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	 Background:	 Intrahepatic cholangiocarcinoma arises from the epithelial cells of the bile ducts and is associated with poor 
prognosis. This study aimed to use bioinformatics analysis to identify molecular biomarkers of intrahepatic 
cholangiocarcinoma and their potential mechanisms.

	 Material/Methods:	 MicroRNA (miRNA) and mRNA microarrays from GSE53870 and GSE32879 were downloaded from the Gene 
Expression Omnibus (GEO) database. Differentially expressed miRNAs (DEMs) associated with prognosis were 
identified using limma software and Kaplan-Meier survival analysis. Predictive target genes of the DEMs were 
identified using miRWalk, miRTarBase, miRDB, and TargetScan databases of miRNA-binding sites and targets. 
Target genes underwent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way enrichment analysis. Hub genes were analyzed by constructing the protein-protein interaction (PPI) net-
work using Cytoscape. DEMs validated the hub genes, followed by construction of the miRNA-gene regulatory 
network.

	 Results:	 Twenty-five DEMs were identified. Fifteen DEMs were upregulated, and ten were down-regulated. Kaplan-Meier 
survival analysis identified seven upregulated DEMs and nine down-regulated DEMs that were associated with 
the overall survival (OS), and 130 target genes were selected. GO analysis showed that target genes were mainly 
enriched for metabolism and development processes. KEGG analysis showed that target genes were mainly 
enriched for cancer processes and some signaling pathways. Fourteen hub genes identified from the PPI net-
work were associated with the regulation of cell proliferation. The overlap between hub genes and DEMs iden-
tified the estrogen receptor 1 (ESR1) gene and hsa-miR-26a-5p.

	 Conclusions:	 Bioinformatics analysis identified ESR1 and hsa-miR-26a-5p as potential prognostic biomarkers for intrahepatic 
cholangiocarcinoma.
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Background

Intrahepatic cholangiocarcinoma arises from the epithelial 
cells of the bile ducts and is associated with poor prognosis. 
Worldwide, intrahepatic cholangiocarcinoma has an increasing 
incidence and high mortality rate and represents about 15% 
of cases of primary liver cancer, with hepatocellular carcinoma 
(HCC) representing about 70% of cases [1–3]. The main risk 
factors for intrahepatic cholangiocarcinoma include sclerosing 
cholangitis, biliary anomalies, hepatolithiasis, hepatobiliary 
flukes, and liver cirrhosis [4]. Patients with intrahepatic chol-
angiocarcinoma often present with nonspecific symptoms or 
are asymptomatic. Therefore, without sensitive screening cri-
teria, only a few cases are diagnosed at an early stage [5,6]. 
Also, most patients are diagnosed with late-stage intrahepatic 
cholangiocarcinoma with the tumor having invaded into ad-
jacent structures or metastasized to distant sites [7–9]. Even 
for patients who are diagnosed at an early stage, risk factors 
such as cirrhosis may increase the difficulty of treatment [6]. 
Only about 30% of patients with intrahepatic cholangiocarci-
noma can undergo surgical resection, and these patients have 
a high recurrence rate following surgery [5,10]. Despite clini-
cal research on improving the management of patients with 
intrahepatic cholangiocarcinoma, the prognosis remains poor, 
with a 30% three-year survival rate and an 18% five-year sur-
vival rate [11,12]. Therefore, potential diagnostic and prog-
nostic biomarkers for intrahepatic cholangiocarcinoma re-
main to be identified.

The microRNAs (miRNAs) are a family of small endogenous 
non-coding RNA molecules that play an important role in reg-
ulating the expression of target genes and proteins through 
complementary base pairs with mRNAs [13–15]. Recent stud-
ies have shown an association between miRNAs and human 
cancers [16]. Changes in miRNAs affect several cellular pro-
cesses that include cell proliferation, cell differentiation, and 
signal transduction [14,17,18]. The progression of intrahepatic 
cholangiocarcinoma is associated with the abnormal expres-
sion of miRNAs [18–20]. Biomarkers of intrahepatic cholangio-
carcinoma have included upregulated miR-31, and miR-150 
and down-regulated miR-590-3p and miR-424-5p [19–23]. 
Wang et al. [24] found that increased expression of plasma lev-
els of miR-150 could identify patients with intrahepatic chol-
angiocarcinoma with high sensitivity, specificity [22,23]. Also, 
miR41 directly regulates BRCA1-associated protein-1 (BAP-1), 
which has frequent mutations in intrahepatic cholangiocarci-
noma, which is associated with reduced prognosis [20,25,26].

Epithelial-mesenchymal transition (EMT) is a biological devel-
opmental process that is considered to be the key mechanism 
leading to invasion and metastasis of intrahepatic cholangio-
carcinoma [27,28]. In 2015, Zhang et al. showed that the ex-
pression of miR-590-3p was down-regulated in intrahepatic 

cholangiocarcinoma and showed that miR-590-3p influenced 
EMT by inhibiting the expression of the Smad interacting pro-
tein 1 (SIP1) [29]. Also, miR-424-5p has been shown to play 
an important role in promoting cell proliferation and metas-
tasis in intrahepatic cholangiocarcinoma [21,30]. In 2019, 
Wu et al. [21] proposed that the restoration of miR-424-5p ex-
pression may be a promising approach to treat intrahepatic 
cholangiocarcinoma by targeting the pathway of the binding 
between miR-424-5p and NUAK family kinase 1 (ARK5) mRNA. 
Although these previous studies have resulted in the devel-
opment of drug treatments, the underlying molecular mecha-
nisms in the progression of intrahepatic cholangiocarcinoma 
remain to be elucidated. Therefore, new diagnostic and prog-
nostic biomarkers in patients with intrahepatic cholangio-
carcinoma may also result in new approaches to treatment.

Bioinformatics analysis of microarray data is a high-through-
put technology that has been widely used to identify genetic 
changes in cancer. The analysis of miRNA microarrays can be 
used to identify potential biomarkers in intrahepatic cholangio-
carcinoma [29]. This study aimed to use bioinformatics anal-
ysis to identify molecular biomarkers of intrahepatic cholan-
giocarcinoma and their potential mechanisms. The miRNA and 
mRNA expression profiles were downloaded to obtain differen-
tially expressed miRNAs (DEMs), and differentially expressed 
mRNAs. The interactions between DEMs, their target genes, 
and differentially expressed mRNAs in intrahepatic cholangio-
carcinoma were investigated through the microarray profiles 
of the expression of miRNAs and mRNAs. The construction 
of the miRNA-gene regulatory network explored the poten-
tial molecular prognostic biomarkers for intrahepatic cholan-
giocarcinoma, which may provide insights into future diagno-
sis and treatment.

Material and Methods

Microarray data

High-throughput gene expression and microarray data were 
obtained from the Gene Expression Omnibus (GEO) public 
genomics online repository (www.ncbi.nlm.nih.gov/geo) [31]. 
The miRNA expression dataset, GSE53870, and the mRNA ex-
pression dataset, GSE32879, were downloaded from the GEO 
database [29,32]. The probes were converted to the corre-
sponding gene symbol using the annotation information in 
the GEO platform.

Identification of differentially expressed miRNAs (DEMs) 
and differentially expressed mRNAs

The R (version 1.62.0) Affy package (www.bioconductor.org/) was 
used for the analysis of GSE53870 and GSE32879. The median 
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algorithm performed the data preprocessing and normalization 
in R (version 3.6.1). The limma package (version 3.40.6) (http://
bioconductor.org/) was used to screen the DEMs and differen-
tially expressed mRNAs. The adjusted P-value (adj. P-value) and 
the Benjamini–Hochberg false discovery rate (FDR) were used 
in the analysis to reduce the rate of false positives. DEMs and 
differentially expressed mRNAs, which both satisfied the log2 
(fold-change) >2 and the adj. P-value <0.05 were considered to 
be statistically significant and were selected for further study.

Visualization of DEMs

The HemI Heat map Illustrator (version 1.0) is an open-source 
bioinformatics toolkit that was used to graphically visualize 
multi-dimensional and numerical gene expression data as 
heatmaps [33]. The data of DEMs were visualized with differ-
ent colors. The volcano plot was performed using the R pack-
age ggplot2 version 3.2.1 to visualize the DEMs (https://cran.r-
project.org/web/packages/ggplot2/index.html).

Kaplan-Meier survival analysis

Data in GSE53870 were processed for statistical analysis to 
investigate the relationship between DEMs and patients with 
intrahepatic cholangiocarcinoma. The free R package survival 
package (version 3.1-7) (https://cran.r-project.org/web/pack-
ages/survival/) was used for survival analysis of the screened 
DEMs. The log-rank test was performed to estimate the prog-
nosis of different DEMs. A P<0.05 was considered to be sta-
tistically significant.

Prediction and screening of the target genes of DEMs

miRWalk (version 3.0) (http://mirwalk.umm.uni-heidelberg.de/) 
is an open-source website used to predict the target genes [34]. 
TargetScan (version 7.2) (http://www.targetscan.org/vert_72/) 
is an online database that was used to predict the target genes 
by searching for the conserved sites on the paired seed region 
of each DEM [35]. Also, miRDB (http://mirdb.org/index.html) 
and miRTarBase (http://miRTarBase.mbc.nctu.edu.tw/) were 
used to predict the target genes [36,37]. A Venn diagram was 
produced by the R (venneuler) package (version 1.1-0) (https://
cran.r-project.org/web/packages/venneuler/index.html) to re-
duce false positives of data predicted by the online databases.

Gene Ontology (GO) and the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analysis of target genes

The GO resource (http://geneontology.org/) is an online data-
base that provides biological information like the function of 
genes and gene products [38,39]. The GO resource was used to 
implement functional enrichment analysis of significant target 
genes with P<0.05 [40]. The KEGG pathway enrichment analysis 

was performed using KEGG Orthology Based Annotation 
System (KOBAS) (version 3.0) (http://kobas.cbi.pku.edu.cn/
anno_iden.php). KOBAS is a web server that can be used to 
identify significantly enriched pathways by mapping to genes 
with known annotations [41–43]. P<0.05 was considered as 
statistically significant.

Construction of the protein-protein interaction (PPI) 
network of the target genes and centrality analysis

The PPI network was established using the STRING online 
database (version 11.0) (https://string-db.org/), which aims to 
collect and integrate the interactions between proteins [44]. 
The PPI network was constructed to analyze the relationships 
between the screened target genes and the interaction. A com-
bined score >0.400 was regarded as significant PPI node pairs 
worth further investigation. Cytoscape (version 3.7.1), which 
is an open software source that integrates biomolecular in-
teraction networks, was used to visualize the data from the 
STRING [45,46]. The online CentiScape plugin (version 2.2) 
(http://apps.cytoscape.org/apps/mcode) in Cytoscape was used 
to calculate the centrality parameters to identify the most sig-
nificant nodes in the PPI network [47].

Hub gene selection and analysis

The hub genes were screened by Cytoscape software, 
the Molecular Complex Detection (MCODE) (version 1.5.1) 
(http//apps.cytoscape.org/apps/mcode) plugin in Cytoscape 
was used for detection of the PPI networks with dense con-
nectivity [48]. The selection criteria were the degree of cut-
off=2, the node score cutoff=0.2, the K-score=2, and the max-
imum depth=100. The network degrees >10 were identified 
as hub genes.

Construction of the miRNA-gene regulatory network

The miRNAs were identified by the online databases that could 
predict one or more target genes of the DEMs. The miRNA and 
gene regulatory network was constructed using Cytoscape 
software to identify the relationship between the target genes 
and miRNAs.

Results

Identification and visualization of differentially expressed 
miRNAs (DEMs)

After the processing of the raw data in GSE53870 (Figure 1), 
a total of 1104 miRNAs were identified, 436 of which were up-
regulated, and 668 were down-regulated. Compared with sam-
ples of normal intrahepatic bile ducts, patients with intrahepatic 
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Figure 1. �Normalization of the GSE53870 data from the Gene Expression Omnibus (GEO) database. The black boxes represent the 
microRNA (miRNA) expression values in patients with intrahepatic cholangiocarcinoma. The red boxes represent the miRNA 
expression values in the normal intrahepatic bile duct control samples.
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Figure 2. �The heatmap and volcano plot of the 25 differentially expressed miRNAs (DEMs) associated with prognosis in intrahepatic 
cholangiocarcinoma. (A) Heatmap of the top 25 DEMs was constructed using HemI. The level of expression is positively 
correlated with the size of the fluorescence value. The red color indicates high expression. The green color indicates low 
expression. (B) The volcano plot shows DEMs between the samples from patients with intrahepatic cholangiocarcinoma and 
normal samples. The red color indicates statistical significance.
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cholangiocarcinoma had 25 DEMs that satisfied log2 (fold-
change) >2 and adj. P <0.05, consisting of ten down-regu-
lated miRNAs and 15 upregulated miRNAs (Figure 2). The top 
25 DEMs are listed in Table 1.

Kaplan-Meier survival analysis

Based on the data in GSE53870, Kaplan-Meier survival 
analysis identified 16 DEMs that were associated with 
overall survival (OS), which included seven upregulat-
ed DEMs and nine down-regulated DEMs. In patients with 

intrahepatic cholangiocarcinoma, high expression of hsa-
miR-1308 (P=4.59E-2), hsa-miR-566 (P=4.40E-2), hsa-miR-565 
(P=4.53E-2), hsa-miR-3197 (P=1.98E-3), hsa-miR-4327 
(P=1.72E-2), hsa-miR-513b (P=4.45E-2), hsa-miR-513c-5p 
(P=2.52E-2) and low expression of hsa-miR-145-5p (P=2.94E-2), 
hsa-miR-143-3p (P=1.46E-2), hsa-miR-451a (P=6.69E-3), hsa-
miR-27b-3p (P=3.38E-3), hsa-miR-26a-5p (P=2.67E-2), hsa-
miR-194-5p (P=2.53E-2), hsa-miR-195-5p (P=8.18E-3), hsa-
miR-125b-5p (P=3.53E-2) and hsa-miR-29c-3p (P=1.19E-3) 
were significantly associated with reduced OS. The remain-
ing DEMs were not significant survival biomarkers. Survival 

miRNA ID log2 FC B t P-value adj. P-value Expression

hsa-miR-1975 3.91 16.1352 8.02 1.33E-11 5.66E-10 Upregulated

hsa-miR-1974 3.849 12.9719 7.27 3.38E-10 8.47E-09 Upregulated

hsa-miR-1826 3.844 14.2929 7.58 8.75E-11 2.84E-09 Upregulated

hsa-miR-923 3.842 23.6002 9.78 6.54E-15 1.73E-12 Upregulated

hsa-miR-1274b 3.386 22.0409 9.41 3.21E-14 4.43E-12 Upregulated

hsa-miR-1308 3.335 18.4515 8.56 1.25E-12 9.22E-11 Upregulated

hsa-miR-566 2.749 24.9821 10.11 1.60E-15 8.81E-13 Upregulated

hsa-miR-565 2.567 21.3078 9.24 6.79E-14 7.50E-12 Upregulated

hsa-miR-3197 2.429 23.2466 9.7 9.39E-15 1.73E-12 Upregulated

hsa-miR-1274a 2.367 14.4059 7.61 7.79E-11 2.69E-09 Upregulated

hsa-miR-4327 2.314 21.4746 9.28 5.73E-14 7.03E-12 Upregulated

hsa-miR-513b 2.256 11.5083 6.91 1.51E-09 2.92E-08 Upregulated

hsa-miR-1978 2.242 12.4543 7.14 5.73E-10 1.38E-08 Upregulated

hsa-miR-513c-5p 2.235 8.9229 6.29 2.13E-08 3.32E-07 Upregulated

hsa-miR-1977 2.078 6.98 5.8 1.57E-07 1.81E-06 Upregulated

hsa-miR-145-5p –3.527 23.9275 –9.86 4.68E-15 1.72E-12 Down-regulated

hsa-miR-143-3p –3.272 15.8895 –7.96 1.71E-11 7.00E-10 Down-regulated

hsa-miR-27a-3p –2.715 6.2213 –5.61 3.44E-07 3.68E-06 Down-regulated

hsa-miR-451a –2.526 26.0606 –10.37 5.30E-16 5.86E-13 Down-regulated

hsa-miR-27b-3p –2.42 11.6593 –6.95 1.29E-09 2.64E-08 Down-regulated

hsa-miR-26a-5p –2.287 4.0601 –5.05 3.21E-06 2.81E-05 Down-regulated

hsa-miR-194-5p –2.189 10.9978 –6.79 2.54E-09 4.68E-08 Down-regulated

hsa-miR-195-5p –2.094 23.2455 –9.7 9.40E-15 1.73E-12 Down-regulated

hsa-miR-125b-5p –2.093 8.5621 –6.2 3.09E-08 4.45E-07 Down-regulated

hsa-miR-29c-3p –2.072 19.7967 –8.88 3.17E-13 2.50E-11 Down-regulated

Table 1. �The top 25 differentially expressed miRNAs (DEMs) in the intrahepatic cholangiocarcinoma samples compared with the 
normal bile ducts samples.

log2 FC – log2 (fold-change); adj. P-value – adjusted P-value; B – B-value; t – t-statistics.
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analysis of all screened miRNAs associated with OS are shown 
in Figures 3 and 4.

Prediction and screening of target genes of DEMs 
associated with patient survival

Different databases used in this study had their own algo-
rithms to predict the target genes. After matching the over-
lap of the results of miRWalk between the online databases, 
TargetScan, miRDB, and miRTarBase, 130 target genes were 
predicted from eight DEMs, TargetScan identified 990 target 
genes, 1183 target genes were identified in miRDB, and 392 
target genes were identified in miRTarBase. The overlap of tar-
get genes between the three datasets is shown in the Venn 
diagram (Figure 5).

Gene Ontology (GO) and the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analysis of target genes

GO and KEGG functional and pathway enrichment analysis of 
130 target genes was performed to understand the screened 
target genes better. The results of GO biological process (BP) 
analysis identified target genes that were significantly enriched 
for the processes of substance metabolism, development, and 

the regulation of gene expression. GO molecular function (MF) 
showed that target genes were mainly enriched in protein bind-
ing, cyclic compound binding, sequence-specific DNA binding, 
and transcription regulator activity. GO cellular component (CC) 
showed that target genes were mainly involved in the nucleus, 
cytosol, intracellular organelles, and membrane-enclosed lu-
men. Also, KEGG pathway analysis showed that target genes 
were significantly enriched in cancer processes, including path-
ways in cancer, miRNA in cancer, proteoglycans in cancer, Ras, 
FoxO, and PI3K-Akt signaling pathways, and resistance to epi-
dermal growth factor receptor (EGFR) tyrosine kinase inhibi-
tors. Pathways in cancers were the most significantly enriched 
(P=5.42E-13). The most significant findings from GO and KEGG 
enrichment analysis are shown in Figure 6 and Table 2.

Construction of the protein-protein interaction (PPI) 
network and centrality analysis

Based on the information of target genes from the STRING 
database, the PPI network, including the combined score 
>0.400, with 130 nodes and 231 edges (Figure 7), was con-
structed by Cytoscape. CentiScape was used to calculate the 
value of the degree of centrality, which was used in the se-
lection of hub genes.

1.0
0.8
0.6
0.4
0.2
0.0 0 15.06 45.18 60.24 75.330.12

hsa-miR-1975 P-value=0.127

Ov
er

all
 Su

rv
iva

l Low
High

Time (months)

1.0
0.8
0.6
0.4
0.2
0.0 0 15.06 45.18 60.24 75.330.12

hsa-miR-1974 P-value=0.091

Ov
er

all
 Su

rv
iva

l Low
High

Time (months)

1.0
0.8
0.6
0.4
0.2
0.0 0 15.06 45.18 60.24 75.330.12

hsa-miR-1826 P-value=0.092

Ov
er

all
 Su

rv
iva

l Low
High

Time (months)

1.0
0.8
0.6
0.4
0.2
0.0 0 15.06 45.18 60.24 75.330.12

hsa-miR-923 P-value=0.165

Ov
er

all
 Su

rv
iva

l Low
High

Time (months)

1.0
0.8
0.6
0.4
0.2
0.0 0 15.06 45.18 60.24 75.330.12

hsa-miR-1274b P-value=0.117

Ov
er

all
 Su

rv
iva

l Low
High

Time (months)

1.0
0.8
0.6
0.4
0.2
0.0 0 15.06 45.18 60.24 75.330.12

hsa-miR-1308 P-value=4.59E-2
Ov

er
all

 Su
rv

iva
l Low

High

Time (months)

1.0
0.8
0.6
0.4
0.2
0.0 0 15.06 45.18 60.24 75.330.12

hsa-miR-566 P-value=4.40E-2

Ov
er

all
 Su

rv
iva

l Low
High

Time (months)

1.0
0.8
0.6
0.4
0.2
0.0 0 15.06 45.18 60.24 75.330.12

hsa-miR-923 P-value=4.53E-2

Ov
er

all
 Su

rv
iva

l Low
High

Time (months)

1.0
0.8
0.6
0.4
0.2
0.0 0 15.06 45.18 60.24 75.330.12

hsa-miR-3197 P-value=1.98E-3

Ov
er

all
 Su

rv
iva

l Low
High

Time (months)

1.0
0.8
0.6
0.4
0.2
0.0 0 15.06 45.18 60.24 75.330.12

hsa-miR-1274a P-value=0.243

Ov
er

all
 Su

rv
iva

l Low
High

Time (months)

1.0
0.8
0.6
0.4
0.2
0.0 0 15.06 45.18 60.24 75.330.12

hsa-miR-4327 P-value=1.72E-2

Ov
er

all
 Su

rv
iva

l Low
High

Time (months)

1.0
0.8
0.6
0.4
0.2
0.0 0 15.06 45.18 60.24 75.330.12

hsa-miR-1978 P-value=0.150

Ov
er

all
 Su

rv
iva

l Low
High

Time (months)

1.0
0.8
0.6
0.4
0.2
0.0 0 15.06 45.18 60.24 75.330.12

hsa-miR-513c-5p P-value=2.52E-2

Ov
er

all
 Su

rv
iva

l Low
High

Time (months)

1.0
0.8
0.6
0.4
0.2
0.0 0 15.06 45.18 60.24 75.330.12

hsa-miR-1977 P-value=0.178

Ov
er

all
 Su

rv
iva

l Low
High

Time (months)

1.0
0.8
0.6
0.4
0.2
0.0 0 15.06 45.18 60.24 75.330.12

hsa-miR-513b P-value=4.45E-2

Ov
er

all
 Su

rv
iva

l Low
High

Time (months)

Figure 3. �Kaplan-Meier survival analysis of upregulated differentially expressed microRNAs (miRNAs) (DEMs). The red lines show 
individuals with high expression of DEMs. The green lines show individuals with low expression of DEMs.
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Selection and analysis of the hub genes

Hub genes were identified by the Molecular Complex Detection 
(MCODE) plugin in Cytoscape, and a total of 14 genes were 
screened from 130 target genes (Figure 8). The results were 
sorted by degree scores and identified the following 14 genes: 
KRAS, ESR1, STAT3, VEGFA, IGF1R, SMAD2, FGF2, DICER1, ACTB, 
CDK6, MET, FOXO1, ETS1, and HBEGF (Table 3). These 14 hub 
genes were used to process the GO and KEGG enrichment anal-
ysis. GO biologic process (BP) and KEGG enrichment analysis 
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Figure 4. �Kaplan-Meier survival analysis of down-regulated differentially expressed microRNAs (miRNAs) (DEMs). The red lines show 
individuals with high expression of DEMs. The green lines show individuals with low expression of DEMs.
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Figure 5. �Venn diagram of the four datasets of 130 target genes. 
The target genes identified from the miRWalk database 
were screened again using the miRWalk, TargetScan, 
miRDB, and miRTarBase databases. The four datasets 
show an overlap of 130 target genes.
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showed that hub genes were primarily enriched for the regu-
lation of cell proliferation, anatomical structure and tube mor-
phogenesis, and some receptor protein signaling pathways, 
proteoglycans, and pathways in cancer (Table 4).

Construction of the miRNA and gene regulatory network

According to the data from the results of 130 predicted target 
genes and eight corresponding miRNAs, Cytoscape was used to 
construct miRNA and gene regulatory network, to identify the 
regulatory association between the miRNAs and hub genes. 
The relationships were visualized with the miRNA and gene 
regulatory network (Figure 9).

Validation of the hub genes using the Gene Expression 
Omnibus (GEO) mRNA expression dataset

Data in the GSE32879 dataset from GEO were analyzed to val-
idate the identity of the hub genes found in this study. A to-
tal of 766 differentially expressed mRNAs were identified, 173 
of which were upregulated, and 593 were down-regulated. 
The overlap between hub genes from GSE53870 and differ-
entially expressed mRNAs from GSE32879 showed that ESR1 
was the only gene that occurred in both GEO datasets. Finally, 
hsa-miR-26a-5p and the corresponding miRNA of ESR1 were 
identified in the miRNA and gene regulatory network.
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Figure 6. �Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the most 
significant target genes in intrahepatic cholangiocarcinoma. (A) The biological process of the top ten genes. (B) Cellular 
components of the top ten genes. (C) Molecular function of the top ten genes (D) The KEGG pathway of the top ten genes.
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Pathway ID Pathway description Count P-value

GO: 0031323 regulation of cellular metabolic process 78 5.34E-12

GO: 0048523 negative regulation of cellular process 64 1.33E-10

GO: 0060255 regulation of macromolecule metabolic process 75 1.01E-10

GO: 0019222 regulation of metabolic process 79 1.23E-10

GO: 0032502 developmental process 73 8.71E-11

GO: 0048519 negative regulation of biological process 69 8.51E-11

GO: 0051171 regulation of nitrogen compound metabolic process 73 7.74E-11

GO: 0080090 regulation of primary metabolic process 73 4.64E-10

GO: 0010468 regulation of gene expression 60 8.99E-10

GO: 0048856 anatomical structure development 68 8.44E-10

GO: 0005622 intracellular 123 1.41E-10

GO: 0005654 nucleoplasm 54 1.10E-08

GO: 0005829 cytosol 64 7.77E-09

GO: 0005737 cytoplasm 102 2.57E-07

GO: 0031981 nuclear lumen 57 3.57E-07

GO: 0043229 intracellular organelle 108 4.34E-07

GO: 0031974 membrane-enclosed lumen 61 1.58E-05

GO: 0070013 intracellular organelle lumen 61 1.58E-05

GO: 0043233 organelle lumen 61 1.58E-05

GO: 0043226 organelle 110 1.41E-05

GO: 0005515 protein binding 109 1.41E-10

GO: 0005488 binding 122 1.10E-08

GO: 1901363 heterocyclic compound binding 65 7.77E-09

GO: 0097159 organic cyclic compound binding 65 2.57E-07

GO: 0043167 ion binding 65 3.57E-07

GO: 0043565 sequence-specific DNA binding 22 4.34E-07

GO: 0003676 nucleic acid binding 47 1.58E-05

GO: 0000981 DNA-binding transcription factor activity, RNA polymerase II-specific 20 1.58E-05

GO: 0140110 transcription regulator activity 27 1.58E-05

GO: 0019902 phosphatase binding 8 1.41E-05

hsa05200 Pathways in cancer 16 5.42E-13

hsa05206 MicroRNAs in cancer 12 5.18E-10

hsa05205 Proteoglycans in cancer 10 2.54E-09

hsa04014 Ras signaling pathway 10 6.74E-09

hsa01521 EGFR tyrosine kinase inhibitor resistance 7 1.69E-08

hsa04933 AGE-RAGE signaling pathway in diabetic complications 7 7.04E-08

hsa05212 Pancreatic cancer 6 1.40E-07

hsa04520 Adherens junction 6 2.63E-07

hsa04068 FoxO signaling pathway 7 4.36E-07

hsa04151 PI3K-Akt signaling pathway 9 2.47E-06

Table 2. �Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of target genes for 
differentially expressed miRNAs (DEMs) in intrahepatic cholangiocarcinoma.
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Discussion

Intrahepatic cholangiocarcinoma arises from bile duct epithe-
lial cells and has high morbidity and mortality [10,22,49]. Due 
to the lack of effective methods for early diagnosis, the ma-
jority of patients with intrahepatic cholangiocarcinoma do not 
have symptoms in the early stages, and present with late-stage 

disease. Despite clinical studies to improve patient manage-
ment, the molecular mechanisms remain unclear, and there 
are no prognostic molecular biomarkers. Therefore, the iden-
tification of molecular biomarkers associated with intrahe-
patic cholangiocarcinoma, their biological significance, and 
biological functions may provide insight into the pathogene-
sis of intrahepatic cholangiocarcinoma at the molecular level.

In the present study, microRNA (miRNA) and mRNA microar-
rays from GSE53870 and GSE32879 were downloaded from 
the Gene Expression Omnibus (GEO) database for intrahe-
patic cholangiocarcinoma and were used to identify differ-
entially expressed miRNAs (DEMs) in comparison with nor-
mal intrahepatic bile ducts. This study identified 25 DEMs 
from the dataset, including 15 upregulated miRNAs and 
ten down-regulated miRNAs. Kaplan-Meier survival analysis 
showed that seven upregulated miRNAs (hsa-miR-1308, hsa-
miR-566, hsa-miR-565, hsa-miR-3197, hsa-miR-4327, hsa-
miR-513b, and hsa-miR-513c-5p) and nine down-regulated 
DEMs (hsa-miR-145-5p, hsa-miR-143-3p, hsa-miR-451a, hsa-
miR-27b-3p, hsa-miR-26a-5p, hsa-miR-194-5p, hsa-miR-195-5p, 
hsa-miR-125b-5p, and hsa-miR-29c-3p) were associated with 
the overall survival (OS) of patients with intrahepatic cholan-
giocarcinoma. The associations between some of the identi-
fied DEMs and intrahepatic cholangiocarcinoma have also been 
identified in previous studies. Specifically, miR-145 has been 
reported as a tumor suppressor, and the levels are reduced 
in intrahepatic cholangiocarcinoma, which affects Akt/FoxO1 

Figure 7. �Construction of the protein-protein interaction (PPI) network of the target genes. The PPI network of target genes was 
visualized using Cytoscape.

Figure 8. �Selection of the hub genes from the protein-protein 
interaction (PPI) network. The hub genes were selected 
from the PPI network with 14 nodes and 68 edges. 
The lines represent the relationships between the nodes.
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Gene symbol Gene description Degree

KRAS KRAS proto-oncogene, GTPase 30

ESR1 Estrogen receptor 1 26

STAT3 Signal transducer and activator of transcription 3 24

VEGFA Vascular endothelial growth factor A 21

IGF1R Insulin like growth factor 1 receptor 16

SMAD2 Smad family member 2 15

FGF2 Fibroblast growth factor 2 15

DICER1 Dicer 1, ribonuclease III 15

ACTB Actin beta 15

CDK6 Cyclin dependent kinase 6 15

MET MET proto-oncogene, receptor tyrosine kinase 13

FOXO1 Forkhead box O1 12

ETS1 ETS proto-oncogene 1, transcription factor 9

HBEGF Heparin binding EGF like growth factor 7

Table 3. The top 14 hub genes with the degree score.

Pathway ID Pathway description Count P-value

GO: 0042127 regulation of cell population proliferation 12 3.90E-12

GO: 0009653 anatomical structure morphogenesis 12 1.04E-10

GO: 0007167 enzyme linked receptor protein signaling pathway 9 1.20E-10

GO: 0007169 transmembrane receptor protein tyrosine kinase signaling pathway 8 3.74E-10

GO: 0010604 positive regulation of macromolecule metabolic process 13 5.82E-10

GO: 0008284 positive regulation of cell population proliferation 9 1.04E-09

GO: 0009893 positive regulation of metabolic process (GO: 0009893) 13 1.59E-09

GO: 0010628 positive regulation of gene expression 11 1.77E-09

GO: 0035239 tube morphogenesis 8 2.51E-09

GO: 0080134 regulation of response to stress 10 2.88E-09

hsa05205 Proteoglycans in cancer 10 1.69E-20

hsa05200 Pathways in cancer 10 1.09E-17

hsa01521 EGFR tyrosine kinase inhibitor resistance 6 2.72E-13

hsa05212 Pancreatic cancer 5 3.10E-11

hsa05218 Melanoma 5 4.40E-11

hsa04015 Rap1 signaling pathway 6 7.12E-11

hsa04014 Ras signaling pathway 6 1.12E-10

hsa04933 AGE-RAGE signaling pathway in diabetic complications 5 2.40E-10

hsa05206 MicroRNAs in cancer 6 5.52E-10

hsa04068 FoxO signaling pathway 5 9.46E-10

Table 4. �Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biologic process pathway enrichment analysis of 
the hub genes.
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signaling [50–52]. Increased expression of miR-145 is associ-
ated with inhibition of the growth of intrahepatic cholangio-
carcinoma by inhibiting cancer cell proliferation, growth, and 
invasion [53,54]. Also, miR-26a was previously shown to be sig-
nificantly down-regulated in cholangiocarcinoma cells in vitro, 
and miR-195 expression was reduced in cholangiocarcinoma 
cells [50–52]. A miRNA expression profile in intrahepatic chol-
angiocarcinoma previously reported the aberrant expression 
of some miRNAs, which included upregulated hsa-miR-566, 
while hsa-miR-29c-3p, hsa-miR-26a-5p, hsa-miR-451a, and 
hsa-miR-143-3p were down-regulated, which supports the 
findings of the DEMs identified in the present study [53,55].

However, miRNAs have different functional roles in the reg-
ulation of specific genes [56]. Therefore, target gene predic-
tion of miRNAs is of importance. Several online databases are 
currently used to predict target genes of miRNAs, and each 
miRNA may predict a large number of target genes with the 
help of the algorithms from online databases. However, many 
gene target databases do not fully understand the relation-
ships between miRNAs and target genes, which may result 
in false positives [56]. The miRWalk database predicts target 
genes by integrating six conventional features and seven new 
features [34,57]. TargetScan considers site type and searches 
for the conserved sites that pair the seed region of each DEM 
and then considers another 14 features to predict the target 
genes [35]. By using the support vector machine framework, 
miRDB may be used to predict target genes [36,58]. The on-
line database, miRTarBase, predicts target genes by collecting 
and organizing the relationship between miRNAs and target 

genes from published studies [37]. Based on different compu-
tational methods of the online databases miRWalk, TargetScan, 
miRDB, and miRTarBase, the overlap of target genes in all data-
sets may reduce the false positives of the predicted results 
of miRWalk and make the identification of target genes more 
credible, as in the present study.

In this study, there were 130 genes selected. Gene Ontology 
(GO) functional enrichment analysis showed that these 130 
genes were significantly enriched in the substance metabo-
lism, development process, and regulation of gene expression. 
There are several previous studies have shown that regulation 
of cell proliferation and cellular metabolic processes are asso-
ciated with cancer progression [59–61]. The findings from the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analysis identified target genes that were enriched 
for resistance to epidermal growth factor (EGFR) tyrosine ki-
nase inhibitors, hormone resistance, and other signaling path-
ways, including Ras and FoxO, and cancer development path-
ways. Several previously published studies have shown that 
miRNAs are associated with cancer [62–64]. Kim et al. identi-
fied the role of signal transduction in cancer, which is consis-
tent with the findings from the present study [65]. Tyrosine ki-
nase inhibitors specific for EGFR1 could affect the role of EGFR 
and contribute to the progression of cholangiocarcinoma, as 
shown in a previous study by Lee et al. [66], which is consis-
tent with the finding of EGFR tyrosine kinase inhibitor resis-
tance identified in the present study. Rizvi et al. [22] showed 
that the Ras pathway was involved in malignancy. Other stud-
ies have shown that activation of the FoxO1 signaling pathway 

Figure 9. �The microRNA (miRNA) and gene regulation network. The network was constructed using Cytoscape software. The red color 
represents the miRNA. The blue color represents the corresponding target gene.
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could inhibit cell proliferation in malignant cells, including in-
trahepatic cholangiocarcinoma [67,68]. The findings from these 
previous studies support the findings from the present study.

The construction of the protein-protein interaction (PPI) net-
work and the measurement of the degree of centrality iden-
tified a total of 14 hub genes in this study. Among these hub 
genes, KRAS and ESR1 showed the highest degree of central-
ity and directly interacted with several other genes. KRAS has 
previously been reported to be expressed in cholangiocarci-
noma, and the activation of KRAS might also be involved in the 
progression of intrahepatic cholangiocarcinoma [69,70]. KRAS 
affects the expression of glucose transporter-1 (GLUT-1), which 
is a major glucose transporter in intrahepatic cholangiocarci-
noma, and KRAS has also been identified as a negative prog-
nostic molecular biomarker [70,71]. Also, KRAS is a molecular 
biomarker for ovarian mucinous tumors and pancreatic duc-
tal adenocarcinoma [72,73]. The ESR1 gene is a specific diag-
nostic biomarker for breast cancer and is expressed by several 
types of cancer. Mutations of the ESR1 gene have been report-
ed as prognostic factors associated with poor survival [74–77]. 
Previous studies have reported that mutation of ESR1 could 
affect hormone resistance and reduce the response to treat-
ment [78,79]. Carausu et al. showed that the use of CDK4/6 
inhibitors reduced the prevalence of ESR1 mutations [80]. Both 
KRAS and ESR1 are involved in the development and progres-
sion of several cancers and may be regarded as valuable bio-
markers for diagnosis and treatment.

In the present study, the miRNA and gene regulatory network 
demonstrated the regulatory association between the miRNAs 
and genes. By overlapping the results from the hub genes in 
GSE53870 and the differentially expressed mRNAs in GSE32879, 
ESR1 was the only gene in both Gene Expression Omnibus 
(GEO) datasets. These findings indicated that ESR1 and its cor-
responding miRNA, hsa-miR-26a-5p, might be novel biomark-
ers for intrahepatic cholangiocarcinoma. Also, the expression 
of ESR1 was down-regulated in intrahepatic cholangiocarci-
noma. Kuper et al. showed that patients cholangiocarcinoma 
with a higher estrogen level [81]. Previous studies showed 
that ESRs are expressed in the hepatobiliary epithelium, and 
estrogen produces its effect through specific integration with 
ESRs, which include ESR1 and ESR2 [81,82]. Therefore, estrogen 
might have a role in oncogenesis in cholangiocarcinoma. ESR1 
has been reported as a tumor suppressor in colorectal cancer, 
and the genetic variation of ESR1 might increase the risk for 

hepatocellular carcinoma and prostate cancer [83,84]. Given 
these associations, ESR1 could be regarded as a potential tu-
mor suppressor for intrahepatic cholangiocarcinoma. The re-
sults of KEGG pathway enrichment analysis showed that ESR1 
was mainly enriched in proteoglycans in cancer. Proteoglycans 
are components of the extracellular matrix (ECM), which has 
been shown in tumorigenesis of leiomyomas by VCAN by down-
regulating ESR1 [85]. Also, changes in ECM are associated with 
the development of hepatocellular carcinoma (HCC) and liver 
cirrhosis [86,87]. The roles of proteoglycan and ESR1 in intra-
hepatic cholangiocarcinoma require further study, as liver cir-
rhosis is also a risk factor for intrahepatic cholangiocarcinoma.

Several previous studies have reported that hsa-miR-26a-5p 
acts as a tumor suppressor and in cancer [88]. The expression 
of hsa-miR-26a-5p was reduced in bladder cancer, colorectal 
cancer, and HCC [89–91]. In this study, the result also dem-
onstrated hsa-miR-26a-5p were down-regulated. Chang et al. 
showed that patients with HCC who had increased expres-
sion of hsa-miR-26a-5p had an increase in overall survival (OS) 
rates and a reduced the risk of tumor recurrence [92]. Also, 
hsa-miR-26a-5p was shown to be associated with the expres-
sion of E-cadherin and vimentin, which are involved in epithe-
lial-mesenchymal transition (EMT) [93]. EMT has been identi-
fied as an important factor in tumor metastasis in intrahepatic 
cholangiocarcinoma [27,28]. By targeting EMT, hsa-miR-26a-5p 
might interfere with tumor development to improve the prog-
nosis of patients. Therefore, hsa-miR-26a-5p should be regard-
ed as a potential molecular biomarker in patients with intra-
hepatic cholangiocarcinoma.

Conclusions

This study aimed to use bioinformatics analysis to identify 
molecular biomarkers of intrahepatic cholangiocarcinoma and 
their potential mechanisms and identified down-regulated hsa-
miR-26a-5p and ESR1. The findings from the present study, 
combined with the findings from previous studies, support the 
importance of hsa-miR-145-5p, KRAS, and hsa-miR-143-3p in 
intrahepatic cholangiocarcinoma. Further clinical studies are 
required to verify the findings from this preliminary study.
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