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Abstract
Endosymbiont-induced cytoplasmic incompatibility (CI) may play an important role in 
arthropod speciation. However, whether CI consistently becomes associated or cou-
pled with other host-related forms of reproductive isolation (RI) to impede the transfer 
of endosymbionts between hybridizing populations and further the divergence pro-
cess remains an open question. Here, we show that varying degrees of pre- and post-
mating RI exist among allopatric populations of two interbreeding cherry-infesting 
tephritid fruit flies (Rhagoletis cingulata and R. indifferens) across North America. These 
flies display allochronic and sexual isolation among populations, as well as unidirec-
tional reductions in egg hatch in hybrid crosses involving southwestern USA males. 
All populations are infected by a Wolbachia strain, wCin2, whereas a second strain, 
wCin3, only co-infects flies from the southwest USA and Mexico. Strain wCin3 is as-
sociated with a unique mitochondrial DNA haplotype and unidirectional postmating 
RI, implicating the strain as the cause of CI. When coupled with nonendosymbiont 
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1  |  INTRODUC TION

New species of sexually reproducing organisms arise as herita-
ble barriers to gene flow evolve between formerly interbreeding 
populations (Mayr, 1963). These barriers can take many different 
forms, causing populations to be both pre- and postzygotically re-
productively isolated (Dobzhansky, 1982). Research on the causes 
of reproductive isolation (RI) has mainly focused on divergent eco-
logical adaptation, sexual selection and intrinsic nuclear genomic in-
compatibilities (Coyne & Orr, 2004; Rundle & Nosil, 2005; Schluter, 
2000). However, there is an increasing realization that intracellu-
lar endosymbionts may also contribute to RI between their hosts 
(Brucker & Bordenstein, 2012; Cooper et al., 2017; Coyne & Orr, 
2004; Gebiola et al., 2016; Shropshire & Bordenstein, 2016; Werren, 
1997). Maternally inherited endosymbionts, such as Wolbachia 
(Alphaproteobacteria) or Cardinium (Bacteroidetes) present in ar-
thropods and nematodes, can cause cytoplasmic incompatibility 
(CI) (Engelstädter & Hurst, 2009; Perlman et al., 2014; Turelli, 1994; 
Werren et al., 2008). In such cases, crosses between males infected 
with the endosymbiont and uninfected females or females infected 
with a different endosymbiont strain result in embryonic death or 
inviability of offspring.

The transmission dynamics of CI-inducing endosymbionts have 
raised several questions concerning their role in speciation (Brucker 
& Bordenstein, 2012; Werren, 1998). For example, if one allopat-
ric population possesses Wolbachia and another does not, then CI 
is unidirectional. Following secondary contact, unidirectional CI can 
lead to the introgression of the endosymbiont into uninfected popu-
lations (Jiggins, 2003; Rousset & Solignac, 1995; Sanaei et al., 2021) 
if Wolbachia reaches a critical threshold frequency (Li & Wan, 2019; 
Souto-Maior et al., 2015; Turelli, 1994). Once a Wolbachia strain 
becomes fixed in a population there would be no CI, as all matings 
would involve infected females and males (Hurst & Schilthuizen, 
1998). Given these considerations, it has been argued that for en-
dosymbionts to be involved in speciation it will probably require al-
lopatric populations becoming fixed for different CI-causing strains 
(Bordenstein et al., 2001; Brucker & Bordenstein, 2012; Telschow 

et al., 2005). In this case, bidirectional CI produces no or few viable 
embryos from hybrid crosses, which impedes the introgression of 
Wolbachia strains between populations.

However, there is no guarantee that strong bidirectional CI will 
persist. For example, CI between two populations can be elim-
inated if one population loses its endosymbiont due to inefficient 
vertical transmission (Engelstädter & Telschow, 2009; Frost et al., 
2010; Hughes et al., 2014). Moreover, when CI is incomplete and 
a percentage of embryos survive (Vavre et al., 2002), the strain 
with the strongest CI phenotype or most efficient vertical trans-
mission may displace the other, leading to its fixation (Kriesner 
et al., 2016). Wolbachia can also be transferred horizontally between 
hosts by third parties (e.g., via a predator–prey or parasite–host in-
teraction), or through environmental contact (e.g., via a shared re-
source) (Baldo et al., 2008; Enigl & Schausberger, 2007; Le Clec’h 
et al., 2013; Morrow et al., 2014; Schuler et al., 2013; Tseng et al., 
2020) or by hybridization with a closely related species (Rhitoban 
Raychoudhury et al., 2009; Sanaei et al., 2021; Turelli et al., 2018). 
Thus, for Wolbachia to play a role in speciation, CI must persist with 
the endosymbiont not spreading such that CI contributes to or al-
lows for the accumulation of additional RI between diverging taxa. 
Understanding the role that endosymbionts may play in speciation 
therefore calls for more than just characterizing the agents and na-
ture of CI between populations; it also requires us to determine the 
relationship and interaction of the CI caused by the endosymbiont(s) 
with other host-related barriers to gene flow.

A key issue concerning the role that endosymbiont-induced 
CI may play in speciation is thus the degree to which CI becomes 
coupled with other forms of nonendosymbiont RI to reduce gene 
flow between populations (Hurst & Schilthuizen, 1998; Shropshire & 
Bordenstein, 2016; Telschow et al., 2005; Werren, 1998). Coupling 
refers to when the effects of different barriers to gene flow become 
associated with one another such that their joint, cumulative effect 
can generate higher levels of RI than their individual effects alone 
(Barton, 1983; Butlin & Smadja, 2018; Flaxman et al., 2014; Nosil 
et al., 2021). In Wolbachia, nonendosymbiont-related divergent 
ecological selection, sexual selection and nuclear encoded genetic 

RI barriers, we estimate the strength of CI associated with wCin3 would not prevent 
the strain from introgressing from infected southwestern to uninfected populations 
elsewhere in the USA if populations were to come into secondary contact and hybrid-
ize. In contrast, cytoplasmic–nuclear coupling may impede the transfer of wCin3 if 
Mexican and USA populations were to come into contact. We discuss our results in 
the context of the general paucity of examples demonstrating stable Wolbachia hybrid 
zones and whether the spread of Wolbachia among taxa can be constrained in natural 
hybrid zones long enough for the endosymbiont to participate in speciation.
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incompatibilities may lower the level of effective gene flow be-
tween host populations below the critical migration rate necessary 
for Wolbachia to introgress and spread, resulting in the retention of 
CI (Flor et al., 2007; Telschow et al., 2002, 2005). As cytoplasmic 
and nuclear-related forms of RI become associated in disequilibrium 
between host populations, the effect of their coupling on reducing 
gene flow can enable the evolution of additional RI (Shropshire & 
Bordenstein, 2016; Telschow et al., 2002, 2005). Indeed, the stron-
gest empirical support for Wolbachia contributing to speciation may 
be found in systems where CI-causing Wolbachia strains are associ-
ated with premating isolation or assortative mating (Gebiola et al., 
2016; Miller et al., 2010; Shoemaker et al., 1999). Even if eventually 
lost, Wolbachia can still have played a role in speciation if the endo-
symbiont facilitated the evolution of non-CI-related host RI at some 
earlier stage of the divergence process. Thus, determining whether 
and how endosymbionts can couple with and facilitate the evolution 
of nonsymbiont-based host RI barriers is central to understanding 
the role that CI may play in speciation.

The Rhagoletis (Diptera: Tephritidae) cherry fly system is an at-
tractive model to test for possible Wolbachia-induced CI and its rela-
tionship to other forms of pre- and postmating RI (Hood et al., 2012). 
Rhagoletis cingulata (Loew) and its primary host black cherry (Prunus 
serotina) are native to eastern North America (ENA), with geographi-
cally isolated populations residing on higher elevation mountaintops 

through the southwestern USA (SW) (Bush, 1966) (Figure 1a). Black 
cherry-infesting populations are also found in two Mexican subpop-
ulations: one in the Sierra Madre Oriental Mountains (SMO) and the 
other in the central highlands of the Eje Volcánico Trans Mexicano 
(EVTM) (Rull et al., 2011). Rhagoletis indifferens Curran and its pri-
mary host bitter cherry (P. emarginata) are present in the Pacific 
Northwest (PNW) and are separated from populations of ENA flies 
by the northern plains of North America and from SW flies by the 
Mojave Desert and Great Basin (Bush, 1966; Dowell & Penrose, 
2012). The current biogeography of cherry flies in North America 
could be characterized as representing five regional populations 
(PNW, SW, SMO, EVTM and ENA) with the more diverged PNW 
population afforded species status (Bush, 1966; Doellman et al., 
2019). However, whether R. indifferens in the PNW should be consid-
ered a separate species from R. cingulata as opposed to a genetically 
diverged population is an open question.

Previous studies have reported Wolbachia infections in R. cingu-
lata populations in North America, as well as in its invasive range 
in Europe (Schuler et al., 2013; Wolfe et al., 2021). Postmating RI 
in the form of reduced egg hatch has been observed in crosses be-
tween Mexican and ENA flies (Tadeo et al., 2015). Moreover, dis-
tinct mitochondrial DNA (mtDNA) haplotypes were found in SW 
and Mexican vs. PNW and ENA populations (Doellman et al., 2019), 
which might indicate a Wolbachia-driven selective sweep of a unique 

F I G U R E  1  Collection sites for Rhagoletis cingulata and R. indifferens and their associated nuclear and mtDNA variation. (a) The ranges 
of cherry host plants, Prunus serotina and P. emarginata, are superimposed on the figure in pink and aqua, respectively. Sites 1–8 are R. 
indifferens populations in the Pacific Northwest (PNW), sites 9–12 are R. cingulata populations in the southwestern USA (SW), sites 13 and 14 
are R. cingulata populations in the Sierra Madre Oriental Mountains of Mexico (SMO), sites 15–17 are R. cingulata populations in the central 
highlands of the Eje Volcánico Trans Mexicano of Mexico (EVTM), and sites 18–24 are R. cingulata populations in the eastern USA (ENA). 
Asterisks denote populations that were used in mating experiments. Locality information for each site is provided in Table S1. (b) Neighbour-
joining network for nuclear-encoded microsatellites with superimposed mtDNA variation was modified with permission from Doellman 
et al. (2020). Nuclear markers show isolation-by-distance pattern of geographical variation that forms an arc from the ENA through the SW 
to the PNW and extends south latitudinally from the SW into the SMO and EVTM in Mexico. Dotted lines highlight the disjunct mtDNA 
haplotype distribution, with ENA and PNW populations sharing an mtDNA haplotype 1 that differs from the haplotype 2 possessed by SW 
and Mexican flies
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mtDNA haplotype (Hurst & Jiggins, 2005; Schuler et al., 2016). The 
disjunct distribution for mtDNA stands in contrast to an otherwise 
geographical pattern of isolation-by-distance for nuclear-encoded 
microsatellites (Figure 1b; Doellman et al., 2019, 2020). Populations 
in the SW are estimated to have become isolated from those in ENA, 
the PNW and Mexico in the early Holocene 5500–8500 years ago 
(Doellman et al., 2020). At this time, climate change caused deserti-
fication of the region, fragmenting formerly contiguous forests into 
isolated mountaintop populations (Lomolino et al., 1989; Thompson 
& Anderson, 2000). The recent isolation of cherry fly populations 
means that any observed RI can be inferred to be relatively recent 
in origin as well, which is important for assessing the contribution of 
Wolbachia to population divergence.

To accomplish this goal, we first quantified levels of pre- and 
postmating RI that exist among cherry fly populations in the USA, 
including premating RI due to ecology (allochrony), sexual isola-
tion (mate choice) and postmating incompatibilities (fecundity and 
egg hatch). Second, we assessed whether any postmating RI cor-
responds with the diverged mtDNA haplotype distinguishing SW 
and Mexican cherry flies from populations in the PNW and ENA 
(Doellman et al., 2019). Third, we genotyped Wolbachia from cherry 
fly populations across North America to assess whether different 
strains of Wolbachia are present and correspond to patterns of 
mtDNA divergence and postzygotic isolation detected between 
these flies. Together, these three aims allowed us to assess whether 
Wolbachia-induced CI is coupled to other forms of RI that could pre-
vent the introgression of the endosymbiont in the event of second-
ary contact and thus facilitate speciation.

2  |  METHODS

2.1  |  Insect collection and rearing

Rhagoletis cingulata and R. indifferens were collected as larvae from 
infested fruit at 24 sites from 2004 to 2018 across North America: 
including the SMO and EVTM in Mexico, and the PNW, SW and ENA 
in the USA and Canada (Figure 1; Table S1). Fly larvae were reared 
to adulthood following standard husbandry protocols (Feder et al., 
1990; Tadeo et al., 2015; Yee, 2013), with Mexican samples reared at 
the Instituto de Ecología, Xalapa, Veracruz, and USA samples at the 
University of Notre Dame, Notre Dame, Indiana.

2.2  |  Allochronic isolation

The timing of adult eclosion is an important host-related adaptation 
that generates ecologically based, allochronic premating isolation 
between Rhagoletis attacking different host plants (Feder & Filchak, 
1999; Feder et al., 1997; Inskeep et al., 2021; Meyers et al., 2020). 
To evaluate allochronic isolation, we compared adult eclosion times 
for 939 flies collected in 2017 from PNW, SW and ENA populations. 

We recorded the number of days it took for pupae to eclose as 
adults when incubated at 24°C, 65% relative humidity and 14:10 h 
light–dark following a standardized 6-month overwintering period at 
4°C. Differences in eclosion times among populations were tested 
for significance by ANOVA (data were normally distributed) using 
population (PNW, SW, ENA) as the predictor variable and followed 
by Tukey honest significant difference (HSD) post hoc comparisons. 
Both were performed in R using the package stargazer (Hlavac, 2018; 
R Core Team, 2019). Pairwise estimates of allochronic isolation (AI) 
were calculated among host populations using the formula from 
Feder et al. (1993):

where xi and yi are the proportions of the total numbers of sexually 
active flies on day i. Newly eclosed cherry flies require 5–21 days 
to reach sexual maturity, depending upon temperature, with 7 days 
approximating conditions experienced by flies in nature (Frick et al., 
1954). Adult flies can survive up to 30 days in the field, but can be 
reduced to 15 days if the average temperature exceeds 22°C (Frick 
et al., 1954). We thus considered adults to be sexually active either 
from 7 to 15 days or from 7 to 30 days posteclosion in our estimates 
of AI to encompass the probable upper and lower bounds of poten-
tial reproductive asynchrony between populations if they were to 
co-occur nature.

2.3  |  Premating isolation

No-choice mating experiments were performed to measure the 
degree of premating isolation between PNW, SW and ENA cherry 
flies (Table S2). Flies were collected in 2017 and 2018, with newly 
eclosing adults isolated by sex and population and maintained 
in cages with access to food (1:3  hydrolysed yeast protein and 
honey) and water for 7  days to reach sexual maturity. For each 
premating assay, six virgin male and six virgin female flies were 
placed in a clear quart-sized container that contained a hanging 
1-inch-diameter red cherry-scented agarose sphere (1.0 g agarose: 
2 g table sugar: 30 ml H2O: 10 ml cherry juice from concentrate) 
(Davis et al., 2011; Rull et al., 2010). Flies treated the spheres 
like fruit with adults mating on, and females ovipositing into the 
spheres. Copulating pairs lasting >5 min were removed from the 
mating cages and placed in their own separate cage for postmating 
isolation trials. New flies were added to the mating cages to main-
tain a constant number of six flies of each sex. Premating assays 
were performed over several days during daylight hours and ob-
served for a minimum of 21.5 h per assay (Table S2). Flies were re-
moved from mating cages and separated by sex at the end of each 
day before being reused the next day. Copulations were standard-
ized by calculating the number of matings per hour for each assay. 

AI = 1 -

⎛
⎜⎜⎜⎝

Σxiyi�
Σx2

i
⋅ Σy2

i

⎞
⎟⎟⎟⎠
× 100
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Premating RI was quantified using the formula RI4A from Sobel and 
Chen (2014) designated here as:

where H is the number or frequency of hybrid matings and C is the 
number of parental matings, such that H/(H + C) is the probability of 
gene flow p(GH) on a scale where 1 represents complete isolation, 0 
represents random mating and −1 represents complete assortative 
mating.

2.4  |  Postmating isolation

To assess postmating isolation, we compared the mean numbers 
of eggs laid by females and the proportions of these eggs that 
hatched in pairwise crosses (hybrid and parental) between PNW, 
SW and ENA populations. Reduced fecundity may reflect poor 
sperm transfer and/or incompatibilities in the reproductive tracts 
of flies, and lower hatch rates may reflect intrinsic genetic incom-
patibilities affecting zygote development (Coyne & Orr, 2004). 
Postmating RI may exist in other life stages following egg hatch, 
but because of limitations in cherry fly husbandry, they could not 
be assessed at this time. Thus, our values for postmating RI are 
conservative, probably underestimating isolation among natural 
populations.

One to three mating pairs of flies were assembled in cages in 
2018 and 2019 to measure postmating isolation. We established 1♀ 
× 1♂ cages using the successful copulating pairs from the premating 
isolation trials. For the 2♀ × 2♂ and 3♀ × 3♂ cages, we selected sex-
ually mature, virgin females and males at random for the populations 
being evaluated. All cages in the postmating experiment contained 
food, water, a plastic leaf and a hanging agarose sphere. Agarose 
spheres were collected and replaced every 3  days. Eggs were re-
moved from collected spheres, counted and placed on an agarose 
matrix in a 60 × 15-mm Petri-dish (1.0 g agarose: 2 g table sugar: 
40 ml H2O) and monitored for egg hatch for 10 days. Each individ-
ual cross continued until >100 eggs were collected, or 4 weeks had 
elapsed, whichever occurred first. Parents from the crosses were 
frozen and stored at −80°C for genetic analysis.

To assess fecundity, we calculated the mean number of eggs laid 
per female per day in 1♀ × 1♂ crosses, totalling 194 crosses. To as-
sess hatch rate, we calculated the proportion of eggs that hatched in 
all crosses that produced ≥10 eggs, totalling 217 crosses. Unmated 
Rhagoletis females can lay a small number of unfertilized eggs and, 
thus, setting a threshold of 10 eggs controlled for this (Opp & 
Prokopy, 1986). Significant differences in fecundity and egg hatch 
among pairwise cross permutations were tested for with nonpara-
metric ANOVAs (Kruskal–Wallis tests) using eggs laid per female per 
day or proportion hatched as the response variable and crossed pop-
ulations as the predictor. If significance was found, nonparametric 
post hoc Dunn's tests were performed, with a Benjamini–Yekutieli 
multicomparison p-value adjustment.

2.5  |  Population-level Wolbachia genotyping

Wolbachia strain diversity was assessed for sites: 1, 3–8 and 10–
24 (Figure 1; Table S1) by genotyping 5–8 individuals from each 
site using target-enrichment endosymbiont sequencing (TEEseq) 
(Schuler et al., 2019). TEEseq is a high-throughput method that uses 
double digest restriction site-associated DNA sequencing (ddRAD-
seq) (DaCosta & Sorenson, 2014; Peterson et al., 2012) to target 
six genes used for multilocus sequence typing (MLST) of Wolbachia 
strains (Baldo et al., 2006), including the surface protein (wsp) and 
five other conserved genes (gatB, coxA, hcpA, fbpA and ftsZ). DNA 
was extracted from adult flies using QIAamp DNA Micro Kits 
(Qiagen). Wolbachia MLST sequences were PCR (polymerase chain 
reaction)-amplified and Illumina libraries were prepared following 
Schuler et al. (2019). Sequence data were quality filtered, trimmed, 
and denoised using dada2 (Callahan et al., 2016) implemented in 
qiime2 (Bolyen et al., 2019). Reads were demultiplexed with cutadapt 
(Martin, 2011) and were sorted into unique amplicon sequencing 
variants (ASVs) in R using the packages dada2 and seqRFLP (Ding & 
Zhang, 2012). Alignments of unique ASVs were individually checked 
and, when necessary, corrected manually, in codoncode aligner 
(Codon Code Corp.), with singletons removed from the final data set. 
Sequence data were deposited in the NCBI SRA (PRJNA747847) and 
Dryad (https://doi.org/10.5061/dryad.np5hq​bztc).

2.6  |  Strain verification

Sanger sequencing was used to verify that the Wolbachia strains in 
the mating trials were identical to those identified with TEEseq gen-
otyping. A 550-bp fragment of wsp and a 500-bp fragment of hcpA 
were PCR-amplified (see Table S3 for primers and protocols) from 
10 frozen parents from each population in the postmating RI as-
says. Base-calling software does not disentangle two co-occurring 
strains well (Tenney et al., 2007). Thus, we manually searched raw 
trace data using ugene (Okonechnikov et al., 2012) for the presence 
of strain-specific polymorphisms. All sequenced flies were addition-
ally genotyped for a 650-bp fragment of the cytochrome c oxidase 
I (COI) mtDNA gene (Table S3). Reads were quality trimmed, aligned 
using muscle (Edgar, 2004), and manually checked using aliview 
(Larsson, 2014). We added two R. cingulata sequences (GenBank: 
HQ677090.1 and HQ677087.1) for comparison, as well as a 
Rhagoletis completa (Cresson) sequence as an outgroup (GenBank: 
HQ677111.1) (Doellman et al., 2019). We generated an RAxML 
(Stamatakis, 2014) tree for the COI alignment using a GTRGAMMA 
model. ggtree (Yu et al., 2017) was used to prepare trees. Fly COI 
sequences were deposited in GenBank (MZ820172–MZ820235).

2.7  |  Coupling of CI with nonendosymbiont 
induced RI

To examine the potential coupling of endosymbiont-induced CI 
with nonendosymbiont-related RI, we calculated the probability 

SI = 1 − 2 ×

(
H

H + C

)

https://doi.org/10.5061/dryad.np5hqbztc
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of gene flow p(GH) for a hypothetical scenario of secondary con-
tact (currently all populations geographically isolated) using the 
data derived from our experiments on allochronic isolation and 
premating isolation, and those for Mexican populations from 
Tadeo et al. (2015). We then compared these estimates of gene 
flow to determine if they were greater or less than the critical 
migration rate (mk), defined as the migration rate above which a 
Wolbachia strain will introgress between hybridizing populations. 
Thus, if p(GH) > mk the Wolbachia strain is expected to introgress 
and if p(GH) < mk the Wolbachia strain is expected to remain di-
verged between populations. As derived by Flor et al. (2007), the 
critical migration rate for unidirectional CI with symmetrical mi-
gration is:

where c = the relative reduction in egg hatch for hybrid vs. paren-
tal crosses caused by CI (1 = no egg hatch for hybrids, 0 = equal 
egg hatch for hybrids), and t = the transmission rate of Wolbachia 
from mother to offspring (1 = completely efficient transfer, 0 = no 
transfer). For the case of bidirectional CI, the lower bound estimate 
for the critical migration rate derived by Telschow et al. (2005) is 
equal to:

where a = the level of CI caused by the strain having the largest effect 
on reducing egg hatch, and b =  the level of CI caused by the strain 
having the lesser effect.

There are some important caveats in comparing p(GH) and mk. 
Most importantly, mk considers migration with respect to two geo-
graphically distinct populations separated by an external, physical 
barrier restricting the proportion of immigrants contributing to m, 
often assuming a mainland–island model. In comparison, our esti-
mates of p(GH) consider the effects of inherent, nonendosymbiont 
pre- and postmating RI on reducing gene flow relative to a baseline 
m of 0.5, reflecting panmixia in sympatry. Thus, gene flow may be 
lower than our estimates of p(GH) suggest, if following secondary 
contact, cherry-infesting fly populations were to not fully geo-
graphically overlap. Consequently, the parameter space for main-
taining Wolbachia-induced CI may be more permissive than our 
calculations imply, and our estimates of p(GH) should be taken as 
a qualitative gauge for whether CI may be retained following con-
tact. It is also possible, however, that host-related forms of RI may 
weaken in contact zones due to hybridization and introgression 
compared to estimates derived between allopatric populations not 
experiencing gene flow. In this case, the potential for Wolbachia to 
spread between host populations may be greater than our than our 
estimates of p(GH) suggest.

3  |  RESULTS

3.1  |  Allochronic isolation

Cherry-infesting fly populations differed significantly in their mean 
adult eclosion times (F2,936 = 3315.867, R2 = 0.876, p <  .001; Table 
S4), with post hoc tests indicating significant differences among all 
pairwise population comparisons (ENA × PNW: p < .001; ENA × SW: 
p < .001; PNW × SW: p < .001; Table S5). On average, R. indifferens 
adults from the PNW eclosed the earliest (30.68 ± 0.41 days [±SE], 
n = 289), followed by ENA flies (40.82 ± 0.51 days, n = 71), and then 
by SW flies (64.55 ± 0.23 days, n = 579) (Figure 2; see Figure S1A for 
eclosion curves including flies from the SMO [95.79 ± 1.93 days) and 
EVTM [55.67 ± 0.93 days]) based on data from (Tadeo et al., 2015). 
Assuming adults are sexually active 7–30 days posteclosion and if the 
differences in adult eclosion were maintained in sympatry, then levels 
of allochronic isolation (AI) would be: 28.5% for ENA vs. PNW, 86.5% 
for ENA vs. SW and 96.5% for PNW vs. SW (Table S6; Figure S1B). 
With a 15-day adult lifespan, these estimates of AI would increase to 
55.8%, 98.9% and 99.6%, respectively (Table S6; Figure S1C).

3.2  |  Premating isolation

No-choice mating experiments revealed extensive premating isola-
tion among PNW, SW and ENA fly populations. The highest level 
of premating isolation was observed between the PNW and ENA 
populations (SI  =0.52), which are at the longitudinal ends of the 
cherry fly distribution. Slightly lower levels of premating isolation 
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F I G U R E  2  Cumulative adult eclosion curves for cherry flies 
collected in 2017 from the PNW (n = 289), ENA (n = 71) and SW 
(n = 579) populations. Days to eclosion is measured as the time 
it takes for adults to eclose once pupae are removed from their 
overwinter treatment. The dotted line denotes the median time of 
eclosion for PNW, ENA and SW flies
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were detected between the SW and PNW populations (SI =0.41) or 
between the SW and ENA populations (SI =0.39). Premating isola-
tion thus exists across the range of cherry flies in North America and 
there is a tendency for the degree of isolation to be related to the 
geographical distance separating populations.

3.3  |  Postmating isolation: fecundity

Pairwise 1♀ × 1♂ parental and hybrid crosses between PNW, SW 
and ENA populations were assembled for fecundity analysis with 
between four and 60 replicates per treatment (Figure 3; Table S7). 
Nonparametric ANOVAs found no significant differences in fecun-
dity between ENA × SW pairwise crosses (Kruskal–Wallis, H3 = 4.53, 
p  =  .21 Figure 3a; Table S8) but significant differences in fecundity 
among PNW × SW pairwise crosses (Kruskal–Wallis, H3  =  12.2, 
p = .007; Figure 3b; Table S8) and among PNW × ENA pairwise crosses 
(Kruskal–Wallis, H3 = 11.6, p = .009; Figure 3c; Table S8). Pairwise tests 
showed these differences in egg laying were primarily due to PNW 
females either being more fecund and/or having a greater propensity 
to oviposit into agarose spheres compared to SW (Table S9) and ENA 
females (Table S10), and not whether crosses were hybrid or parental.

3.4  |  Postmating isolation: egg hatch

Pairwise 1♀ × 1♂, 2♀ × 2♂ and 3♀ × 3♂ parental and hybrid crosses 
between PNW, SW and ENA flies were conducted for analysis of egg 
hatch with between nine and 54 replicates per treatment (Figure 4; 
Table S11). Nonparametric ANOVA showed significant differences 
in hatch rates among parental and hybrid cross types for matings 
between ENA × SW (Kruskal–Wallis, H3 = 11.59, p = .011; Figure 4a; 
Table S12), and PNW × SW flies (Kruskal–Wallis, H3 = 34.06, p < .001; 
Figure 4b; Table S12). In both cases, the significant reductions in-
volved SW males. Egg hatch was 74% and 80% lower in hybrid 
crosses with male flies from the SW to females from the ENA and 
PNW flies, respectively, compared to parental crosses (Figure 4a,b; 
Tables S13 and S14). The reduction in egg hatch was unidirectional, 
as reciprocal hybrid crosses involving SW females with PNW or ENA 
males showed no significant difference in egg hatch compared to pa-
rental matings (Tables S13 and S14). No evidence for postmating iso-
lation related to egg hatch was observed in either direction in PNW 
× ENA crosses (Kruskal–Wallis, H3 = 5.55, p = .136; Figure 4c; Table 
S12). Thus, the unidirectional pattern of postmating isolation related 
to egg hatch was associated with males possessing the SW/Mexican 
mtDNA haplotype and females the alternative PNW/ENA haplotype 
consistent with endosymbiont-induced CI (LePage et al., 2017).

3.5  |  Wolbachia strain diversity

TEEseq generated 1,425,597 quality filtered reads (9503 reads per 
individual) for all five MLST barcoding genes and wsp. Wolbachia 

genotyping of 152 cherry-infesting flies from 22 populations identi-
fied two major strains of Wolbachia (wCin2 and wCin3) across North 
America (Figure 5a; Table S15). Strain wCin2, detected in all cherry 
fly populations, was previously described in R. cingulata populations 
in the SW and ENA, as well as in a recently introduced population 
in Europe (Schuler et al., 2013). Nucleotide blast results for the wsp 
gene showed that wCin2 belongs to the Wolbachia supergroup A and 
is closely related to other wMel-like Wolbachia strains (Wolfe et al., 
2021). The wCin2 strain in the PNW and ENA were 100% identical 
based on the six MLST loci. A glycine to glutamic acid nonsynony-
mous substitution (GGA → GAA) at position 114 in the hcpA gene 
distinguished the wCin2 strain in SW and Mexico populations from 
the PNW and ENA populations.

In contrast to wCin2, strain wCin3 was detected only in cherry-
infesting fly populations in the SW and Mexico (Figure 5a; Table 
S15), where it normally co-infected flies along with wCin2. Strain 
wCin3 coincided with a unique mtDNA haplotype and the observed 
unidirectional reduction in egg hatch in hybrid crosses involving SW 
males, implying that this strain is probably inducing unidirectional CI. 
A nucleotide blast search based on the wsp gene showed that wCin3 
belongs to the Wolbachia B supergroup. Sanger sequencing verified 
that PNW and ENA flies used in the crossing experiments above har-
boured only strain wCin2, while SW flies possessed both wCin2 and 
wCin3 (Table S16). COI barcoding also confirmed that SW flies had a 
different mitochondrial haplotype from the PNW and ENA flies, fol-
lowing the previously identified pattern from Doellman et al. (2019) 
(Figure S2; Table S16).

All cherry-infesting flies genotyped in the current study 
were infected by at least one strain of Wolbachia. In individuals 
co-infected with wCin2 and wCin3, strain wCin3 accounted for a 
smaller mean portion of TEEseq reads than wCin2, which varied 
from 3.2% to 31.2% depending on population (Table S17), suggest-
ing that wCin3 is present at a lower titre than wCin2. It is possi-
ble that differences in the titre of wCin3 could contribute to the 
incomplete CI we observed in our crossing assays, a hypothesis 
requiring further testing. Strain wCin2, previously thought to be 
fixed in all North American cherry flies (Schuler et al., 2013), was 
not present in five of six individuals (83.3%) screened from site 17 
in the EVTM (Figure 5a; Table S15). All six individuals (100%) at site 
17 possessed the wCin3 strain. In contrast, wCin3 was not present 
in all flies in the SW and Mexico, absent in one of eight flies (12.5%) 
from site 11 in the SW, one of eight flies (12.5%) from site 13 in 
the SMO, and six of seven flies (85.7%) from site 16 in the EVTM 
(Figure 5a; Table S15).

3.6  |  Coupling of endosymbiont- and​  
nonendosymbiont-related RI

Depending upon parameter values, current levels of pre- and post-
mating RI are probably insufficient to stop the spread of wCin3 
from the SW to the rest of the USA following a hypothetical 
secondary contact scenario (Figure 5b; Table S18). Based on the 
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F I G U R E  3  Fecundity (number of eggs 
laid per female per day) for pairwise 
cross combinations of females × males 
between: (a) SW × ENA; (b) PNW × SW; 
and (c) ENA × PNW flies. Stars denote 
significant differences in nonparametric 
pairwise tests between the two bracketed 
cross types (*adjusted p < .05). All other 
pairwise comparisons were not significant. 
Bars around means for cross types 
indicate one standard deviation (see Table 
S7 for means, standard errors, and sample 
sizes for each cross type and Tables S9 
and S10 for p-values)
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F I G U R E  4  Proportions of eggs that 
hatched for different pairwise cross 
combinations of females × males between: 
(a) SW × ENA; (b) PNW × SW; and (c) 
ENA × PNW flies. Stars denote significant 
differences in nonparametric pairwise 
tests between the two bracketed cross 
types (*adjusted p <.05; **adjusted p <.01; 
***adjusted p <.001). All other pairwise 
comparisons were not significant. Bars 
around means for cross types indicate 
one standard deviation (see Table S11 for 
means, standard errors and sample sizes 
for each cross type, and Tables S13 and 
S14 for p-values)
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reduction of egg hatch for hybrid vs. parental crosses, Wolbachia-
induced CI in matings between SW males (co-infected with wCin3) 
and PNW females and ENA females (both lacking wCin3) was 
equal to 0.800 and 0.738, respectively (Table S18). Given these 
values of CI, lower bound estimates of mk to impede the introgres-
sion of wCin3 based on unidirectional incompatibility would range 
from ~3 × 10−5 (for a transmission rate t of 0.99) to ~7 × 10−3 (for a 
transmission rate t of 0.875). We currently do not know the value 
of t for cherry-infesting flies, but vertical transmission is typically 
high in insects (with rare exceptions), falling in the range of 0.99 to 
0.90 (Carrington et al., 2011; Hague et al., 2020; Hoffmann et al., 
2014; Kriesner et al., 2016). We included 0.875 as a lower vertical 
transmission estimate based on our TEEseq data, showing one of 
eight flies from the SW population at site 11 and site 13 lost wCin3 
in our genotype survey.

In comparison, p(GH) from nonendosymbiont-related RI be-
tween SW and PNW populations, assuming a mean adult longev-
ity of 15  days, is estimated at 6.342 × 10−4 (= 0.00215 [due to 
allochronic isolation] × 0.295 [due to sexual isolation]) and 1.612 
× 10−3 between the SW and ENA (= 0.00523 × 0.307; Table S18). 
Under a 30-day adult lifespan, p(GH) increased to 5.163 × 10−3 and 
2.066 × 10−2, respectively. Thus, estimates of p(GH) approximate 
but are not definitively below the minimal estimates of mk required 
to curtail the potential spread of wCin3 from the SW. Consequently, 
if vertical transmission is efficient, adult lifespans are long, and non-
endosymbiont RI were to weaken in hybrid zones, then wCin3 would 
probably introgress from the SW into the PNW and ENA following 
secondary contact.

4  |  DISCUSSION

Our goal in the current study was to determine whether 
endosymbiont-induced CI exists in cherry flies and whether it could 
potentially couple with other forms of host-related RI to contrib-
ute to speciation. To answer these questions, we focused on four 
aims. For aim 1, we demonstrated that varying degrees of pre- and 
postmating RI presently exist among cherry-infesting fly popula-
tions across North America. For aim 2, we found a pattern of uni-
directional postzygotic isolation in hybrid crosses between SW 
males and females from the ENA and PNW. For aim 3, our genomic 
survey indicated that a unique strain of Wolbachia, wCin3, occurs 
in SW and Mexican populations, corresponding to the observed 
postzygotic isolation and disjunct mtDNA haplotype found in SW 
and Mexican populations. This is a pattern consistent with unidirec-
tional Wolbachia-induced CI. Finally, for aim 4, we calculated that the 
coupling of nonendosymbiont RI with endosymbiont CI should not 
prevent gene flow and the spread of wCin3 in the event of second-
ary contact between SW and ENA or PNW fly populations.

4.1  |  Evidence for Wolbachia-induced CI

Our findings provide strong support for endosymbiont-induced CI 
in cherry-infesting fly populations and implicate a Wolbachia B su-
pergroup strain, wCin3, as its causative agent. Attempts at rearing 
larvae from host fruit treated with antibiotics to cure Wolbachia and 
to rescue the CI phenotype in cherry flies have been unsuccessful to 

F I G U R E  5  (a) Geographical distribution of Wolbachia strains wCin2 and wCin3 for (n = 152) cherry-infesting Rhagoletis flies collected 
from 22 populations across North America. Populations 2 and 9 were not genotyped and were not included in this figure. Pie charts show 
the proportion of singly (wCin2 or wCin3) and doubly (wCin2/wCin3) infected individuals in populations based on TEEseq genotyping. 
Locality information for sites is given in Table S1 and data on TEEseq for cherry fly populations are provided in Table S15. (b) Estimated 
potential for introgression in the event of secondary contact for Wolbachia strain wCin3 from the SW/Mexican populations to the ENA/
PNW populations based on gene flow calculations and critical migration rates (mk) shown in Table S18. If p(GH) > mk the Wolbachia strain is 
expected to introgress and if p(GH) < mk the Wolbachia strain is expected to remain diverged between populations. Note that the probability 
of introgression varies depending on host lifespan and vertical transmission rate of the Wolbachia strain, wCin3. Data for the Mexican 
populations were taken from Tadeo et al. (2015)
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date, hindering a direct verification that wCin3 is responsible for the 
unidirectional reduction in egg hatch. It might be possible that the 
observed CI phenotype is due to a different endosymbiont whose 
presence/absence corresponds to that of wCin3 (Perlman et al., 
2014) or perhaps is due to mitochondrial–nuclear incompatibilities 
(Telschow et al., 2019). Our finding that various individuals in the 
SW and Mexico lack wCin3 but possess the derived SW and Mexican 
mtDNA haplotype makes it possible to perform crosses in the future 
to strengthen empirical support for CI induced by wCin3. We further 
note that our genetic survey of different Wolbachia strains in the 
USA and Mexico also corresponds to patterns of postzygotic isola-
tion reported by Tadeo et al. (2015) in crosses among SMO, EVTM 
and ENA flies, lending further empirical support to Wolbachia strain 
wCin3 as the causative agent of CI.

4.2  |  Coupling of CI with other RI barriers

Our results are equivocal as to whether Wolbachia-induced CI is cur-
rently coupled strongly enough with other identified forms of host-
related pre- and postmating RI to stop the spread of wCin3 across 
North America if SW flies were to re-establish contact with flies 
from the PNW and ENA. If vertical transmission is reduced and adult 
longevity is limited, then endosymbiont differences may remain. 
However, if not, then wCin3 would probably spread. An argument 
could still be made that if cherry-infesting flies in the USA were to 
continue to remain allopatric or were to exchange migrants at a low 
rate following contact, then Wolbachia could be considered to con-
tribute to ongoing RI and speciation. However, it is also possible that 
nonendosymbiont-related RI may weaken following contact. For ex-
ample, allochronic isolation could decrease if regional differences in 
the timing of fly eclosion were to diminish due to the fruiting times 
of host cherries converging in contact areas, facilitating the intro-
gression of wCin3. In this regard, a reduced coupling of RI barriers in 
hybrid zones may restrict Wolbachia's role in speciation to systems in 
which divergence occurs primarily or exclusively in allopatry.

Cytoplasmic- and nuclear-related RI is greater, however, between 
Mexican and both ENA and PNW populations than between SW and 
both ENA and PNW populations (Figure 5b; Table S18). Thus, if flies 
from Mexico were to come into secondary contact with those from 
the USA, a stronger case could be made that CI would persist and 
contribute to population divergence. Tadeo et al. (2015) measured 
eclosion times, fecundity and egg hatch rates from hybrid matings 
among populations from the SMO (site 14), EVTM (site 17) and ENA 
(Kearneysville, West Virginia). SMO and EVTM flies eclose later 
than flies from populations in the USA (Tadeo et al., 2015), gener-
ating higher levels of AI (Figure S1; Table S18). A reduced hatch rate 
was observed unidirectionally in crosses between SMO males and 
ENA females (Tadeo et al., 2015). As a result, estimates of p(GH) are 
equivalent to or below the mk value needed to retain the Wolbachia 
wCin3 difference between fly populations in the SMO and ENA/
PNW (Figure 5b; Table S18). A reduced hatch rate was also observed 

bidirectionally in crosses between EVTM and ENA flies and unidi-
rectionally between EVTM females and SMO males (Tadeo et al., 
2015). These results correspond to our observation that the majority 
of individuals from the EVTM population used by Tadeo et al. (2015) 
(site 17) may not have been infected with wCin2 and were singly in-
fected by wCin3 (Figure 5a; Table S15). Consequently, our estimates 
of p(GH) between EVTM and ENA/PNW populations fall below the 
mk value derived from the bidirectional incompatibility formula of 
Telschow et al. (2007) needed to maintain Wolbachia strain differ-
ences between the EVTM and ENA populations (Figure 5b; Table 
S18). Estimates of p(GH) are also equivalent to or below the unidi-
rectional mk value between the EVTM and the SMO populations 
(Figure 5b; Table S18).

4.3  |  Wolbachia hybrid zones

Although the majority of Wolbachia infections do not appear to 
generate CI (Hoffmann et al., 2015), enough examples exist that 
the endosymbiont could potentially contribute to RI between host 
species. Our results thus add to an increasing list of studies impli-
cating Wolbachia as a causative agent of CI between diverging taxa 
(Bordenstein et al., 2001; Cooper et al., 2017; Gebiola et al., 2016; 
Miller et al., 2010; Shoemaker et al., 1999). The question then is 
whether Wolbachia or any other endosymbiont-induced CI can be-
come coupled with other forms of RI as populations transition from 
fully interbreeding demes to partially isolated taxa to fully diverged 
species. It is important to note that all cherry-infesting fly popu-
lations in our study are allopatric, where none of the populations 
possessing different Wolbachia strains geographically overlap. Thus, 
despite seeming to represent different stages from weak to strong 
coupling between cytoplasmic and nuclear-based RI, we have no 
empirical evidence to verify that CI would be maintained if popula-
tions were to hybridize following secondary contact.

Surprisingly, the same is also true for almost all other Wolbachia 
CI systems in insects. While examples exist demonstrating the 
spread of Wolbachia through populations (Bakovic et al., 2018; 
Kriesner et al., 2013; Raychoudhury et al., 2010; Riegler et al., 2005; 
Schuler et al., 2016) and its transmission between species (Cooper 
et al., 2019; Miyata et al., 2020; Morrow et al., 2014; Rousset & 
Solignac, 1995; Schuler et al., 2013; Turelli et al., 1992), there is little 
evidence for the stable maintenance of Wolbachia-induced CI across 
a hybrid zone. One possible example involves two different subspe-
cies of Chorthippus parallelus grasshoppers that came into secondary 
contact in the Pyrenees Mountains of Europe following the retreat 
of glaciers ~9000  years ago (Martínez-Rodríguez & Bella, 2018). 
However, the story is biogeographically complex, as hybrid popu-
lations of viable and fertile hybrid grasshoppers exist in restricted 
areas, where they are sufficiently geographically separated such that 
secondary contact is unlikely (Martínez-Rodríguez & Bella, 2018). In 
these grasshoppers, one supergroup B strain of Wolbachia appears 
to have been recently acquired and has spread from continental 
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Europe into the Iberian Peninsula. In contrast, there are different 
supergroup F Wolbachia strains between the C. parallelus subspe-
cies with regional/local variation among sites and with a putative 
recombinant strain present in the hybrid zone (Martínez-Rodríguez 
& Bella, 2018). Thus, C. parallelus does not correspond to a simple 
geographically continuous hybrid zone, begging the question of why 
there appears to be a dearth of such examples.

One possible explanation accounting for the paucity of stable 
Wolbachia hybrid zones is that the coupling of inherent isolating bar-
riers may weaken in these areas following secondary contact such 
that the endosymbiont will eventually introgress between popula-
tions. To prevent introgression, vertical transmission rates must also 
be incomplete or, in the case of bidirectional CI, not differ between 
strains, otherwise Wolbachia differences will be lost between hy-
bridizing populations (Turelli, 2010; Turelli & Hoffmann, 1995). In ad-
dition, Wolbachia strains must not impart positive fitness benefits to 
their hosts, as this will increase their rate of spread (Fry et al., 2004). 
Finally, horizontal transfer by means other than hybridization must 
not occur frequently enough for Wolbachia differences between 
taxa to eventually dissipate in sympatry (Sanaei et al., 2021). Thus, 
even when species are strongly reproductively isolated, Wolbachia 
differences may not persist for prolonged periods of time when 
populations broadly overlap. If true, then stable Wolbachia hybrid 
zones may be rare in nature. Moreover, when observed, they may 
be recent in origin and composed of a patchwork of largely isolated 
subpopulations experiencing restricted migration, such as C. paral-
lelus, rather than being contiguous and varying in a smooth clinal 
fashion. Consequently, estimates of mk, which assume a mainland–
island model of migration (e.g. Flor et al., 2007; Telschow et al., 2002, 
2005), may reflect elements of the spatial structure of hybrid zones 
needed to slow the spread of Wolbachia and allow for the continued 
participation of CI in speciation.

5  |  CONCLUSIONS

In the current study we ask whether Wolbachia-induced CI con-
tributes to speciation, with specific reference to the coupling of 
cytoplasmic and nuclear-related forms of RI in cherry-infesting 
Rhagoletis flies. Clearly, if cherry-infesting fly populations were to 
remain in allopatry throughout the entirety of their divergence, then 
endosymbiont-caused CI could be regarded as a factor contributing 
to the reproductive isolation of these species. The answer becomes 
more complicated though if cherry flies were to come into second-
ary contact and hybridize, which is of general importance as many 
taxa may experience gene flow at some stage of their divergence 
(Nosil, 2008). The issue then is whether and how CI can become 
coupled with other host-related RI barriers across hybrid zones to 
maintain population differences. Wolbachia strains can be acquired 
horizontally (Sanaei et al., 2021) or eventually lost (Bailly-Bechet 
et al., 2017) and, thus, in most cases, the long-term prognosis for the 
retention of Wolbachia-induced CI following secondary contact may 

be poor. This does not mean that if eventually lost, the endosymbiont 
did not play a role in speciation. For example, during the time it was 
present, Wolbachia-induced CI could have maintained population 
divergence and facilitated the evolution of additional RI, for exam-
ple, through the process of reinforcement (Jaenike et al., 2006). The 
difficulty may come in finding direct empirical evidence supporting 
the involvement of the endosymbiont during such stages, particu-
larly if the structure of hybrid zones following secondary contact is 
more conducive to the spread rather than retention of Wolbachia. 
Our analysis of the coupling of nonendosymbiont RI with Wolbachia 
CI provides a useful empirical framework based on theory to help 
quantify the involvement of Wolbachia and other endosymbionts in 
the process of speciation.
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