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ABSTRACT We report here the draft genome sequences of three isolates of Rhod-
ovulum sulfidophilum from a single population that will serve as a model system for
understanding genomic traits that underlie metabolic variation within closely related
marine purple nonsulfur bacteria in natural microbial communities.

Rhodovulum sulfidophilum is a metabolically versatile, purple, nonsulfur bacterium
commonly isolated from marine habitats and hypersaline environments (1, 2).

R. sulfidophilum is used as a model organism to study the mechanisms underlying
anoxygenic photosynthesis (3–5), oxidative sulfur metabolism (6), extracellular DNA
and RNA production (7), and, recently, biohydrogen production (8). Despite this inter-
est, there are few genomic resources for R. sulfidophilum, and, to date, only two strains
have genome sequences (R. sulfidophilum DSM 2351 [9] and R. sulfidophilum DSM 1374
[10]). To gain a better understanding of the genomic diversity within R. sulfidophilum
and to develop new marine models for studying anoxygenic phototrophic metabolism,
we generated draft genome sequences of three R. sulfidophilum environmental isolates
(Table 1) from a microbial mat in a brackish estuary in the Truck River near Woods Hole,
Massachusetts, USA.

Genomic DNA from each organism was isolated from a mid-log-phase culture grown
in Difco marine broth 2216 (BD Diagnostic Systems, Sparks, MD, USA) using the DNeasy
blood and tissue kit (Qiagen, Düsseldorf, Germany). Illumina 250-bp paired-end se-
quencing libraries were prepared using the Nextera sample prep kit (Illumina Inc., San
Diego, CA, USA) and were sequenced on an Illumina MiSeq platform using V2 chemistry
(Illumina, Inc., San Diego, CA, USA). Sequencing reads were quality- and adapter-
trimmed using Trimmomatic version 0.33 (11) with the program’s default parameters
for paired-end reads. The processed reads were de novo assembled using the CLC
Genomics Workbench (CLC Bio-Qiagen, Aarhus, Denmark). Scaffolds were generated
using the reference-based scaffolder MeDuSa (12) with R. sulfidophilum DSM 2351 as a
guide for alignment. Reads were aligned to the DSM 2351 reference using the Bowtie2
version 2.2.29 (13) short-read mapper. Gene modeling and annotation was performed
using the RAST version 2.0 (14–16) annotation pipeline. The whole-genome alignment
was accomplished with LASTZ version 1.02.00 (17).

Each genome contains canonical genes involved in photolithoautotrophic metab-
olism, including photosynthetic genes in a photosynthetic gene cluster (18), form I and
form II ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) for carbon dioxide
fixation, and genes involved in sulfur oxidation encoded by the Sox system (soxXYZ-
ABCD) completely conserved between strains. Whole-genome alignment revealed that
the strains are closely related to DSM 2351 and DSM 1374, whereas only 57.8% (AB26),
78.7% (AB14), and 77.9% (AB30) of the sequence reads mapped to the R. sulfidophilum
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DSM 2351 genome. Scaffolding revealed contigs from AB14 aligned to plasmid 1,
plasmid 2, and plasmid 3 of R. sulfidophilum DSM 2351, whereas AB30 only possessed
sequences aligning to plasmid 1 and plasmid 2. Interestingly, strain AB26 contains
sequences homologous to plasmid 3, in addition to a novel ~100-kb plasmid. This
plasmid sequence contains a variety of genes for metal transport/metabolism, includ-
ing nickel (nikABCDE), manganese (sitABCD), and zinc (zuABC) transport proteins. These
results display new insights into the genomic diversity within closely related purple
nonsulfur bacteria in marine ecosystems.

Accession number(s). The draft genome sequences have been deposited in Gen-
Bank under the accession numbers listed in Table 1.
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AB26 3,402,927 4.38 3 MSYQ00000000
AB30 1,835,746 4.25 16 MSYR00000000
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