured this way may reflect overall cell health and performance

better than total iron (which may be influenced by chemical reactions), or total Hb test (intra-

cellular and free Hb).

The deoxygenation enzyme is active at high pH and subsequent experiments reveal

improved methods to deoxygenate RBC buffer without significantly altering the viscosity.

Most notably, the RBC storage solution AS-3 (consisting of salts, dextrose, adenine and ctiric

acid to preserve the membrane, pH 5.8) with NaOH (added until the desired pH is achieved)

in the presence of Oxyrase can completely remove DO in 15 minutes. AS-3 was chosen due to

its RBC preservation properties and we see that Oxyrase is able to consume H+ while NaOH

maintains the desired basic pH. Fig 7 shows CTV data from donor F1 (on a different date)

with AS-3 as the RBC storage solution at five different pH values. Cumulative curves reveal

that buffers with high pH have greater magnetic and settling velocities than AS-3 with low pH.

This result is due to NaOH diluting the AS-3 and decreasing viscosity while equilibrium DO

remains at zero. Using the same analysis to correct for viscosity, the pgHb/cell between the five

buffers closely match (average 26.7 ± 1.1 SD pgHb/cell).

Fig 8A presents the oxygen equilibrium curves of healthy donor Hb deoxygenated with N2

and two samples deoxygenated with Oxyrase (all samples 2 mg Hb/mL). The Hemox-Analyzer

was used per protocol to obtain a normal curve at 37˚C. The other two curves were obtained

by adding oxyHb to a completely deoxygenated buffer (maintained at 37˚C by a separate water

bath) and quickly filling the measurement chamber while keeping the other settings consistent.

The characterization functionality of the Hemox-Analyzer was used without the temperature-

controlled deoxygenation. The first point recorded for these data is the point of maximum

oxygenation, which was matched with the control sample in Fig 8A. The three curves are

nearly identical, suggesting that the ability of Oxyrase-deoxygenated RBCs to bind to oxygen is

identical to unaltered RBCs. The samples with Oxyrase and lactate have a small leftward shift

from the control, which is consistent with that of a sample at lower temperature due to

Fig 7. CTV data with AS-3 buffer pH gradient. A sample from donor F1 was measured using AS-3 as the RBC

storage solution at five different pH values. Serial additions of NaOH increase pH and decrease viscosity. Converting to

pgHb/cell reveals an average of 26.7 (±1.1 SD) pgHb/cell between the buffers.

https://doi.org/10.1371/journal.pone.0257061.g007

PLOS ONE Magnetophoretic and spectral characterization of oxyhemoglobin and deoxyhemoglobin

PLOS ONE | https://doi.org/10.1371/journal.pone.0257061 September 3, 2021 10 / 14

https://doi.org/10.1371/journal.pone.0257061.g007
https://doi.org/10.1371/journal.pone.0257061


unconventional instrument use, shown in Fig 8B. These results suggest that the cells maintain

their oxygen binding properties after exposure to Oxyrase. Additionally, Chang et al. report

that murine RBCs stored in AS-3 at a basic pH have significantly less lipid peroxidation, phos-

phatidylserine expression, microvescicle production and hemolysis during storage as well as

increased lactate concentrations (suggesting more metabolic activity) [53]. Therefore, enzy-

matic facilitated deoxygenation of RBCs in AS-3 may be a viable way to maintain low DO dur-

ing a pre-transfusion enrichment while preserving cells’ metabolic, structural and reversible

oxygen binding features.

Conclusions

This study reports an enzymatic approach to facilitate Hb deoxygenation that is reversible,

produces pure deoxyHb and reproducibly paramagnetic RBCs and can be done so in ambient

conditions without need for an airtight chamber or sparging gas. Spectrometry and CTV

results confirm that RBCs from healthy and SCD donors have similar paramagnetic behavior

compared to established RBC treatments and can be fully deoxygenated in several minutes.

Additionally, this enzymatic treatment does not affect the oxygen equilibrium properties of

RBCs, making it a candidate for use in clinical translation The enzyme system is effective in a

pH-controlled RBC storage solution, such as AS-3, that preserves membrane integrity and

metabolic activity.

The effects on RBC morphology, metabolism and oxygen affinity are still unknown after

prolonged exposure to Oxyrase (such as the 6 week storage life of donated RBCs) and should

be observed before used in clinical settings. Additionally, experiments on pre-apheresis SCD

blood should be performed to better understand the magnetic signature of patient blood with-

out the healthy donor’s cells present. Lastly, a more detailed investigation of the kinetics and

how the osmolarity (amount of buffering), pH, and presence of other chemicals would reveal

more about the enzyme system and allow faster removal of DO.
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