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Dynamics-informed deconvolutional neural networks
for super-resolution identification of regime changes in
epidemiological time series
Jose M. G. Vilar1,2* and Leonor Saiz3*

The ability to infer the timing and amplitude of perturbations in epidemiological systems from their stochasti-
cally spread low-resolution outcomes is crucial for multiple applications. However, the general problem of con-
necting epidemiological curves with the underlying incidence lacks the highly effective methodology present in
other inverse problems, such as super-resolution and dehazing from computer vision. Here, we develop an un-
supervised physics-informed convolutional neural network approach in reverse to connect death records with
incidence that allows the identification of regime changes at single-day resolution. Applied to COVID-19 data
with proper regularization and model-selection criteria, the approach can identify the implementation and
removal of lockdowns and other nonpharmaceutical interventions (NPIs) with 0.93-day accuracy over the
time span of a year.
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INTRODUCTION
Inferring the underlying causative signal from the observed effector
response through a system extended in space, time, or both is a fun-
damental problem in many fields. The crucial challenge is to obtain
the input signal as a function of the system output. This type of
inverse problem is widespread in multiple disciplines and, in
many of them, such as computer vision, has reached highly sophis-
ticated levels (1, 2). Prominent examples include recovering the
scene radiance as if there were no perturbations along the line of
sight from the natural environment, as in dehazing (3), and decon-
volving the spread of an image, as in super-resolution single-mole-
cule localization microscopy (4) and deblurring (5). Compounded
with the spreading and perturbations of the signal, the unavoidable
presence of random noise further deteriorates the output and brings
about the need to use regularization methods (6).
Inverse problems in epidemiological systems involve inferring

the daily incidence, defined as new infections per day, from the
number of infection-caused deaths or positive testing individuals.
New daily infections over time provide the input signal. As the
disease progresses in an infected individual, it has a probability of
being detected and a probability of leading to death at every time
point after infection. Each of these probabilities depends on the
characteristics of the disease and is population specific, including
age structure, clinical resources, and testing capabilities (7). Daily
positive testing results and daily deaths provide the measured
outputs. This problem in epidemiology compounds multiple prob-
lems such as those present in computer vision. As in blurring, the
output of daily new infections is spread, in this case over time
instead of over space; as in hazing, the output provides distorted in-
formation because not all infections are detected or lead to death;
and, as in super-resolution, it needs to provide information at a

much finer level than the spread of the output. In addition, the
output is also inherently noisy due to, among others, the fundamen-
tal stochasticity of the testing and death processes. Because of all
these effects compounded together and the traditional widespread
lack of reliable field data availability, the methodology in epidemi-
ological systems has not been as developed as in computer vision
and other fields.
The state of the art in the field is epitomized by the deconvolu-

tion of daily cases or mortality time series to infer infection inci-
dence. For instance, death records have been used to infer the
influenza incidence through an iterative method with early stopping
as a regularization approach, which prevents the amplification of
noise originating from the inherent randomness of the death
process (8). Deconvolution of infection cases has also been used
to reconstruct the infection curves for severe acute respiratory syn-
drome (SARS) epidemics (9) through the expectation maximization
smoothing (EMS) method (10). In the case of coronavirus disease
2019 (COVID-19), there have also been recent refinements to
account for model misspecification and censored observations
(11) and to estimate new infections in real time (12). The prototyp-
ical state-of-the-art approach provides muchmore reliable informa-
tion than simply considering incidence as the number of newly
detected positive cases (13) but is not sufficient to provide a daily
incidence from which to infer discontinuities in transmission, as
determined by jumps in the instantaneous reproduction number,
which will change immediately following the implementation of a
nonpharmaceutical intervention (NPI) (14). The primary reason is
that these inverse approaches consider regularization methods that
promote a smooth continuous incidence.
Here, we develop a convolutional neural network approach in

reverse, termed dynamics-informed deconvolutional neural
network (DIDNN), to connect death records with incidence that
recovers the underlying dynamics with such a precision as to
allow the identification of regime changes at single-day resolution.
We address major challenges that in computer vision are not as ex-
acerbated, including the presence of a high dynamic range (three
orders of magnitude, ranging from zero to over a thousand deaths
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per day), increasing and decreasing exponential growth regimes
(doubling times and half-lives of ~3 days), kernels widely spread
over time [mean of ~20 days with standard deviation (SD) of ~10
days], and the presence of large amounts of noise (Poisson processes
with mean below one). To this end, we derive an objective function
to be optimized through the network that considers a suitable loss
for the underlying Poisson process; is quasi-scale invariant; and in-
cludes, following a physics-informed neural network (PINN) ap-
proach, the determinants of the epidemiological dynamics. The
PINN contribution to the objective function promotes sparsity in
the changes in disease transmission as defined by the underlying
renewal equation for the incidence. Methodologically, the approach
faces the challenges of deblurring with components of dehazing,
denoising, and super-resolution.
To benchmark the approach with field data, we focus on the

effects of major NPIs on the global spread of the COVID-19 out-
break (15). NPIs, aimed at controlling infection transmission
without medication or vaccines, can include measures as diverse
as social distancing, quarantine, travel restrictions, school closures,
and wearing face masks, among others. Being able to identify, with
single-day resolution, the implementation time of major NPIs from
the epidemiological data has not been achieved so far. It is impor-
tant from the biomedical point of view to test for potential differ-
ences in the clinical evolution of the disease over time and over
different countries (16). Existing analysis of restrictions, imposed
quarantines, lockdowns, and other NPIs have estimated a substan-
tially spread delay between the implementation of lockdowns and
their effects on the dynamics of the outbreak as measured by the
basic reproduction number from case counts (17). However, this
delay and spread should not be present in the infection transmis-
sion. Other approaches based on compartmental models (18) or
Bayesian analyses (19) have relied on the inclusion of temporal-spe-
cific information, namely, the date of the NPI, to estimate the am-
plitude of the effects (20).
The focus of our approach is to enable the acquisition of precise

knowledge about the NPIs that had an extensive impact on the ep-
idemiological dynamics, such as the earlier measures that trans-
formed the trajectory of the pandemics from growth to decline,
and how NPI effects depend on the context and the presence of
other NPIs. We have focused on the early stage of the COVID-19
outbreak because of its inherent interest and because it provides
stringent validation conditions for the approach. These conditions
allowed us to favorably contrast our results against well-defined
NPIs and well-characterized infection-to-death delays and genera-
tion times.
From a fundamental point of view, the COVID-19 outbreak pro-

vides a unique opportunity to contrast the methodology with
diverse types of field data. It has been among the most, if not the
most, well-studied and well-characterized pandemics in human
history. There have been rapid and extensive responses from the
global scientific community, as well as an unprecedented level of
global cooperation and coordination in responding to the outbreak.
The detailed characterization over small, controlled populations has
provided detailed information from the infection to death or recov-
ery and the chain of infections. This characterization involved
testing for the causative virus SARS coronavirus 2, identifying con-
tacts and the infection time, and following up the clinical evolution
(7, 21–23). Therefore, it is highly relevant to verify to what extent
this characterization holds at a large scale (country-wide level)

over diverse heterogeneous populations (different countries). A de-
tailed understanding of the outbreak, including how clinical and ep-
idemiological aspects are related to each other, is expected to
provide a substantial background to prepare for and respond to
similar situations in the future.

RESULTS
Convolutional approach
We have derived a physics-informed convolutional neural network
able to identify and quantify the distinct growth regimes of the ep-
idemiological dynamics as described below. Mathematically, new
infections (incidence) and deaths on day t are described as
Poisson processes with intensities it for the number of daily new in-
fections and λt for the number of daily deaths. The intensities of
these two processes are related to each other through the convolu-
tion

λt ¼
Xt� 1

τ¼0
f τrt� τit� τ ¼

Xt� 1

τ¼0
f τjt� τ ð1Þ

where fτ denotes the time from infection-to-death probability mass
function, which gives the probability for a death to have occurred on
day τ after infection, and rt refers to the infection fatality ratio (IFR),
which gives the probability for an individual infected on day t to die
according to fτ. We express the convolution in terms of the scaled
incidence jt = rtit, which represents the number of new infections on
day t that will eventually result in death. Throughout the derivations
below, we consider the time interval t ∈ [1, T ].

Scale-invariant probabilistic loss function
The number of daily deaths nt is assumed to follow a Poisson dis-
tribution with parameter λt

Pnt ¼
λntt
nt!

e� λt ð2Þ

which implies a log-likelihood function for λt given by

lðnt; λtÞ ¼ ntlnλt � λt � lnðnt!Þ ð3Þ

Therefore, the intensity of the Poisson process λt corresponds to
the expected number of daily deaths.
There are multiple loss functions that can potentially be used.

The focus is on growth rate changes, namely, relative changes,
which are invariant upon scaling of the population by a constant
factor. To effectively approximate this invariance in the loss func-
tion, which using the Stirling approximation can be rewritten as
lðnt; λtÞ ≃ ntln λtnt þ nt � λt , we weight the negative log-likelihood
function at each time point by (1 + λt)−1. We use (1 + λt)−1 as a
weight, instead of λ� 1t , to avoid undetermined results for sustained
time intervals with zero deaths. It leads to

LΛ ¼ �
1
Z

XT

t¼1

1
1þ λt

lðnt; λtÞ;with Z ¼
XT

t¼1

1
1þ λt

ð4Þ

as a loss function for the overall time interval. This loss function has
a minimum value for λt = nt, ∀ t ∈ [1, T ].
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Dynamics and regularization
The epidemiological dynamics is characterized by the renewal equa-
tion iðtÞ ¼

Ð1

0 kIðt; τÞiðt � τÞdτ, with kI(t, τ) being the rate of sec-
ondary transmissions per single primary case (24, 25). This
convolution equation provides the basis for the definitions of the
instantaneous reproduction number Rt ¼

Ð1

0 kIðt; τÞdτ and the
probability density of the generation time wðτÞ ¼ kIðt;τÞ

Rt
The instan-

taneous reproduction number Rt accounts for the transmission of
the infectious population at time t and the generation timew(τ) de-
scribes the infectiousness profile at time τ after infection.
We consider the discrete counterpart of the dynamic equations

and changes in the IFR at a slower time scale than the incidence, so
that the discrete renewal equation can be rewritten in terms of the
normalized incidence as

jt ¼ Rt
Xt� 1

τ¼1
wτjt� τ ð5Þ

where wτ is the probability mass function of the generation time.
We implement a regime-change-aware regularization approach

through

LR ¼
1

T � 1

XT� 1

t¼1
j lnRtþ1 � lnRtj ð6Þ

as regularization term in the objective function. This expression
implies sparseness in ∣lnRt+1 − lnRt∣, and therefore, it is suitable
to identify discontinuous changes in Rt. The logarithm is used to
account for expanding and decaying dynamics symmetrically.

Dynamics-informed convolutional neural network
Analogously to the stablished PINN approach, we initially consider
the loss function of the epidemiological dynamics as

LD ¼
1

T � 1

XT

t¼2
jt � Rt

Xt� 1

τ¼1
wτjt� τ

 !2

ð7Þ

This equation has a minimum when the dynamics of jτ is given
by Eq. 5. Strictly enforcing the epidemiological dynamics, LD = 0,
leads to Rt ¼ jt=

Pt� 1
τ¼1wτjt� τ, which allows the combination of LD

and LR into a unified loss

LRD ¼
1

T � 2

XT� 1

t¼2
ln
jtþ1
jt
� ln

Xt� 1

τ¼1
wτjt� τ

Xt� 1

τ¼1
wτjtþ1� τ

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

ð8Þ

which we use to include both the dynamics and regularization in the
objective function to be optimized by the neural network.
Explicitly, we infer the estimated scaled incidence Ĵ ¼ ð̂j1; . . .; ĵTÞ

as

Ĵ ¼ argmin
jt :8t[½1;T�

ðLΛ þ γLRDÞ ð9Þ

where γ sets the strength of the regularization contribution. In this
way, regularization prevents overfitting of the neural network by en-
couraging the model to follow the epidemiological dynamics

characterized by a renewal equation with discontinuous changes
in the instantaneous reproduction number.
The structure of the neural network is shown in Fig. 1. It is based

on a dual convolution neural network in reverse. Namely, the direct
approach infers the convolution kernels from input and output
signals. Instead, we infer the unknown signal (scaled incidence)
from the known kernels (time from infection to death and genera-
tion time probability mass functions) and output signal (daily
deaths). Therefore, we use as input layer the kernel with values fτ,
which is fed into a transposed convolution layer with weights jt,
which is both connected to the output layer with values λt and reg-
ularized according to the dynamics through a convolution with the
kernel wτ.

Model selection
Through model selection, we infer the optimal strength of the reg-
ularization term γ. We follow explicitly two approaches. Prospec-
tively, γ is selected according to the Akaike information criterion
(AIC) (26) as the value of γ that leads to the minimum of

LAIC ¼
X

locations
2
XT� 1

t¼2
Θðj lnRtþ1 � lnRtjÞ þ 2TLΛ

 !

ð10Þ

where Θ(·) is the Heaviside step function. The term
XT

t¼2
Θðj lnRtþ1 �

lnRtjÞ represents the number of parameters in the model, as shown
generally for the number of nonzero parameters in lasso problems
(27), and TLΛ is the minimum value of the negative loglikelihood
function for the model, expressed as the daily average negative lo-
glikelihood, used as a loss function, times the number of days. Ret-
rospectively, γ is selected as the value that minimizes the overall
mean squared error between inferred and actual NPI implementa-
tion times for all the locations.

Application of the approach reveals a discontinuous
incidence
We applied the approach to the identification of regime changes in
the COVID-19 infectious dynamics in European locations and to
the quantification of how these changes correlate with the timing
of NPIs. Explicitly, the expected number of daily deaths λt and
the scaled incidence jt were obtained by training the network over
the daily deaths with the generation time wτ and infection-to-death
kernels fτ as inputs (Fig. 1). The focus is on locations with the exact
date of death on record to target the precision of the approach at the
single-day level, which is substantially smaller than the observed >3-
day average delay in reporting deaths (28, 29), and on the first year
of the outbreak, the period that concentrated major NPIs before the
widespread evolution of viral variants, substantial vaccination, and
large levels of acquired immunity.
The results (Fig. 2), after model selection with the strength of the

regularization term γ = 2.51, show the daily deaths fluctuating
around their inferred expected values λt without any substantial
bias, with higher relative fluctuations at low expected values. The
overall average value of the relative fluctuations, quantified as 〈(nt
− λt)2/λt〉, is 1.22 deaths/day. The fact that this value is essentially
1 confirms the ability of the network to consistently track the
nature of the underlying Poisson process over a wide dynamic
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range, represented on a logarithmic scale, from values below 1 up to
above 103, with both expanding and decaying dynamics.
In stark contrast to the smoothness of the expected number of

deaths λt, the network leads to a rugged, discontinuous behavior
for the scaled incidence jt. These discontinuities, as implied by
the infection transmission described by Eq. 5, originate from a dis-
continuous behavior in the instantaneous reproduction number.
The key question is if the incidence recovered from the smooth fit
to daily deaths accurately describes the epidemiological dynamics.
In general, the inferred changes in the instantaneous reproduction
number can correspond to the regime changes or to optimal seg-
mentations of a continuously changing dynamics. The ability of
the approach to capture the effects of NPIs, which are expected to
lead to regime changes, provides a stringent validation avenue.

Validation identifies regime changes with major NPIs
Explicitly, the validation of the approach is conducted by predicting
the precise timing ofmajor NPIs, including the implementation and
removal of lockdowns and other restrictions in social interactions
(table S1). The date of the NPI is inferred as the date of the
largest Rt change in a 9-day window centered at the date of a record-
ed NPI.We define the offset, Δ, as the inferredminus the actual time
of the NPI.
For the initial stages of the outbreak, the approach accurately

identifies the dates of the major lockdowns and social restrictions,
with an overall offset for all locations of 0.22 (mean) ± 0.63 (SD)
days (Fig. 3). These results are particularly remarkable both in

their precision—considering that incidence stochastically spreads
into deaths with a delay of 19.3 days, on average, and width of
±9.1 (SD) days—and in their uniformity, with all the parameters
of the network being the same for all the locations, including the
value of the regularization term. For the whole period considered,
the approach retained the accuracy at the single-day level, with an
overall offset of −0.07 ± 0.92 days (Fig. 4). In addition to the high
concordance across countries uncovered in the initial stages of the
outbreak, identification of NPI timings over a year also highlights
the consistency over time, as no systematic biases are observed.
The NPIs involved comprise a wide range of measures imple-

mented to reduce the transmission of infections (table S1). The ear-
liest ones identified for each country in the year 2020 illustrate this
diversity. They include the quarantine of 11 municipalities in
Northern Italy on 22 February; the nationwide lockdown in Spain
on 14 March; prohibition of gatherings of more than 10 people and
closing of all shops, except grocery stores and pharmacies in
Denmark on 18 February; cancellation of classes in all educational
establishments, banning all events involving more than 100 people,
and partial closing of borders in Switzerland on 13March; andmul-
tiple public event cancellations, including major sporting events in
England on 13 March. Many of these measures were followed by
more stringent ones, such as a subsequent nationwide lockdown
in England on 23 March, or more widespread ones, such as the can-
cellation of exhibitions and events and the closing of all schools and
universities nationwide in Italy on 4 March. Measures such as
masking were identified as implemented together with other

Fig. 1. Structure of the DIDNN for super-resolution identification of epidemiological regime changes. ACNN is used in reverse. The inputs consist of the filters of the
two convolutions,wτ and fτ, and the daily deaths, nt. The daily scaled incidence jt is obtained after minimization of the objective function through backpropagation, which
includes both data, LΛ, and dynamics-informed, LDR, losses. The forward convolutions lead to the estimated expected daily deaths, λt, (convolution 1), and to the es-
timated instantaneous reproduction number, Rt (convolution 2).
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Fig. 2. The DIDNN infers an irregular, discontinuous incidence through the smoothed dynamics of the fluctuating daily deaths. The scaled incidence (filled dark
cyan curve) for the different locations follows from the corresponding number of daily deaths (magenta dotted line) through the smooth time courses of their expected
value (orange lines).
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measures, as in Switzerland on 23 October, or as a stand-alone
measure, as in Italy on 8 October. The effects of lifting NPIs were
not as marked as their implementation, partly because they were
generally more progressive than their implementation. The major
ones identified are the restoration of international travel in Spain
on 1 July, with the concurrent restart of its large tourism industry,
and the relaxation of measures allowing up to 300 people to stay in
bars, restaurants, and clubs in Switzerland on 24 September.
The case of England, with an overall offset of 0.12 ± 0.93 days, is

particularly relevant to illustrate the temporal invariance of the clin-
ical and epidemiological dynamics, as all the major discontinuous
changes correspond to major NPIs (Fig. 4). These NPIs included,

among others, the implementation of the first, second, and third
nationwide lockdowns on 23 March, 5 November, and 6 January,
respectively, and lifting the second one on 2 December. The corre-
sponding offsets were, chronologically, 0, −2, 1, and 1 days (table
S1). Besides the clinical parameters of the disease remaining statisti-
cally invariant over time, a major reason for this excellent agree-
ment is the number of daily deaths remaining always at high
values, with the lowest value of λt never crossing 10 deaths/day
(Fig. 2). In contrast, the approach missed the progressive lifting of
NPIs from May to September in countries with extremely low
deaths (Switzerland and Denmark), which reached values of λt
below 0.2 deaths/day (Fig. 2). The quality of the data also plays a
substantial role. In the case of Italy, there are major changes in Ju-
ne–August for Rt inferred from deaths in July–September with
similar overall values to those of England but with an unusual dis-
tribution, dichotomously alternating randomly between zero and
values around 10 deaths/day. Concomitantly, there was no
support to potentially associate the resulting changes in Rt for
Italy with obvious NPIs during this period.

Super-resolution identification of implementing and
lifting NPIs
Our results also show that there are nomajor mechanistic differenc-
es between implementing and lifting NPIs. As a clear example,
lifting of the second England nationwide lockdown in December
2020 and implementation of the third one in January 2021 were
both inferred to happen within 1 day of their actual date (Fig. 4
and table S1). In this case, lifting and implementing an NPI
happen at a similarly high incidence, which is not generally the
case. Systematic statistical differences may arise, in general,
because low incidence parallels high fluctuations and lifting NPIs
sides with low incidence, which makes it more challenging to
infer properties of the dynamics (30). This difference is also impor-
tant when concurrent measures are applied because lockdowns
affect mostly regions with high incidence and would be more no-
ticeable than releasing restrictions in low-incidence regions,
which might be hidden by the high-incidence regions.
Together, the distribution of the offset of NPI inferred times is

much narrower, about an order of magnitude narrower, than the
distribution of infection-to-death delay used in the inference
process (Fig. 5). Such a precision constates that the approach pre-
sented here, by incorporating the epidemiological dynamics, pro-
vides a super-resolution identification of NPI timings comparable
to the general state of the art in traditional nondynamical scenarios,
such as super-resolution localization microscopy (4), a technique
used to enhance spatial resolution in imaging, and biomolecular
imaging in cells (31), a method used to visualize cellular processes
at a molecular level. Here, the date of the NPI is identified as the
actual date, the day before, or the day after in 86% of the cases
(Fig. 5). This result is remarkable also because the fundamental
problem of inferring the timing of an NPI requires locating relative
changes in the number of events (infections) rather than the events
themselves (emission of photons).
The epidemiological dynamics plays a fundamental role through

the strength of the regularization term. The value of γ = 2.51 corre-
sponds to the retrospective model selection approach and provides
the optimal constraint. This value can be estimated prospectively
through the AIC. In this case, it is essential to have the proper prob-
abilistic model for the data. Excluding Italy, which strongly deviates

Fig. 3. Discontinuous changes in the instantaneous reproduction number are
accurately associated with NPI timings. The detail of the early-stage dynamics
for the scaled incidence, jt, as in Fig. 2 and color-coded in each panel from light (1
individual/day) to dark (103 individuals/day) tones, shows an underlying stepwise
instantaneous reproduction number, Rt (black dots). The offset, Δ, between NPI
timings (cyan vertical lines) and major Rt changes is indicated for each location
in days as mean ± SD, with an overall offset for all locations of 0.22 ± 0.63 days.

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Vilar and Saiz, Sci. Adv. 9, eadf0673 (2023) 14 July 2023 6 of 11



Fig. 4. The infection-to-death dynamics remains homogenous across locations and over time. The time courses of Rt and jt accurately track the major NPIs over a
year with the same distribution of infection-to-death delay (average of 19.3 days and SD of 9.1 days). Rt, jt, and NPI timings are represented as in Fig. 3. The offset, Δ,
between NPI timings and major Rt changes are indicated for each location in days as mean ± SD, with an overall offset for all locations of −0.07 ± 0.92 days.
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from the Poisson death statistics in July–September, model selection
led to a similar value γ = 2.00, which resulted in an overall offset of
0.00 ± 1.10 days. This concordance indicates that the unsupervised
approach can generally identify regime changes at the single-day
resolution.

DISCUSSION
We have derived a DIDNN to infer the underlying epidemiological
dynamics at single-day resolution from death records. The main
computational challenge has been to transfer the information in
highly fluctuating daily deaths backward in time to new infections
and forward again to infection transmissibility changes through two
kernels up to the identification of regime changes at the single-day
level. The kernels have a spread as large as a 9.1-day SD with a 19.3-
day average delay. In this regard, the increase in resolution of the
prediction is a factor 10× over the information available at the
daily death level. A key aspect of the success of the approach has
been the incorporation of the epidemiological dynamics with
proper regularization into the network through a PINN-based
methodology (32–34). This development allowed the approach to
infer discontinuities in the instantaneous reproduction number to
account for NPIs. At a fundamental level, our results show that an
apparently smooth death dynamics does not result from a similarly
continuous evolution of new infections but from a discontinuous,
non-differentiable incidence dynamics. Additional aspects were the
consideration of the proper fluctuation model (Poisson process)
and scale invariance (dynamics governed by relative changes, not
absolute changes) in the objective function.
Previous approaches to identifying the effects of NPIs relied pri-

marily on tracking the case-based reproduction number over time.
In these instances, it has been argued that the effects of NPIs are
delayed from 7 days (35, 36) up to 3 weeks (17, 37) for the imple-
mentation and an extraweek (17) up to a total of 4 weeks (37) for the
lifting. In part, these delays arise from considering incidence as the
number of newly reported cases rather than new infections, which
introduces at least a delay of a week from the average time from in-
fection to symptom onset. This delay is compounded with the time
lag from symptom onset to reporting. On the methodological side,

there are also delays introduced by averaging in real time, both by
noncentered moving averages over the data and by the inherent av-
eraging procedure used to compute the instantaneous reproduction
number (38). Overall, all these processes lead to delayed blurring of
the actual incidence. The advantages of using case counts are that
their numbers are substantially larger than deaths, therefore reduc-
ing the noise, and that the average delay from infection to illness is
shorter than to death, therefore allowing for an easier mathematical
estimation without performing the needed deconvolutions. The dis-
advantages are the potential lack of testing capabilities, which were
extreme in the early stages of the COVID-19 pandemic, and the still
undetermined nature of the delays. Uncertainties in the case-based
approach become even greater in a contact-tracing context, as
asymptomatic cases can typically be detected up to 4 weeks after in-
fection (39). Therefore, case-based approaches are generally not
suitable for the time period we considered nor to target resolutions
at the single-day level.
Our results, in contrast, show that the effects of major NPIs gen-

erally happen instantaneously in the disease transmission, as gener-
ally expected (14) and as assumed in previous approaches that relied
on death counts to infer the effects of NPIs with known implemen-
tation dates (19). The instantaneous effect of NPIs is a critical com-
ponent of the response to infectious diseases and has far-reaching
implications beyond reducing transmission. Therefore, our ap-
proach provides an unsupervised avenue for quantifying this
effect in disease control and for better understanding its correlation
with the resulting downstream effects, such as the impact on health
care systems. Having precise information is crucial for weighing the
potential benefits of NPIs against their broad impact on other
aspects of society, including economics, psychology, and public
opinion. It enables informed decision-making by policymakers
and economists, facilitating the assessment of NPIs and their
impact on economic stability. In addition, the knowledge of how
NPIs can lead to regime changes in the epidemiological dynamics
can influence individual and collective behavior, fostering public
trust, compliance, and psychological well-being. Furthermore, this
information informs public discourse, potentially shaping opinions
and fostering a deeper understanding of the complex interplay
between public health measures and societal impacts.
From the epidemiological side, our results show that the same

kernel for the infection-to-death time distribution can accurately
account for the timing of major NPIs over multiple countries
over the time span of a year. This consistency implies the same
properties for the underlying clinical features of the disease over
time and over similar populations (European countries that record-
ed death dates). In this regard, the kernel we used is the same as the
one used in previous studies (19) with the consideration that deaths
occur, on average, 3.6 days earlier than their reporting.
It is also possible to directly apply our approach to populations

under conditions that strongly differ from those of the European
countries considered here explicitly, as in countries in which
limited access to health care led to faster and more deaths, com-
pounded with substantial underreporting. The limiting step is the
availability of the kernel that connects incidence with death
records. If the probabilistic descriptions for the delay in reporting
deaths, the underreported deaths, and the infection to death were
available, then it would be possible to obtain a composite kernel,
so that our approach could be applied straightforwardly. With
this information, it would also be possible to estimate, as reflected

Fig. 5. Super-resolution identification of NPI timings. The distribution of the
offset of NPI inferred times (orange bars, left axis), with 0.92 SD, is much narrower
than the distribution of infection-to-death delay used in the inference process
(gray curve, right axis), with 9.1 SD.
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in departures from the expected regime changes in the inferred ep-
idemiological dynamics, to what extent NPI implementation was
erratic and partial in effectiveness in these countries.
In the absence of essential information to estimate the kernel

that connects incidence with death records, it would still be possible
to use the approach, swapping the inference goal, to find the kernel
that best captures the timing of well-characterized NPIs rather than
to infer the NPIs themselves. This strategy would involve, for in-
stance, a grid-search of a parametrized kernel that minimizes the
mean squared distance of the timings between reference NPIs and
the corresponding regime changes. The analysis of the inferred
kernel would be potentially useful to get insights into the disease
progression and its reporting that were not readily available.
From the decision-making point of view, the most direct impli-

cation of our approach is to provide precise knowledge about the
NPIs that had an extensive impact on the epidemiological dynam-
ics, such as the earlier measures identified that changed the course
of the pandemics from growing to decaying in the five countries an-
alyzed explicitly. A most interesting result is the lack of regime
changes after the early lockdowns up to the summer in Spain and
England, which retained sustained instantaneous reproduction
numbers below one. During this period, protective masks became
mandatory in public spaces, and both countries progressively lifted
social interaction restrictions. Therefore, the use of protective
masking had minor effects under lockdown conditions, and the
subsequent lifting of many restrictions under masking conditions
had limited effects. These results highlight that NPI effects in the
epidemiological dynamics are context dependent and can effective-
ly saturate. We identified mask requirements as having a strong
impact in an expanding phase, as observed with the mandatory
use of protective masks in Italy on 8 October 2020.
We have focused on the early stage of the COVID-19 outbreak

because of its inherent interest and because it provides stringent val-
idation conditions for the approach. These conditions allowed us to
favorably contrast our results against well-defined NPIs and well-
characterized infection-to-death delays and generation times. As
the pandemic evolved into the year 2023, vaccination, acquired im-
munity, and new viral variants changed the clinical progression and
epidemiological dynamics. Therefore, the applicability of the ap-
proach to this new scenario would need the infection-to-death
and generation-time kernels to be reparametrized. Vaccines, NPIs,
and other mitigation strategies at play have also substantially
reduced the number of deaths, which in the case of England, for
instance, has gone from more than 1000 daily deaths in April
2020 and January 2021 to a sustained ~50 to 100 daily deaths in
the last 6 months of the year 2022. Therefore, Poisson noise has
become higher than earlier in the pandemic, and consequently,
the difficulty of extracting signals from death records has increased.
However, the reported number of cases has become more reliable
and better characterized than in the early stages, which would
make it possible to mitigate potential Poisson noise effects by adapt-
ing the approach to deconvolve both death and, with an appropriate
infection-to-case reporting kernel, case records simultaneously.
From the computational point of view, our results have paved the

way for the inclusion of fully-integral dynamic equations into
PINNs, which have traditionally been restricted to systems with dif-
ferential time evolution, such as PDEs, ODEs, and integrodifferen-
tial equations (40). More broadly, our approach has provided an
avenue to generally implement complex model-aware

regularization protocols in deconvolution methodologies (41) and
to explicitly use the dynamics of the system as a part of the regular-
ization process.

MATERIALS AND METHODS
Field data
The data were downloaded from the “The Demography of COVID-
19 Deaths” curated database (42) except for England. The United
Kingdom reports by default deaths within 28 days of a positive
test, which misses a substantial part of deaths. For England, we con-
sidered daily “deaths within 60 days of a positive test by death date”
(43), which provides a more stringent compromise between deaths
by and deaths with COVID-19.
Data for NPIs were obtained from online resource (44) and NPI

dataset (20). Multiple consecutive NPIs were assigned the middle-
point date rounded to days. The 9-day width of the window to infer
the NPI date was chosen as the middle point of the range that does
not affect the results, which extends from 5 to 13 days. Five days is
the minimum value that covers the maximum offset of ±2 days, and
13 days is the maximum value that does not include the two NPIs
closest to each other, which are 7 days apart.

Kernel parametrization
The kernels are parametrized according to the available clinical and
field data and are based on previous parametrizations (19). The gen-
eration time kernel, wτ, follows a gamma distribution with a mean
of 6.3 days and an SD of 4.2 days (19). This parametrization is the
same as for the serial interval (45) and is consistent also with the
characterization using U.K. household data, which led to similar
average (5.9 days, 95% credible interval 5.2–7.0 days) and SD (4.8
days, 95% credible interval 4.0–6.3 days) (46).
The time from infection-to-death kernel, fτ, has been estimated

to approximately follow a gamma distribution with 22.9-day mean
and 9.1-day SD for reported deaths (19). Because we use actual
death dates, we shortened the mean to 19.3 days to account for
the reporting delay (28, 29). The values selected are consistent
with U.K. field data estimates for the time from infection-to-
death distributions, with average values in the range from 17.4 to
24.7 days (47).

Computational implementation
The overall approach was implemented in Keras (48) with custom
losses coded in TensorFlow (49). The network was trained with the
AdaMax optimization algorithm (50) and variable learning rate, de-
creasing from 104 to 10−4 with an exponential schedule. Logarithms
of quantities susceptible of being zero were calculated with 10−1

added to them to avoid divergences during the training process.
For each country, we considered 41 independent values of the reg-
ularization term, equally spaced on a logarithmic scale, from γ =
10−1 to γ = 10. In model selection, the quantity ∣lnRt+1 − lnRt∣
was considered to be zero for values below 10−3.
Because sparse regularization is nonlocal, the initial growing

trend was propagated backward in time to avoid the effects of the
widespread loss of the death counts (lack of diagnosis) during the
very early stages of the outbreak. The cutoff time, Tc, to initiate
backward propagation was set for each country as the last day the
cumulative number of deaths was smaller than 1% of the
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maximum daily deaths. The growing trend, κ ¼
XTcþ14

Tcþ8
nt=
XTcþ7

Tcþ1
nt , was

quantified as the total number of deaths in the second week over
those in the first week after the cutoff time. The propagation was
performed backward in time for the m week before the cutoff
time by taking the scaled 3-day centered moving average of the
first week after the cutoff as ~nt� 7m ¼ κ� m 1

3 ðnt� 1 þ nt þ ntþ1Þ for
t ∈ [Tc + 1, Tc + 7].

Supplementary Materials
This PDF file includes:
Legend for table S1

Other Supplementary Material for this
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