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Abstract: The rapid pace of innovations and the frequency of replacement of electrical and electronic
equipment has made waste printed circuit boards (WPCB) one of the fastest growing waste streams.
The frequency of replacement of equipment can be caused by a limited time of proper functioning
and increasing malfunctions. Resource utilization of WPCBs have become some of the most profitable
companies in the recycling industry. To facilitate WPCB recycling, several advanced technologies
such as pyrometallurgy, hydrometallurgy and biometallurgy have been developed. Bioleaching
uses naturally occurring microorganisms and their metabolic products to recover valuable met-
als, which is a promising technology due to its cost-effectiveness, environmental friendliness, and
sustainability. However, there is sparse comprehensive research on WPCB bioleaching. Therefore,
in this work, a short review was conducted from the perspective of potential microorganisms, bi-
oleaching mechanisms and parameter optimization. Perspectives on future research directions are
also discussed.

Keywords: waste printed circuit boards; electronic waste; sulfur-oxidizing bacteria; biometallurgy;
bioleaching mechanism

1. Introduction

Rapid technological innovation has greatly shortened the life cycle of electronic prod-
ucts [1,2]. The massive generation of waste electrical and electronic equipment (WEEE)
has displayed exponential growth with a rate of more than 3–5% annually. In 2016, the
global amount of electronic waste, so called e-waste, was approximately 44.7 million metric
tons (Mt) and has reached 57 Mt in 2021 [3,4]. Printed circuit boards (PCBs) are a major
and critical constituent of electrical and electronic equipment [5] and the resultant waste
PCBs (WPCBs) account for approximately 3–6 wt.% of total e-waste [6,7]. These WPCBs
contain various precious metals, such as gold (Au), silver (Ag) and palladium (Pd) with
concentrations tens or hundreds of times larger than than the natural ores [8,9] and have
been regarded as an “urban mine” (Figure 1). According to the content of Au, the WPCBs
could be divided into low (100 g/t), medium (100–400 g/t), and high (400 g/t) grades [10].
Their net present value varies from 6.8 million € for medium-grade ones to 63.0 million €
for high-grade ones [11].

In the past few decades, landfilling, combustion and informal processing activities [12],
such as acid stripping and open burning have led to significant environmental pollution.
Oloruntoba et al. [13] assessed the status of polybrominated diphenyl ethers (PBDEs) con-
tamination at e-waste dumpsites in Lagos, Nigeria. PBDE levels across the soil profile
(0–45 cm depth) showed an increase in PBDE accumulation in the topsoil and migration
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into the sub-soil. Sediments and rainwater ponds around the dumpsites were found to
be contaminated as well. Abubakar et al. [14] studied the heavy metal concentrations,
in relation to threshold values, and assessments of risk for noncarcinogenic and cancer
risk threat. Pb had the highest mean concentration of 0.0693 ppm, Cu 0.0525 parts per
million (ppm), and Cd 0.0042 ppm. The informal e-waste burning had resulted in the
substantially high levels of air pollution identified at the treatment points and in turn posed
a threat to the environment and public health. Recently, many advanced technologies
have been developed to facilitate metal recovery from WPCBs, including pyrometallurgy,
hydrometallurgy, physico-mechanical separation, electrolysis, supercritical fluid, and bi-
oleaching (Table 1). Among them, the pyrometallurgical processes are generally operated at
300–900 ◦C [15,16] and have the disadvantage of high energy consumption and expensive
capital investment [17]. Hydrometallurgical processes use cyanide, halide, thiourea and
thiosulfate to recover metals [18], consuming large amounts of chemical reagents as well as
producing a large volume of effluents. Mechanical beneficiation operations such as gravity
air classifiers, eddy current separation, and magnetic separation have been widely used in
e-waste recycling plants worldwide. However, the recovered metals are mixed, and need
be refined [19].
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Table 1. The comparison of different technologies of WPCB treatment.

Technologies Advantages Disadvantages References

Physico-mechanical
separation

Simple operation, good economic
benefit, and small

environmental pollution.

Recovered metals need to be refined.
Non-metallic fractions are generated, and

volume reduction is not significant.
[20–22]

Pyrometallurgy Significant volume reduction, high
treatment efficiency.

High energy consumption and
expensive capital investment. [23–25]

Electrolysis
Simple flow sheet, low energy

consumption, high output and low
environmental pollution.

WPCB must be pretreated, i.e.,
pre-leaching or supercritical water

oxidation.
[26–28]

Hydrometallurgy Short process, high efficiency. Consumes large amounts of chemical reagents
and produces a large volume of effluents. [29–31]

Supercritical fluid Short process, high efficiency. High energy consumption and small
treatment capacity. [32–34]

Bioleaching Benefits in terms of low-cost and
environmental friendliness

Having a relatively low efficiency and
time-consuming. [35–37]
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Bioleaching uses a variety of microorganisms, including chemolithotrophic prokary-
otes, heterotrophic bacteria and fungi to mobilize metals from WPCBs based on the three
following mechanisms (Figure 2). (1) Transformation of organic or inorganic acids (pro-
tons); (2) Oxidation and reduction reactions; and (3) Excretion of complexing agents [38].
It overcomes the problems of high energy consumption, serious environmental pollution
and complex operation and thus has been regarded as a promising method for metals
recovery [39]. Recently, different leaching techniques have been developed. In laboratory-
scale investigations, percolator leaching, submerged leaching and column leaching are
employed. For industrial-scale purposes, dump leaching, heap leaching, underground
leaching and tank leaching are applied [40]. Kumar et al. [41] used Pseudomonas balearica
SAE1 to achieve the dissolution of Au and Ag, resulting in a recovery of 68.5% Au, and
33.8% Ag, at pH of 9.0, pulp density of 10 g/L, temperature of 30 ◦C, and glycine concen-
tration of 5 g/L. Zhou et al. [42] proposed biological detoxification and comprehensive
utilization of non-metal residue from waste copper clad laminate. The leaching rate of
metal was close to 100% and was 8.7% higher than that by dilute sulfuric acid leach-
ing. It further demonstrated the potential of microorganisms and the feasibility of the
bioleaching approach. The bioleaching of WPCBs has been attempted however, there are
sparse systematic studies on this topic. The bioleaching mechanism and optimization of
leaching conditions are not clear, and need be further probed. Therefore, a short review
was conducted from the perspective of potential microorganisms, bioleaching mechanism
and parameters optimization. The perspectives on future research directions were also
discussed. Promotion of experimental scale studies to a larger scale in practice is expected
to speed up e-waste recycling and result in zero waste buildup in China.
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2. Microorganisms

Microbes were found to have the ability to extract metals a long time ago, therefore
microbial technology has been more developed. It has long been noticed that initially mi-
croorganisms were only used to extract metals from mine resources. The use of microbial in-
teractions on mineral substances is gaining practical significance. Leaching metals from ores
makes it possible to obtain solutions, for example copper or uranium, from which these met-
als can be recovered using hydrometallurgical processes. Microbes also offer the possibility
to recover metals from e-waste. In the bioleaching process, the growth of microorganisms
usually involves two stages. The reaction of organic sugar and acid with WPCBs takes place
in the first stage, while the second—the development of microorganisms [43]. Most often,
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bioleaching is carried out in an acidic environment, using processes such as the oxidation
of sulphur or its reduced compounds to sulfuric acid and the production of, for example,
organic acids in oxygen respiratory cycles or as a result of fermentation of carbohydrates.
The microorganisms involved in the leaching include not only bacteria (Acidithiobacillus,
Thiobacillus), but also fungi (Penicillium/Aspergillus/Fusarium/Alternaria Candida).
Iron and sulfur-oxidizing bacteria (e.g., Acidithiobacillus ferrooxidans, Leptospirillum
ferrooxidans and Acidithiobacillus thiooxidans) are widely used in bio-hydrometallurgical
process [44]. Generally, there are two different ways of heterotrophic and autotrophic
bioleaching (Figure 3), and three groups of microorganisms could be microbial
candidates applied for WPCB recovery, including chemolithotrophic prokaryotes (e.g.,
Acidithiobacillus thiooxidans, Acidithiobacillus ferrooxidans), heterotrophic bacteria
(e.g., Chromobacterium violaceum, Pseudomonas sp., and Bacillus megaterium) and fungi (e.g.,
Aspergillus niger, Penicillium simplicissimum).
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2.1. Autotrophic Bioleaching

The chemolithotrophic organisms use atmospheric carbon dioxide as a carbon source
and inorganic compounds such as ferrous iron (Fe2+), elemental sulfur (S◦) and/or reduced
sulfur compounds (S8, S2O3

2−, H2S and polysulfide) as an energy source [45]. These
characteristics facilitate metal dissolution through a series of bio-oxidants and bioleaching
reactions [46]. According to their preferred temperatures, the chemolithotrophic organ-
isms could be classified as mesophiles (28–37 ◦C), moderate thermophiles (40–60 ◦C) and
thermophiles (60–80 ◦C). Most of them grow at a low pH of 2.0 or below, and have a
high tolerance for heavy metal toxicity [47]. Acidithiobacillus ferrooxidans (A. ferrooxidans)
was the most well-known and extensively studied microorganism in biometallurgical ap-
plications. Bai et al. [48] used A. ferrooxidans to leach heavy metals from WPCB sludge.
The leaching rates of Cu, Ni, and Zn reached 76%, 74%, and 72%, respectively, under the
optimized conditions of FeSO4·7H2O concentration of 60 g/L, initial pH of 0.5, reaction
time of 6 days. In addition to A. ferrooxidans, other species such as Acidiferrobacter thiooxydans
(A. thiooxydans), Leptospirillum ferriphilum (L. ferriphilum), Ferrimicrobium acidiphilum
(F. acidiphilum), Sulfobacillus thermosulfidooxidans (S. thermosulfidooxidans) were also investi-
gated [49]. Ilyas et al. [50] found the selected moderately thermophilic strains of a mixed
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adapted consortium of acidophilic chemolothotrophic and acidophilic heterotrophic bacte-
ria could recover 80% Zn, 64% Al, 86% Cu and 74% Ni from WPCB after an acid pre-leaching
of 27 days and a bioleaching of 280 days. As compared to using single microbial species, the
utilization of different types of chemolithotrophic organisms might yield a better result. It
is worth noting that WPCBs are alkaline in nature and more acid was needed to neutralize
them, so as to maintain an optimum pH for the microorganisms.

2.2. Heterotrophic Bioleaching

Heterotrophic bacteria and fungi are the main microorganisms of heterotrophic bi-
oleaching, relying on organic compounds as energy sources in their metabolism. In the
growth phase, they secrete different organic acids such as lactic, citric, oxalic and gluconic
acids as well as enzymes [51], which could be used in the leaching process. In contrast to
chemolithotrophic organisms, they can tolerate a wider range of pH as well as complex met-
als and are employed for treating moderately alkaline wastes [52]. More importantly, in the
case of some types of WPCB that lack metal sulfides and cannot provide a sufficient supply
of energy sources, heterotrophic bioleaching is regarded as a more promising method.

2.2.1. Heterotrophic Bacteria

Heterotrophic bacteria produce acids during bacterial leaching. The byproducts could
be utilized to dissolve metals. Cyanogenic bacteria that produce CN are considered the
most typical ones. According to the report [53], the first acidophilic heterotrophic bac-
terium which is indigenous and active in mineral leaching environments was isolated and
characterized some 40 years after the iron/sulfur-oxidizing chemolithotroph T. ferrooxidans
and 70 years after the sulfur-oxidizing acidophile T. thiooxidans. After that, more active
metal-solubilizing bacteria were isolated and characterized. Various Pseudomonas species
were used in the bioleaching of Cu, Au, Ag, Pt, and Zn. Chromobacterium violaceum was
used in the bioleaching of Au from high-grade cell phone WPCBs, reaching a recovery tate
of 10.8% Au in 8 days [54].

2.2.2. Fungi

Fungi produce a large amount of organic complexing agents, including citric acid,
tartaric acid, oxalic acid, and even carboxylic acids, inducing the solubilization of metals
from WPCBs by regulating redox potential and acidity during the fungal bioleaching
process, and acidolysis, and redoxolysis mechanisms have been described [55]. Typically,
this process is carried out at a relatively higher pH (9.0–10.5) and the fungi are able to adapt
to high pulp densities of 10% (w/v) [56].

Fungal species like Penicillium chrysogenum, Aspergillus niger and yeast have been
thoroughly investigated for bioleaching of metals from solid industrial wastes [57]. Ac-
cording to recent studies, the Penicillium chrysogenum strain KBS3 achieved a maximum
solubilization of nickel (55%), copper (67%), magnesium (69%), cobalt (60%), and zinc (65%)
from mine tailings [58]. A study was carried out on Aspergillus niger in the bioleaching of
metals from fly ash [59]. A recovery rate of 56.1% for Cu, 15.7% for Al, 20.5 % for Pb, 49.5%
for Zn and 8.1% for Sn were achieved.

It is worth mentioning that the metals in WPCBs could be extracted by bioleaching,
however, a significant amount of nonmetallic fraction is left out and remains of great
environmental concern. Numerous attempts have revealed that the microorganisms not
only have the ability for metal extraction but also are promising for the degradation of
plastics. An increasing number of isolates of bacterial (e.g., Bacillus, Rhodococcus), fungal
(e.g., Aspergillus, Penicillium), and bacterial consortia (e.g., Souda and Agios, Bacillus cereus
and Bacillus sphaericus) with degradation properties and effects on organic compounds
have been identified [60]. Senophiyah-Mary et al. [61] revealed that the microbes used
for bioleaching had potential for deteriorating plastics, particularly with the assistance of
sunlight, UV, etc.
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3. Bioleaching Mechanisms

It should be noted that the mechanisms of microbial interaction are not very clear. The
stages of contact and non-contact mechanisms (which are currently known) are presented in
Figure 4. For A. ferrooxidans, the main mechanism is indirect, where metals are dissolved
through the prior oxidation of ferrous ions. In the case of A. thiooxidans, conversion of
metals into a soluble state is mostly done by sulfuric acid production [62]. According to
literature sources, in some cases contact bioleaching dominates over the non-contact one,
influencing a larger metal recovery process. Mishra et al. [41] explained that it was mainly
because the direct mechanism involved direct physical contact of microorganisms with
target material surfaces.
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3.1. Contact Bioleaching

In contact bioleaching, there is physical contact of the microorganisms with metal sul-
fide (e.g., Pyrite, FeS2). Metal solubilization takes place when bacteria such as
A. ferrooxidans oxidize the metal sulfides and directly obtain electrons from the reduced
materials. When the Fe3+ from the extracellular polymeric substances (EPS) layer accepts
an electron, it will be reduced to Fe2+ and diffuse towards the outer membrane, where the
ion may be re-oxidized to Fe3+ again. The hydrolytic reaction of Fe3+ may also be inhibited
in acid conditions.

S0 + O2 + H2O→ H2SO3 (1)

2H2SO3 + O2 → 2H2SO4 (2)

Me + Fe3+ + H+ + O2 →Me2+ + Fe2+ + H2O (3)

4FeS2 + 14O2 + 4H2O→ 4FeSO4 + 4H2SO4 (4)

4FeSO4 + O2 + 2H2SO4 → 2Fe2(SO4)3 + 2H2O (5)

Silva et al. [63] studied the influence of contact mechanisms during Cu bioleaching
from WPCBs using a partition system. A reduction of 25% in the extraction was observed,
when the contact mechanism was disabled. The bacterial attachment to the WPCB surface
was proven to be 4.3 × 107 cells/g, implying that the disabling of bacterial attachment
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was the only reason for the decrease in the extraction efficiency. To better understand
the mineralogical effect of EPS, the micromorphologies of residues after bioleaching were
analyzed [64]. Intensive adsorption sites such as rills and micropores were observed
on the mineral surface, implying a stronger contact mechanism. Sulfur-oxidizers such as
A. thiooxidans generally showed a greater dependence on these for their adsorption behavior.
Interestingly, the size of the micropores was found to be consistent with the cell size of
A. caldus.

3.2. Non-Contact Bioleaching

In non-contact bioleaching, a ferric-ferrous cycle exists, which involves planktonic
(free-living) bacteria oxidizing Fe2+ to Fe3+, as well as converting sulfur species to sulfuric
acid; and the Fe3+ ion accepting electrons from metal sulfides and reducing them to
Fe2+ in turn. In the process, metal solubilization could be described according to the
following reaction:

4Fe2+ + O2 + 4H+ → 4Fe3+ + 2H2O (6)

2Fe3+ + Me0 → 2Fe2+ + Me2+ (7)

MeS + Fe2(SO4)3 →MeSO4 + 2FeSO4 + S0 (8)

Gu et al. [65] studied the effect of modified electrode by nitrogen-doped carbon
nanotubes in bioleaching copper from WPCB by A. ferrooxidans. The results indicated that
the Fe2+ in the culture medium was used as a nutrient substance by A. ferrooxidans, and
Fe2+ was oxidized to Fe3+. The resultant Fe3+ would oxidize the copper into a copper ion.
Meanwhile, the Fe3+ became Fe2+.

Cu0 + 2Fe3+ → Cu2+ + 2Fe2+ (9)

2Fe2+ + O2 + 4H+ → 2Fe3+ + 2H2O (10)

2Fe3+ + Me0 → 2Fe2+ + Me2+ (11)

Dong et al. [66] recovered vanadium from low grade stone coal using Bacillus mucilaginosus.
Bioleaching behavior was elucidated through the bacteria-mineral contact leaching and non-
contact leaching test. In non-contact bioleaching, there is no need for contact between solids
and microorganisms. Only the molecular organic acids in the metabolites interacted with
the minerals. The macromolecular compounds in the metabolites cannot form complexes
with the metallic elements in the minerals, reducing the opportunities for bacteria to utilize
the nutrients in the minerals, thus affecting the growth and metabolism of the bacteria.

4. Biochemical Process

Naturally, microorganisms have developed many other processes that influence the biogeo-
chemical cycles of elements (weathering/biooxidation/biotransformation/bioaccumulation/
biosorption/bioprecipitation) [67]. Of course, biosorption/bioprecipitation are typical
processes that can contribute to the recovery of metals from WPCBs using biological ma-
terials. Until now, modern biotechnology has enhanced the ability of metal extraction
and optimized performance by understanding the fundamental mechanisms, aimed at
economic gain and sustainable development [68].

4.1. Biosorption

Biosorption is a passive physico-chemical and metabolically-independent process,
based on the ability of living as well as dead microorganisms to utilize a variety of mech-
anisms, including complexation, chelation, microprecipitation, and microbial reduction,
or combinations of them [69]. It does not require large financial outlays, is characterized
by high efficiency and minimization of wastes of chemical or biological origin. Moreover,
unlike conventional methods (filtration or adsorption on activated carbon), it enables
biomass regeneration and metal recovery. In general, the process is mediated through [37]:
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(1) Extracellular enrichment and precipitation; (2) Exchange and adsorption of cell surfaces;
(3) Intracellular transformation. On a cellular scale, metal ions are initiated on the cell
surface or active site of biosorbents by the microorganism’s generated ligands through a
chelation process [70].

A vast array of biosorbents with potential for metal recovery have been exploited,
most of them prepared from natural or waste biomass. A strain of Penicillium expansum
was used to recover metals, and the resultant product obtained is a highly concentrated
solution of lanthanum (up to 390 ppm) and terbium (up to 1520 ppm) [71]. Chlorella vulgaris
was investigated to recover neodymium from an aqueous solution derived from hard drive
disk magnets. The maximum experimental neodymium uptakes at 21, 35 and 50 ◦C and an
initial concentration of 250 mg/L were 126.13, 157.40 and 77.10 mg/g, respectively, at the
optimal pH of 5 [71]. Recently, nanomaterials (i.e., nanocellulose structures) and hybrid bio-
nanomaterials (assemblies of biological molecules and inorganic nanostructures) with large
specific surface areas that could enhance biodegradability and better separation of metal
ions, have received attention and are considered the new generation of biosorbents [72].

4.2. Bioprecipitation

Bioprecipitation refers to the process of formation of mineral phases (bioprecipitates
or biominerals) by the activity of microorganisms. In the process, microorganisms facilitate
precipitation by catalyzing oxidative and reductive processes resulting in the precipitation
of soluble metals and non-metals [73]. On a cellular scale, bioreduction of metals takes place
either by direct contact with the cell surface or through extracellular electron shuttles. Some
metal nanoparticles, such as gold elements, were observed depositing on the outer surface
of cells. Desulfovibrio desulfuricans was one of the microorganisms that was successfully used
to recover Au3+ as Au0 from test solutions and from waste electronic scrap leachate. When
processing the aqua regia leachate of Central Processing Units, the Saccharomyces cerevisiae
were able to rapidly and selectively collect aqueous Au(III) ions from the aqua regia
leachate at pH 1.2 within 10 min [74]. By using the sulfate reducing inversed fluidized bed
bioreactors, the removal efficiencies of Cu and Zn reached 90% at an initial concentration
of 25 mg/L [75].

4.3. Parameter Optimization

The bioleaching efficiency is usually not high enough. In most cases, the process is
rather time-consuming. In order to improve the efficiency, the bioleaching kinetics were
investigated, and the results demonstrated that the interruption in bacterial growth, the
formation of precipitates, the toxicity resulting from the increasing level of leached metals,
and the increase in the pH of the solutions are all related to the process. In this case, the
optimal parameters such as initial pH, temperature, pulp density are considered the critical
factors that affect the bioleaching process (Table 2). Understanding their effects well should
be beneficial for optimizing their performance.

4.3.1. pH

System pH is an important factor for bioleaching with acidophiles. SOB present in
the leaching medium contribute to the system’s acidity which helps in maintaining the
system’s pH. This is achieved by the oxidation of sulfur by sulfur-oxidizing bacteria. The
optimal pH is 2.0–3.5 for the normal growth of A. ferrooxidans. Crust et al. [76] investigated
the effect of pH on the metal dissolution. The leaching of Cu and Ni was seen to be best
at an initial pH 1.8, whereas that of Al and Zn had comparable dissolution efficiencies at
pH 1.8 and 2.0. At increased pH values (>2 or 2.25), the formation and precipitation of
jarosite and/or secondary passivation products was detected, which were unfavorable
to the leaching. Gu et al. [65] studied the variation of pH during bioleaching. The pH
rose quickly within 5 days and slowly after 7 days, finally reached a steady state. The
metabolism of A. ferrooxidans was a process of H+ consumption, and the procedure of
zero-valent metal turning into metal ions was also a process which could consume H+.
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4.3.2. Inoculum Volume

Crust et al. [76] investigated the effect of inoculum variation (5–20 (v/v)) on the metal
dissolution. At higher initial inoculum, the costs involved for preparation and consumption
of chemicals will be higher but the metal recoveries will be the same as for the 10% (v/v)
initial inoculum. The oxido-reductive potential (ORP) values were nearly similar at higher
inoculums indicating a strong oxidizing environment due to the rapid oxidation of Fe2+. Fu
et al. [77] studied the effect of inoculation volume on metals leaching by A. ferrooxidans at
20–35 ◦C. In the early stage (<50 days), the higher the inoculation number of bacteria was,
the higher the leaching rate. On the hand, the number of bacteria on WPCB particles per
unit area increased, the contact between bacteria and the active site on the particle surface
increased, and metal erosion was accelerated. In the middle-late period (50–80 d), with the
growth and reproduction of bacteria and the dissolution of metals, the bacterial number
and the ferric-ion concentration in the system with less initial inoculation increased, while
the metal-leaching efficiency in the system with more inoculation decreased due to the
precipitation of jarosite and the lack of nutrients. Considering the industrial application
cost, the optimal inoculation was determined as 5%.

4.3.3. Fe2+ Concentration

Iron oxidizing bacteria derive energy by the oxidation of Fe2+ ions resulting in the
production of biogenic Fe3+, which is a powerful oxidizing agent for metals leaching. There-
fore, the Fe2+ concentration in the medium can affect the metabolism of microbes and the
metals leaching rate. Crust et al. [76] investigated the effect of initial Fe2+ concentration
(1–9 g/L) on the dissolution of Cu, Al, Ni and Zn. With the initial concentration increasing
from 7 to 9 g/L, increases of 20% for Cu and 10% for other metals were observed. The max-
imum ORP values were obtained operating at 9 g/L initial Fe2+. Gu et al. [65] investigated
the variation of Fe2+ concentration during the bioleaching process by A. ferrooxidans. The
initial Fe2+ concentration was 8.09 g/L and it declined obviously in the later bioleaching
period. Much research indicates that the lower the Fe2+ concentration the final medium
has, the better the bioleaching rate the group gets.

4.3.4. Pulp Density

Pulp density also affects the recovery process due to the higher concentration of toxic
materials and the change in pH. Garg et al. [78] used mixed microbial consortia of iron
and sulfur-oxidizing microorganisms to dispose of waste mobile phone WPCBs for batch
bioleaching at varying pulp densities of 7%, 10% and 15% (w/v). The Ni recovery was
20.39% and 47.9% at a pulp density of 7% and 15%. Crust et al. [76] studied the effect of
pulp density in the range 2.5% to 15% (w/v). The dissolution of Cu was higher at 2.5%
(w/v), whereas the dissolution of Al, Zn and Ni were higher at 10% (w/v). The dissolution
of Cu at 10% PD was 91%. Considering dissolution of all targeted metals, 10% (w/v) was
the best in order to achieve maximum metal recoveries. The increasing solid content had a
significant effect on the pH changes of the bioreactor. At ≤10% (w/v), the diffusion of O2
and/or CO2 is efficient for oxidation of Fe2+, contributing towards higher metal dissolution.

4.3.5. Particle Size

A mechanical activation was discovered to trigger physicochemical changes in solid
materials, such as structural defects, phase transformations, and amorphization, to improve
their leaching activity [79]. A two-step crushing process has been developed, and heat
pretreatment technology before the crushing process has been proposed, as well as for
reducing particle size and improving the breakage and liberation effects of WPCBs [80].
During the crushing stage, it should be noted that the micro-cracks produced were beneficial
for the growth of bacteria, thereby enhancing the bioleaching efficiency of copper [81].
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4.3.6. Catalyst

Studies have shown that graphite can be used as a catalyst to increase the bioleach-
ing rate. In the case of sphalerite, graphite has been found to influence microbial pop-
ulations [82]. Tong et al. [83] investigated the effect of graphite on leaching behavior
of WPCBs. In the absence of graphite, the copper leaching rate was 90% after 5 days.
Leaching performance increased with the addition of graphite and it reached 100% with
2.5 g/L of graphite. Gu et al. [35] studied the effect of graphene on bioleaching by
Acidithiobacillus ferrooxidans. The Cu leaching rate increased from 74% to 84% by adding
graphene in the culture solution. The transformation between Fe2+ and Fe3+ was actuated
by A. ferrooxidans and graphene. The graphene could be recycled and reused by treating
with HNO3. They also explored the bioleaching efficiency of Cu driven by nitrogen-doped
carbon nanotube modified electrodes [65]. It reached 99% and 20% higher than that of
the control. The electrical conductivity and specific surface area which the modified elec-
trode had, provided a good platform for the metabolism of A. ferrooxidans and the transfer
of electrons.

4.3.7. Bioreactor

Crust et al. [76] investigated the optimal values for key parameters at the shake-flask level
and tested the feasibility of these optimal conditions in bench-scale bioreactors. Maximum
recovery values of 98.1% Cu, 55.9% Al, 79.5% Ni and 66.9% Zn were achieved under the
optimum parameters within 8 days in the laboratory-scale experiments. Under the same
optimized conditions, 97.3% Cu, 55.8% Al, 79.3% Ni and 66.8% Zn were bioleached in
bench-scale reactors.

4.3.8. Hybrid Bioleaching

Even if the above parameters are optimized, the individual work of those microor-
ganisms is still slow, especially compared to pyrometallurgy and hydrometallurgy processes.
Therefore, several studies have been carried out on hybrid bioleaching for better bioleaching
effects. For example, Sheel and Pant [84] achieved 90% recovery of Au from e-waste by using
the combination of ammonium thiosulfate and Lactobacillus acidophilus. Sinha et al. [85] devel-
oped a novel biorecovery process followed by electrochemical treatment to recover copper,
achieving 92.7% Cu recovery. Dolker et al. [86] applied the chemical-biological hybrid
systems to the bioleaching process, increasing Li leaching by 25% and cobalt biosorption
by 98%. Gomes et al. [87] linked electrodialytic remediation with microbial metabolism,
higher mobilization of metals was observed when associating both methods, with higher
metal concentrations in both anode and cathode compartments, in particular for Cu and Cr.
All of them exhibited greater bioleaching potential than individual cultures.

Table 2. Recent research on the bioleaching of WPCB.

Microorganisms WPCB R Leaching Efficiencies References

A. ferrooxidans

Mobile phone PCB
with size of
37–150 µm

Stirring rate of 170 rpm, temperature
of 30 ◦C, initial pH of 1, pulp density

of 9.25 g/L, Fe3+ concentration of
4.17 g/L

Up to 99% Cu and Ni after
55 days [88]

Small pieces with
size of <15 mm)

Ambient temperature (20–35 ◦C),
WPCB concentration of 5.0% (w/w),

inoculation volume of 5% (v/v).

95.92% of Cu, 93.53% of
Al, 92.58%

of Zn, 65.27% of Ni, and
95.33% of Sn

[77]

A. niger Less than 300 mm
Pulp densities of 0.5–20 g/L, stirring

rate of 120 rpm and
ambient temperature

100% of Zn, 80.39% of Ni
and 85.88% of Cu in

30 days.
[89]
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Table 2. Cont.

Microorganisms WPCB R Leaching Efficiencies References

A. Ferrooxidans and
A. acidophilum

Particle size of
0.075–1 mm

Pulp density of 7.5 g/L, pH of 2.5,
stirring rate of 170 rpm, temperature

of 30 ◦C

96% Cu, 94.5% Zn, 75% Ni,
and 74.5% Pb in 18 days [90]

A. Ferrooxidans and
A. Thiooxidans

Particle size of less
than 100 µm

Stirring rate of 180 rpm, temperature
of 30 ◦C, pulp density of 15 g/L

Cu of 86%, Zn of 100% and
Ni of 100% after leaching in

25 days
[62]

A. Ferrooxidans,
F. acidiphilum, and

L. ferriphilum

Desktop-computer
motherboards

Stirring rate of 170 rpm, temperature
of 45 ◦C, pH of 1.6, pulp density of 5%
(w/v), concentration of Fe3+ of 9 g/L

100% after adding 2.5 g/L
graphite in 5 days [83]

A. ferrooxidans,
L. ferrooxidans and

A. thiooxidans

Mobile phone PCB
with size of
2 × 2 cm2

Initial Fe2+ concentration of 9 g/L,
pulp density of 10% (w/v), inoculum

of 10% (v/v) and initial pH of1.8

97.3% Cu, 55.8% Al, 79.3%
Ni and 66.8% Zn in
bench-scale reactor.

[76]

5. Conclusions and Perspective

Summarizing the peer-reviewed review of the program for bioleaching of used PCBs,
the bioleaching process offers benefits in terms of low-cost and environmental friendliness
and also shows promise in the recovery of metals from WPCBs. Chemolithotrophs, bacteria
and fungi can be candidates for the microorganisms involved in the bioleaching process.
The chemolithotrophs are ferrous and/or reduced sulfur oxidizers, thriving at a low pH,
while heterotrophic bacteria and fungi are considered as organotrophs and tolerate a
wider range of pH. Their contact and non-contact mechanisms were analyzed, as well
as the biochemical processes of biosorption and bioprecipitation, and it was found that
contact leaching played as greater role in this process. As shown by the scientific research,
microorganisms adapt to various pH conditions, raise the temperature and density of the
pulp in the appropriate range, mechanical activation can strengthen and improve their
leaching efficiency. However, there is still much room for improvement in bioleaching and
further research is required in industrial applications.

Firstly, most microorganisms have a shortage of time-consuming and environmental
limitations. Genetic modification could provide the engineered microorganisms with higher
efficiency and rapid adaption to environmental changes.

Secondly, hybrid bioleaching should be developed, and the fundamental mechanisms
need to be further probed since some remain uncertain. Moreover, the e-waste usually
contains lots of complex materials that might have negative effects on microorganisms’
growth and hinder their metabolism. The collection and classification of different types of
waste are key processes for providing pure raw materials, and the pretreatment of WPCBs,
such as dismantling and shredding, is an important process for removing toxic components
and improving bioleaching efficiency.

Lastly, the bioleaching conditions should be optimized as they affect the biological
activities of microorganisms. Novel bioreactors should be built, such as light induced
systems and energy harvesting systems [91,92]. The addition of various catalysts also needs
to be tested, which might help improve bioleaching efficiency.
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