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Rua Francisco Getúlio Vargas 1130, 95070-560 Caxias do Sul, RS, Brazil

Correspondence should be addressed to João Antonio Pêgas Henriques; pegas.henriques@gmail.com
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Micronutrients, including minerals and vitamins, are indispensable to DNA metabolic pathways and thus are as important for life
as macronutrients. Without the proper nutrients, genomic instability compromises homeostasis, leading to chronic diseases and
certain types of cancer. Cell-culture media try to mimic the in vivo environment, providing in vitro models used to infer cells’
responses to different stimuli. This review summarizes and discusses studies of cell-culture supplementation with micronutrients
that can increase cell viability and genomic stability, with a particular focus on previous in vitro experiments. In these studies,
the cell-culture media include certain vitamins and minerals at concentrations not equal to the physiological levels. In many
common culture media, the sole source of micronutrients is fetal bovine serum (FBS), which contributes to only 5–10% of the
media composition. Minimal attention has been dedicated to FBS composition, micronutrients in cell cultures as a whole, or the
influence of micronutrients on the viability and genetics of cultured cells. Further studies better evaluating micronutrients’ roles at
a molecular level and influence on the genomic stability of cells are still needed.

1. Introduction

Micronutrients, essential nutrients that are needed in small
amounts, are as important for life as macronutrients. Micro-
nutrients comprise all of the vitamins, such as A, D, and E,
as well as the minerals, such as calcium, zinc, and iron. The
in vivo role of micronutrients is well established, and several
studies have examined the effects of micronutrients on
genomic stability [1–21]. Approximately 40 micronutrients
are required in the human diet, and for each micronutrient,
proper metabolism demands an optimal level of intake. A

micronutrient deficiency distorts the metabolism in numer-
ous and complicated ways, many of which may lead to DNA
damage.

Micronutrients are required for optimal macronutri-
ent metabolism because of micronutrients’ critical role in
intermediate metabolism. Invariably, metabolism requires
the concomitant involvement of one or more vitamins and
minerals. Chronic degenerative disease etiology and the rate
of pathogenesis are thus intimately associated with micronu-
trient imbalances. Nutrition research has recently highlighted
the role of several nutrients in regulating the genomic
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machinery [22]. More specifically, a number of vitamins
and micronutrients are substrates and/or cofactors in the
metabolic pathways regulating DNA synthesis and/or repair
and gene expression [23]. A deficiency in such nutrients may
result in the disruption of genomic integrity and alteration
of DNA methylation, thus linking nutrition with the modu-
lation of gene expression. In many cases, the response to a
nutrient deficiency also seems to be genotype specific. Gene-
nutrient interactions are thus a fascinating example of phys-
iological responses to the environment/diet at the molecular
level [22].

Minerals and vitamins are indispensable to DNA meta-
bolic pathways [24, 25]. Although there is still no clear evi-
dence for a diet that optimally protects against DNA damage,
in terms of either proportions or combinations of specific
micronutrients, many studies that conducted in vitro and in
animalmodels have demonstrated the roles ofmicronutrients
in maintaining genomic stability. For example, vitamins C
and E deficiencies are known to cause DNA oxidation and
chromosomal damage [26, 27]. Vitamin D exhibits antioxi-
dant activity, stabilizes chromosomal structure, and prevents
DNA double-strand breaks [28]. Similarly, magnesium is
an essential cofactor in DNA metabolism that plays a role
in maintaining the high fidelity of DNA transcription [29].
Whereas either an excess of or a deficiency in iron may
cause DNA breaks [30], a carotenoid-rich diet reduces DNA
damage [31], but excess retinolmay be carcinogenic in certain
individuals [32]. In a final example, vitamin B-12 deficiency
is associated with the formation of micronuclei [5, 24], and
reduced transcobalamin II in the serum is associated with
chromosomal abnormalities [33].

Given the importance of micronutrients in vitro, the
optimization of cell viability and genomic stability warrants
further studies. Cell-culture media mimicking the in vivo
environment may help to generate in vitro models of a cell’s
response to different stimuli.The composition of these media
includes certain vitamins and minerals, but unfortunately, in
many common culture media, the only source of micronu-
trients is fetal bovine serum (FBS), which contributes to only
5–10% of the media composition. Moreover, the appropriate
proportion of micronutrients is not always provided because
the precise composition of each batch of FBS is in fact
extremely variable [34].

Certain micronutrients, such as calcium, folate, magne-
sium, and iron, have been reported as key elements in cellular
processes, including the proliferation, survival, and even dif-
ferentiation of cell cultures [35–38]. However, the particular
concentration of micronutrients in a culture as well as the
cell type may trigger different responses. Further studies of
micronutrients’ roles at a molecular level and influence on
genomic stability are still required.

2. Aims and Scope

This review summarizes and discusses studies showing
the influence of some micronutrients on cell viability and
genomic stability, with a particular focus on in vitro models.
In vivo evidences are presented to illustrate the relevance of
the nutrients to genomic stability. Papers were retrieved from

PubMed using the following search terms: micronutrients,
vitamins, minerals, cell culture, proliferation, viability, and
genomic stability. Additional publications were collected by
cross-referencing the primary articles retrieved. The review
does not aim to include all nutrients that could influence
genomic stability; then, only the following nutrients were
included vitamins A, B7, B9, B12, C, and E and minerals Cu,
Fe, Mg, Se, and Zn. According to Friso and Choi [39], an
imbalance of such dietary nutrients as folate, zinc, vitamin C,
and selenium can alter genomic and/or gene-specific DNA
methylation, resulting in many different molecular effects on
gene expression and integrity, in turn affecting cell growth,
tissue differentiation, cancer incidence, and aging. To better
address the selected micronutrients’ effects in cell viability
and genomic stability, we considered the information avail-
able regarding either their deficiency or excess.

3. Micronutrients and Their Influence on
Genomic Stability

DNA damage is one of the most important factors that
can compromise homeostasis, resulting in chronic (e.g., ath-
erosclerosis) and even degenerative diseases, including Alz-
heimer’s disease (AD) and certain types of cancer [40]. A
deficiency in or imbalance of certain micronutrients has
been described as mimicking radiation or chemicals, causing
single- and double-strand breaks (SB) or lesions in DNA, or
even both [20].

In Table 1, micronutrients whose imbalances cause DNA
damage are listed, as well as the nutrients’ food sources and
possible health effects. In general, micronutrients can either
act directly on the genome to prevent mutations or protect
the genome indirectly by serving as enzyme cofactors in
the cellular processes that modulate transformation [41, 42].
Therefore, any imbalance may result in a degree of DNA
damage.

The role of diet in determining genomic stability is more
important than previously imagined. It has been found that
diet affects all pathways relevant to genomic stability, includ-
ing exposure to dietary carcinogens, activation and detox-
ification of carcinogens, DNA repair, DNA synthesis, and
cell apoptosis [23, 43]. All of these critical pathways are
dependent not only on enzymes but also on substrates and
cofactors, a few of which are only available at the right
concentration when the dietary intake of key minerals and
vitamins is adequate [44]. As a result, a dietary deficiency in
certain micronutrients required for DNA maintenance may
exert effects similar to inherited genetic disorders that impair
the activity of enzymes required for genomic stability [23, 45–
47]. Additionally, such a deficiency may damage DNA to a
similar extent as significant exposure to known carcinogens,
such as ionizing radiation [43].

3.1. Vitamin A. Vitamin A is also referred to as retinoic
acid, retinol, retinal, 𝛼- and 𝛽-carotene, lycopene, lutein,
zeaxanthin, 𝛽-cryptoxanthin, or astaxanthin. The role of
vitamin A and provitamin A (carotenoids) in DNA damage
has recently been reviewed by Azqueta and Collins [65]. The
well-established antioxidant properties of vitamin A have
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facilitated studies measuring oxidative damage both in vivo,
in animal studies and human clinical trials, and in vitro.
Whereas high concentrations of provitamin A carotenoids
can cause DNA damage, perhaps by acting as prooxidants,
nonvitamin A carotenoids that can significantly reduce such
damage [66].

The functions of vitamin A are related to night, day, and
color vision; epithelial-cell integrity against infections; the
immune response; hemopoiesis; skeletal growth; male and
female fertility; embryogenesis. Paradoxically, either an
excess of or a deficiency in retinoic acid results in similarmal-
formations in certain organs, including the mammalian
kidney [67]. Many eye pathologies are due to vitamin A
deficiency, including night blindness, conjunctival xerosis
and corneal injuries. Similarly, hypervitaminosis A, resulting
from the storage of excess vitamin A in the body, can damage
various systems. Very large doses of vitamin A, especially
in young children, can increase the intracranial pressure,
leading to headache, nausea, and vomiting [68]. It has also
been established that adequate vitamin A intake is required
for normal organogenesis, immune function, tissue differ-
entiation, and vision. Given these requirements, vitamin A
deficiency, which is widespread in the developing world, is
responsible for at least one million instances of unnecessary
death and blindness each year [69].

3.2. Vitamin B7. Vitamin B7, also known as biotin, acts as a
cofactor for the biotin-dependent enzymes pyruvate carboxy-
lase, propionyl-CoA carboxylase, crotonyl-CoA carboxylase,
and two isozymes of acetyl-CoA carboxylase [70]. These
enzymes catalyze key steps in important metabolic pathways,
including fatty acid biosynthesis, gluconeogenesis, and amino
acid metabolism [71]. Vitamin B7 deficiency due to inade-
quate dietary intake or congenital defects in biotin absorption
or metabolism results in the inactivation of all five biotin-
dependent enzymes. This condition is known as multiple
carboxylase deficiency (MCD) [72, 73], whose symptoms
include ketoacidosis, lactic acidosis, feeding difficulties, skin
rashes, and neurological abnormalities, such as subependy-
mal cysts, hypotonia, seizures, and ataxia. In severe cases, or
if MCD is left untreated, the condition can lead to coma or
death [74].

It has been demonstrated that biotin plays a role in DNA-
strand breaks and the cellular response to strand breaks (SB).
More specifically, biotin supplementation increased DNA
breaks in cell cultures, although it is unknown whether this
finding is relevant to whole organisms [75]. In contrast, in
vivo, a high biotin intake in combination with a low intake of
multiple other nutrients has been associated with increased
genomic stability [53]. Biotin deficiency rarely occurs spon-
taneously in animals, including humans [76], but can be
induced by consuming large amounts of raw eggwhite, which
contains avidin, known to inhibit biotin absorption from the
intestinal tract, or by taking anticonvulsants [77].

3.3. Vitamin B9. A deficiency in vitamin B9, also known as
folic acid or folate, is common in people who consume few
fruits and vegetables. Vitamin B9, as well as other vitamins
from the B complex, plays an important role in genomic

stability, and a deficiency can cause chromosomal breaks
in human genes [78]. Vitamin B9 deficiency can also lead
to (a) an elevated rate of DNA damage and altered DNA
methylation, both of which are risk factors for cancer [78–
80], possibly including colon cancer [81] or (b) an increased
homocysteine concentration, an important risk factor for
cardiovascular disease [82]. These defects may also play a
significant role in developmental and neurological abnormal-
ities [78, 79]. However, in animals with existing preneoplastic
or neoplastic lesions, folicacid supplementation increases
the tumor burden [83]. In contrast, the adequate intake of
vitaminB9 can increase genomic stability and possibly reduce
cancer risk [84–87] because vitamin B9 is a key carbon donor
during nucleotide biosynthesis [88].

3.4. Vitamin B12. Vitamin B12, or cyanocobalamin, defi-
ciency is associated with pernicious anemia and neurological
pathologies varying from a minor decrease in cognitive
function to neurodegenerative disorders, although the role
of vitamin B12 in these conditions requires further investi-
gation [89, 90]. The lack of understanding of the underlying
molecular mechanisms may be due to the experimental
limitations of the available classical cell-culture models [89].
Nevertheless, vitamin B12 is known to play an important
role in genomic stability, and a deficiency in vitamin B12 can
lead to DNA damage [81]. Vitamin B12 is also required for
the synthesis of methionine and S-adenosyl methionine, the
common methyl donor required for the maintenance of the
DNA methylation patterns that determine gene expression
and DNA conformation [91].

Despite controversies in the literature regarding the
prevalence of vitamin B12 deficiency, this deficiency seems
to be more common among people aged 65–76 years [92].
However, the symptoms of vitamin B12 deficiency caused by
poor diet, digestive problems, and/or inadequate absorption
in elderly people can be nonspecific, rendering a diagnosis
more difficult. Furthermore, neurological symptoms may
appear before anemia; in fact, only approximately 60% of
elderly people with vitamin B12 deficiency are anemic [92,
93]. In cell-culture models, sufficient vitamin B12 can be
provided to the cells by the FBS [89].

3.5. Vitamin C. Vitamin C, also known as ascorbate or ascor-
bic acid, is a micronutrient required for innumerable biolog-
ical functions, specifically serving as a cofactor for certain
important enzymes [94]. One type enzyme is the prolyl
hydroxylases, which play a role in collagen biosynthesis and
the downregulation of hypoxia-inducible factor- (HIF-) 1, a
transcription factor that regulates many genes responsible for
tumor growth, energy metabolism, and neutrophil function
and apoptosis. Vitamin C-dependent inhibition of the HIF
pathway may provide alternative or additional approaches to
controlling tumor progression, infection, and inflammation
[94].

As vitamin C exhibits antioxidant properties that provide
protection against oxidative stress-induced cell damage by
scavenging reactive oxygen species (ROS), the effects of this
vitamin on cancer chemoprevention [95, 96] and cancer
treatment [97] as well as sepsis [98] and neurodegenerative
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diseases (e.g., Alzheimer’s disease) [99] have been stud-
ied. In fact, ingesting inadequate levels of vitamin C can
mimic radiation exposure. In the literature, numerous human
supplementation studies have used biomarkers of oxidative
damage to DNA, lipids (lipid oxidation releases mutagenic
aldehydes), and protein. Although these studies have yielded
both positive and negative results, if the fact that blood-cell
saturation occurs at approximately 100mg/day is taken into
consideration, the evidence suggests that this level of vita-
min C intake minimizes DNA damage [20]. Unfortunately,
vitamin C deficiency is common in poor communities, so
measures to improve the consumption of vitamin C-rich
foods should be considered [100].

3.6. Vitamin E. Vitamin E, which comprises compounds
from the tocopherol and tocotrienol families, is required
to prevent peripheral neuropathy and hemolytic anemia in
humans, which arise due to vitamin E deficiency. Vitamin
E functions as a vital lipid-soluble antioxidant, scavenging
hydroperoxyl radicals in the lipid milieu. The human symp-
toms of vitamin E deficiency suggest that this vitamin’s
antioxidant properties play a major role in protecting ery-
throcyte membranes and nervous tissues [94]. Additionally,
these antioxidant properties play a role in genomic stability,
particularly because vitamin E is a potent peroxyl radical
scavenger. Vitamin E is also a chain-breaking antioxidant that
prevents the propagation of free radicals in membranes and
plasma lipoproteins [101].

Recently, Ni and Eng [102] demonstrated that 𝛼-tocop-
herol can selectively protect SDH (var+) cells from oxida-
tive damage and apoptosis and rebalance the redox met-
abolites nicotinamide adenine dinucleotide (NAD+ and
NADH). Another interesting recent study [103] evaluated the
amount of the oxidation product 8-oxo-7,8-dihydro-2󸀠-de-
oxyguanosine (8-oxodG) formed from the DNA nucleoside
deoxyguanosine (dG) after vitamin exposure. In the case of
vitamin E, no DNA damage was induced in cultured cells.
Taken together, these results reinforce the role of this vitamin
in maintaining DNA integrity and stability. Although the
direct comparison of the study outcomes is complicated by
varying definitions of vitamin E deficiency, the available data
suggest that children and the elderly are most vulnerable
to this deficiency and that men may be at higher risk than
women [104].

3.7. Copper. Copper is an essential trace element, serving as a
cofactor for many enzymes in different biological processes.
In contrast to iron, the copper concentration not only in
the blood but also in individual organs is maintained at
constant levels beginning in early childhood, indicating the
presence of robust homeostatic mechanisms [105]. Adequate
copper intake permits the normal utilization of dietary iron,
as intestinal iron absorption, iron release from stores (e.g.,
in the macrophages of the liver and spleen), and iron incor-
poration into hemoglobin are copper-dependent processes.
In addition to preventing anemia, copper assists in blood
coagulation and blood-pressure control; the crosslinking of
connective tissue in the arteries, bones, and heart; defense

against oxidative damage; energy transformation; the myeli-
nation of the brain and spinal cord; reproduction; hormone
synthesis. In contrast, inadequate copper intake has adverse
effects on the metabolism of cholesterol and glucose, blood
pressure control and heart function, bonemineralization, and
immunity [106].

The excessive accumulation of copper in the body can
contribute to the development of cancer due to copper’s
role in causing DNA damage [107]. Curiously, in addition to
the robust mechanisms maintaining copper homeostasis and
copper’s rapid excretion, mammals express copper-depend-
ent enzymes that are central players in antioxidant defense.
Thus, whereas copper can induce ROS formation when
involved in Fenton-like or Haber-Weiss reactions, copper-
dependent processes can also help to clear ROS [105]. For
further information on the relationship between copper and
DNA damage, please refer to the recent review published by
Linder [105].

3.8. Iron. Iron is a crucial nutritional element for all life
forms that plays a critical role in the cell, including electron
transport and cellular respiration, proliferation and differen-
tiation, and the regulation of gene expression [3]. Iron can
undergo univalent redox reactions, resulting in oxidized and
reduced forms known as ferric (Fe3+) and ferrous (Fe2+) iron,
respectively. Due to iron’s oxireduction, which can contribute
to ROS generation, as well as iron’s role in Fenton and Haber-
Weiss reactions, this nutrient is also potentially deleterious.
These reactions occur when an inorganic nutrient, such
as Fe2+ or Cu+, is in excess and donates an electron to
H
2
O
2
, leading to OH production. The ROS generated by

Fenton chemistry can contribute to major pathologies, such
as cancer, atherosclerosis, and neurodegenerative diseases
[38].

Free radicals can cause serious damage to the genome.
Depending on the dose and type, inorganic nutrients can pro-
tect against or contribute to oxidative stress [108]. Peroxidases
and especially catalase, which use heme iron as a cofactor,
decompose H

2
O
2
. If the resultant reactive species are not

efficiently removed, these species can induce the formation
of the more active OH or peroxynitrite, which may result
in DNA oxidation. Therefore, deficiencies in such nutrient-
dependent antioxidant enzymes can increase oxidative stress
and favor the genomic instability [109].

In addition, iron is a cofactor ofmany important enzymes
related to DNA repair mainly as clusters of iron sulphur. For
example, the glycosylases MutyH and NTHL1 involved in
base excision repair (BER) and mismatch repair (MMR) and
the helicases ERCC2 and BACH1 acting in the nucleotide
excision repair (NER) possess iron-sulphur clusters in their
structure [110, 111]. The increased DNA damage sensitivity in
cells with impaired Fe/S protein biogenesis may include the
loss of nucleotide excision repair because maturation of XPD
is defective. Since the Fe/S cluster of XPD is required for its
DNA helicase activity in vitro [110].

Although excess iron can cause oxidative DNAdamage in
rats and has been associated with an increased risk of cancer
and heart disease in humans [20], iron deficiency also appears
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to lead to oxidative DNA damage and is associated with
cognitive dysfunction in children. The importance of iron
in normal neurological function has been well established,
as neurons require iron for many physiological processes,
including electron transport and axonal myelination, and as
a cofactor for many enzymes involved in neurotransmitter
synthesis [112, 113]. In contrast, inadequate iron intake results
in anemia, immune dysfunction, and adverse pregnancy
outcomes, such as premature birth. Maintaining physiolog-
ical iron levels via dietary intake is thus mandatory for
health. However, iron deficiency is still very common in the
human population, particularly among children and preg-
nant women [114].

3.9. Magnesium. Magnesium is indispensable to life, as this
micronutrient is involved in many important biological pro-
cesses. Magnesium has multiple functions in all cellular pro-
cesses, including DNA replication and protein synthesis, and
also serves as a cofactor for DNA-repair proteins and in the
maintenance of a cell’s redox status, cell-cycle regulation, and
apoptosis [29]. Magnesium deficiency or the displacement of
Mg2+ by other toxic, divalent metal ions leads to increased
genomic instability, which has been implicated in many dis-
eases [115] and may result in inhibited DNA repair, oxidative
stress, accelerated aging, and increased cancer risk [29, 116].
Studies have indicated that higher magnesium consumption
may protect against certain inflammatory disorders, such as
insulin resistance [117], hypertension [118], diabetes mellitus
[119], and cardiovascular disease [118].

Magnesium is not genotoxic at physiologically relevant
concentrations and in fact maintains low mutation frequen-
cies by facilitating high-fidelity replication and by support-
ing all DNA-repair processes and chromosomal segregation
during mitosis [29]. In fact, it is an essential cofactor
in NER, BER, and MMR processes, where magnesium is
required for the removal of DNA damage [120]. All down-
stream activities of major base excision repair proteins, such
as apurinic/apyrimidinic endonuclease, DNA polymerase
beta, and ligases, require magnesium. Thus, this element
may act as a regulator for the base excision repair pathway
for efficient and balanced repair of damaged bases, which
are often less toxic and/or mutagenic than their subsequent
repair product intermediates [121]. Magnesium is also impor-
tant for the fidelity of DNA replication, impacting cell cycle
and apoptosis [61].

Animal and human epidemiological studies have demon-
strated inverse correlations between magnesium levels and
cardiovascular disease [29] or the incidence of certain types
of cancer, including colorectal cancer [122, 123]. Addition-
ally, magnesium deficiency is one risk factor for premature
aging [29]. The relationship between magnesium levels and
tumorigenesis is more complex, with magnesium deficiency
increasing tumor incidence in animals and humans, whereas
magnesium promotes the growth of preexisting tumors due
to profound changes in magnesium homeostasis in tumor
cells. Thus, the protective effects of magnesium are restricted
to the early stages of tumor development [29]. According to
Ford and Mokdad [124], despite the role of magnesium in
maintaining good health, historically,much of the population

of the United States has not consumed adequate amounts
of this nutrient. Additionally, there are significant racial and
ethnic disparities in magnesium intake.

3.10. Selenium. The trace element selenium is another well-
established micronutrient essential for mammalian health
[125]. Selenium is a constituent of the small group of se-
lenocysteine-containing selenoproteins [126], including glu-
tathione peroxidase, thioredoxin reductase, selenoprotein
P, and selenoprotein R, which are primarily involved in
antioxidant activity and the maintenance of a cell’s redox
state [127–130]. Due to selenium’s key role in redox regulation
and antioxidant function, this nutrient is critical for mem-
brane integrity, energy metabolism, and protection against
DNA damage [126]. However, in certain cases, selenium
can also lead to oxidative DNA damage [20], increased
infection risk, and altered mood [131]. Whether selenium
exerts positive or negative effects in vivo or in vitro is
related to dose. Interest in organoselenide chemistry and bio-
chemistry has increased over the last two decades, mainly
because a variety of organoselenium compounds can be used
as antioxidants, enzyme inhibitors, neuroprotective, antitu-
moral, or anti-infectious agents, as well as cytokine inducers
and immunomodulators [125, 132–135]. In fact, an interaction
with the zinc finger structures of DNA repair proteins may
occur by essential trace elements such as certain selenium
compounds, which appear to exert anticarcinogenic proper-
ties at low concentrations but may compromise genetic sta-
bility at higher concentrations [136].

Selenium deficiency alone is not common in developed
countries, but an inadequate intake of this mineral has been
associated with the development of cancer, asthma, and coro-
nary disease, among other chronic conditions [137]. When
required, dietary supplementation must be performed care-
fully, given the intrinsic toxicity of high selenium levels
[138].

3.11. Zinc. Zinc is one of the most important micronutri-
ents due to the prevalence of zinc-dependent enzymes in
metabolic processes; zinc’s vital role in several bodily func-
tions, such as vision, taste perception, cognition, cell repro-
duction, growth, and immunity; the beneficial effect of zinc
supplementation on many disease states [139]. In fact, zinc
is a component of over 300 proteins, including over 100
DNA-binding proteins with zinc fingers, Cu/Zn superoxide
dismutase, the estrogen receptor, and the synaptic transmis-
sion protein [20]. Zinc also has a crucial role in the biology
of p53, in that p53 binds to DNA through a structurally
complex domain stabilized by zinc atom, possibly increasing
the response to anticancer drugs [140].

Zinc deficiency is a health problem inmany communities,
especially among adolescents, due to the pubertal growth
spurt [139]. At the molecular level, there is evidence of a rela-
tionship between zinc deficiency and increased chromosomal
breaks, possibly due to increased oxidative damage stemming
from a loss in the activity of Cu/Zn superoxide dismutase
or the zinc-containing DNA-repair enzyme Fapy glycosylase,
which repairs oxidized guanine [20]. Unfortunately, nearly
half of the world’s population is at risk of inadequate zinc
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intake, so public health programs are urgently needed to
reduce zinc deficiency [139].

3.12. Summary of the Effects of the Selected Micronutrients
on Genomic Stability. Taking the preceding discussion and
other evidence from the literature into account, the adequate
intake of micronutrients seems to have an important role
in genomic stability. In contrast, an imbalance of the same
micronutrientsmay also negatively impact theDNA, possibly
via oxidative stress, consequently causing or contributing to
different humandiseases. It is thus highly relevant to elucidate
the mechanism underlying the response to and repair of
oxidative stress and thismechanism’s relationship to theDNA
damage response pathways, all of the inorganic nutrients
(vitamins and minerals) and disease, including carcinogen-
esis. An understanding of the possible influences on genomic
stability, even in cell culture, is also in current demand.

4. Cell-Culture Medium and
Micronutrients That Increase Genomic
Stability: Is the Concentration Relevant?

According to Ferguson and Fenech [141], the last decade
of studies on micronutrients and genomic stability have
improved dietary recommendations based on the prevention
of DNA damage or the maintenance of genomic integrity. In
light of this, the development of in vivo and especially in vitro
models to more robustly evaluate DNA damage is necessary.

Table 2 presents interesting data regarding the micronu-
trients that may interfere with genomic stability and the
micronutrient concentration values found in typical cell-
culture media, FBS, and human serum. Unfortunately, data
are not available for all of the micronutrients in the media,
and even the proportions of micronutrients in FBS, as an
organic product, are not all well characterized. Additionally,
as demonstrated by Bryan et al. [34], the concentration of
many micronutrients in FBS can vary significantly between
batches.

Although cell-culture media attempt to provide an envi-
ronment similar to the in vivo milieu of cell development,
there is an evident imbalance of micronutrients between the
media and human serum. Certain micronutrients are present
in these media at concentrations higher than those found
in human serum (e.g., vitamins B7 and B12), whereas other
nutrients are present at significantly lower concentrations
than in human serum (e.g., iron and zinc). A recent study
[103] called attention to the composition ofmultivitamin sup-
plements, which may trigger unwanted health outcomes due
to the synergistic oxidative effects of the component vitamins
andmetals. In this research, the vitamins’ chemical oxidation
potencies were studied by measuring the amount of the
oxidation product 8-oxo-7,8-dihydro-2󸀠-deoxyguanosine (8-
oxodG) formed from the DNA nucleoside deoxyguanosine
(dG) after vitamin exposure.Themicronutrients evaluated by
the authors were the vitamins A, B1, B2, B3, B6, B12, and C;
𝛽-carotene; folic acid; 𝛼-, 𝛿-, and 𝛾-tocopherol. The minerals
copper, iron and zinc were also examined. All of these
micronutrients were tested in cell culture, alone or in combi-
nation, taking the human serum levels of each micronutrient

into account. The main conclusion reported was that certain
vitamins, alone or in combination with metals (e.g., vitamin
C and copper), can induce DNA damage. However, cells in
culture and in vivo have distinct needs for nutrients and
growth factors, as the cells’ activity in each environment may
differ due to interactions with other cells or parts of the larger
organism. Thus, examining physiological concentrations of
micronutrients in vitro may not be the most appropriate
approach.

As mentioned above, each cell type may have a distinct
requirement for micronutrients. Depending of the origin
of the cell and its role in vivo, the cell may specifically
have a higher affinity for one micronutrient over another.
In the case of iron, for example, which is stored in specific
tissues, including the spleen, liver, and bonemarrow [142], the
primary cells or immortal cell lines derived from these tissues
may have a greater need for this specific micronutrient. In
the case of certain neuronal cells, which require iron for
cell development [143], the demand for iron may also be
higher than in other cell types. Although the evaluation of
micronutrients’ influence on DNA damage and integrity as
well as on cell development, including the related enzymes
andproteins, should be continued, themicronutrient concen-
trations relevant not only to human but also to cell-culture
genomic stability must be considered.

5. Could Changes in a Culture’s Micronutrient
Composition Influence the Viability and
Genetics of the Cultured Cells?

Cells are typically maintained at an appropriate temperature
and CO

2
concentration (usually 37∘C and 5% CO

2
for

mammalian cells) in an incubator. Beyond these parameters,
the most commonly varied factor in culture systems is the
growth medium.The recipes for growth medium can vary in
pH, glucose concentration, growth factors and the presence
of other nutrients and micronutrients. The development
of synthetic basal formulations for mammalian cell-culture
applications has been facilitated by the contributions of many
investigators. In particular, the definition of the minimally
required nutrients by Harry Eagle in the 1950s spawned an
iterative process of continuous modification and refinement
of the exogenous environment to cultivate new cell types and
support the emerging applications of cultured mammalian
cells. This process led to the development of highly potent,
basal nutrient formulations capable of sustaining serum-free
cell proliferation and biological production [152]. However,
the growth factorsmost often used to supplement cell-culture
media are still derived from animal blood, such as FBS. FBS
has become the supplement of choice for cell culture-based
research, containing an array of proteins, growth factors, and
ions necessary for cell viability and proliferation in vitro,
including certain vitamins and minerals [153]. Currently, the
use of these ingredients is minimized or eliminated wherever
possible in favor of chemically defined media, but this
substitution is not always possible.

Bryan et al. [34] stated that one of the major obstacles
to obtaining human cells of a defined and reproducible
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standard, and thus suitable for use inmedical therapies, is the
routine necessity of supplementing cell-culture media with
FBS. In this study, FBS variants were evaluated, in terms of
both elemental (micronutrient) composition and the variants’
effects on the expression of a groupof proteins associatedwith
the antigenicity of primary human umbilical vein endothe-
lial cells (HUVECs). A combination of inductively coupled
plasma mass spectrometry (ICPMS) and flow cytometry was
used to achieve these experimental objectives. Statistically
significant differences in antigenic expression during cell cul-
turewere demonstrated for a set of trace elements in FBS (e.g.,
lithium, boron, magnesium, phosphorus, sulfur, potassium,
titanium, vanadium, chromium, manganese, iron, copper,
zinc, gallium, and selenium). The lack of reproducibility and
the variation in protein expression in the primary human cells
was attributed to the FBS supplementation.

Culture conditions for cell lines are known to affect gene
expression [154–156], while stem cells grown in different
types of serum exhibit variable differentiation and prolifera-
tion characteristics [157, 158] the same cell line, if cultivated in
different conditions, can present different phenotypes. Never-
theless, the cellular requirement for a specificmicronutrient is
directly correlated with the cell type, the rate of cell grow, and
the stage of cell differentiation. In light of this, it is important
to observe that minimal attention has been dedicated to the
composition of FBS and the micronutrient supplementation
of media in cell cultures or the fact that micronutrients
can influence the viability and genomic stability of cultured
cells.

In Tables 3 and 4, a few examples of the effects of vitamins
and minerals in cell culture and on genomic stability, drawn
from the literature, are highlighted.

5.1. Vitamin A. For vitamin A, but possibly applicable to
many other micronutrients, the studies presented in Table 3,
conducted at low concentrations, which tend to show protec-
tive effects, whereas higher concentrations are associatedwith
increased DNA damage [65]. This finding is consistent with
the known ability of 𝛽-carotene to act as a prooxidant, rather
than as an antioxidant, at high concentrations and under
high oxygen tension [178]. The physiological concentrations
of micronutrients should always be evaluated and, if possible,
at least used as a maximum in studies evaluating the viability
and genomic stability of cell cultures. However, as can be
verified in Table 2, there is a lack of data regarding the
presence of vitamin A in cell-culture media.

5.2. Vitamin B7 (Biotin). Biotin plays an important role in
regulating gene expression, thus mediating certain aspects
of cell biology and fetal development [179]. The effects of
biotin deficiency are detailed in Table 3 and are related to
decreased rates of cell proliferation, impaired immune func-
tion, and abnormal fetal development. An excess of biotin is
also mentioned and can exert reproductive and teratogenic
effects. However, as can be verified in Table 2, cell-culture
media containing higher levels of biotin than human serum
are common. More studies evaluating the effects of the
high biotin levels in cell cultures are necessary.

5.3. Vitamin B9. Folate depletion appears to enhance car-
cinogenesis, whereas folate supplementation above what is
presently considered to be the basal requirement confers a
protective effect [180]. A few examples of folate deficiency and
supplementation are described in Table 3, and the relation-
ship between this vitamin and cell proliferation and apoptosis
has been demonstrated. Furthermore, as can be verified in
Table 2, the folate levels in the cell-culture media evaluated
are typically higher than those levels found in human serum.
It is well established that folate deficiency can influence the
genomic stability of cultured cells [81, 181], yet there is still
a lack of data evaluating whether folate levels above the
physiological range can impair cell growth. Elevated levels of
folic acid should be examined, as in tumor-prone animals,
both folate deficiency and supplementation promote the
progression of established neoplasms [83, 182]. As a folate
overload ismore common than a deficiency in in vitro studies,
the former should be most thoroughly evaluated.

5.4. Vitamin B12. Vitamin B12 deficiency has been described
as similar to chemicals that damage DNA by causing single-
and double-strand breaks [20]. As demonstrated in Table 3,
in a cellular model designed to better understand vitamin
B12 deficiency in the brain, the growth and differentiation
of neuronal cells were affected [89]. Additionally, supple-
mentation with certain cobalamin compounds protected the
cells from neurotoxicity and increased cell growth [170, 171].
Unfortunately, in vitro research demonstrating a direct link
between vitamin B12 deficiency or overload and genomic
stability in human cells has not yet been published. Based
on Table 2, however, high concentrations of vitamin B12 are
more common in cell-culture media than in human serum.

5.5. Vitamin C. In Table 3, a few examples of the influ-
ence of vitamin C in cell cultures are provided. Different
concentrations of this vitamin result in distinct responses,
ranging from DNA damage (at higher concentrations) to the
protection of DNA (at lower concentrations). Importantly,
the concentration of vitamin C in current cell cultures is not
available in Table 2, as possibly only trace levels are present
in media. As the cellular response to vitamin C may be dose-
dependent, a similar concentration of this vitamin in culture
media to that in human serum should be evaluated.

5.6. Vitamin E. In vivo vitamin E supplementation is still
being discussed [183], and more in vitro studies will be
required to better understand the protective effects of vitamin
E on cell viability and genomic stability. Nevertheless, certain
results (Table 3) have been consistent with the concept that 𝛼-
tocopherol, combinedwith ascorbic acid or alone, can protect
against oxidative DNA damage [175] and reduce apoptosis
and autophagy [177] under certain conditions. Unfortunately,
the current in vitro concentration of vitamin E is also not
available in Table 2, as possibly only trace levels are present
in media. Given this observation, it is interesting to observe
that the in vitro studies of vitamin E described in Table 3
adopted concentration values similar to that of human serum
(approximately 30 𝜇mol/L) and that the results were positive
for the cell cultures.
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5.7. Copper. As can be verified in Table 2, there is a marked
lack of copper in common cell-culture media, even when
supplemented with FBS. Thus, cells in culture are typically
exposed to an environment deficient in a micronutrient
critical for the formation of detoxifying enzymes, which may
impact cell development and possibly genomic stability and
survival rates. It is important to note that the copper concen-
trations evaluated in cell culture (Table 4) are generally above
the human physiological range, so toxic effects in cultures
should be expected. Thus, the optimization of the copper
concentration in cell cultures is necessary to maintain cell
viability and genomic stability and to avoid the deleterious
effects of this metal.

5.8. Iron. In Table 4, it is important to note that the results of
Lima et al. [187] may be expected in a cell culture in which
the requirements for micronutrients are quite different from
those in vivo. In this study, the concentrations evaluated were
generally higher than the values measured in human serum
(Table 2), and even the lowest concentration of iron applied
for the authors (22.38𝜇mol/L) would be considered high for
cells in culture. For HL-60 leukemia cells, as demonstrated in
[201], the iron concentration range for optimal cell prolifer-
ation is very narrow (2-3𝜇mol/L). In contrast, in the studies
in which the iron levels were between 5 and 10 𝜇mol/L, these
levels generally benefitted the cultures analyzed, or at least no
damage was observed [187–189].

5.9. Magnesium. As presented in Table 4, several studies on
the effects of magnesium deficiency on cultured cells have
demonstrated reduced oxidative stress, cell-cycle progres-
sion, cell growth, and cell viability [190, 191, 202–207]. Killilea
and Ames [192] specifically investigated the consequences of
long-term and moderate magnesium deficiency in normal
human cells in comparison with more typical magnesium
levels, using a concentration observed in normal human
serum (0.8mmol/L). No alterations were observed in the
cells cultured in the medium containing normal magnesium
levels. Additionally, based on studies conducted either in
bacteria or inmammalian cells in culture, there is no evidence
for the genotoxic effects ofmagnesium salts at physiologically
relevant doses [29], indicating that adequate micronutrient
levels in cell-culture media may improve cell viability and
genomic stability. As shown in Table 2, the levels of magne-
sium currently found in cell-culture media are very similar
to those levels in human serum, which is very unusual for
micronutrients in general.

5.10. Selenium. The differential toxicities elicited by seleno-
compounds need to be taken into account in in vivo and in
vitro supplementation studies [194].The references in Table 4
evaluated different forms of selenium and certain salts that
may be more toxic to the cellular environment than others.
Due to the importance of selenium as well as many other
micronutrients discussed in this review, the micronutrient
concentration in the media, as well as the FBS, intended
for cell culture should be controlled and adjusted to the
physiological range, if applicable. By comparing the human
serum concentration of selenium in Table 2 with those

concentrations described in the experiments cited in Table 4,
it is apparent that the concentrations below the physiological
range benefitted the cell culture, although high concentra-
tions of selenium compounds potentially negatively affected
tumor cells.

5.11. Zinc. The role of zinc in genomic stability was recently
reviewed by Sharif et al. [208]. Additionally, a few brief
examples of zinc’s influence on cell viability and genomic
stability are provided in Table 4. A possible conclusion from
the in vitro assays is that when the zinc concentration used is
below the human serum value (Table 2), the results tend to be
beneficial for the cultured cells. In contrast, zinc concentra-
tions above the physiological level can damage cultured cells.
Again, it is interesting to observe that certain cell-culture
media (e.g., HAM F-10 and F-12), even when supplemented
with FBS, cannot provide enough of this micronutrient for
appropriate cell development and genomic stability once the
concentration falls below the physiological range.

6. What Must Be Done: Limitations of
the Available Evidence and Conclusions

Micronutrients are clearly important for cell development
and genomic stability, and many of the micronutrients men-
tioned are necessary for the DNA synthesis and repair
mechanisms. Table 5 provides an overview of the current
data regarding the effects of deficiencies or excesses of the
micronutrients addressed in this review on genomic stability.
The micronutrient levels found in the discussed cell-culture
media and the status of research on each micronutrient are
also highlighted. Evidently, much research has been per-
formed, butmore specific studies focusing on cell cultures are
still required.

Even though there are some highly enriched media avail-
able as basal media for serum-free cell culture, like Medium
199 or Ham F-12 nutrient mixture, the most common source
of micronutrients currently used in cell cultures is still FBS.
The limitations of FBS in providing adequate micronutrient
concentrations have been analyzed and described in the
literature [34]. Given that cell- and tissue-culture models are
generally important in scientific research, the development
of standards in vitro methods is mandatory. These new
standards will decrease dependence on animal serum, a
supplement with an undefined, variable composition that can
considerably influence experimental results [209]. Further-
more, according to van der Valk et al. [209], an improved
exchange of information regarding newly developed serum-
free media may be beneficial. It has also become clear that
nearly every cell type has distinct requirements for media
supplementation, and especially, as discussed in this review,
for micronutrient supplementation. A universal cell- and
tissue-culture medium may not be feasible, as different cell
types have different receptors involved in cell survival, growth
and differentiation, and release different factors into the
surrounding environment.

Besides this, it is important to highlight that although the
formulations of the classical cell culturemedia are unchanged
for a long time, since their development, the quality and
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Table 5: Overview of the data addressed in this review.

Micronutrient Evidence of genomic instability induction Concentration in common cell-culture
media versus physiological concentration

Optimal concentration
proposed for cell cultureDeficiency Excess

Vitamin A + + Lower Studied
Vitamin B7 + + Higher Requires more studies
Vitamin B9 + + Higher Studied
Vitamin B12 + NA Higher Studied
Vitamin C + + Unknown Studied
Vitamin E − + Unknown Studied
Copper + + Lower Studied
Iron + + Lower Studied
Magnesium NA + Similar Studied
Selenium + − Lower Studied
Zinc + + Lower Studied
NA: Not available.
(−) Negative: the available data indicate no effect.
(+) Positive: the available data indicate an effect.

purity of single components used as supplements, are likely
to have increased considerably. However, some losses of
important substances could have occurred, including trace
elements, vitamins, growth factors, and lipids and this should
be better addressed before defined a serum-free media. In
fact, the threshold for developing and using a new well-
defined medium, given that the current FBS-supplemented
culture media work well, is high [209]. At the very least, an
evaluation of FBS composition, in terms of micronutrients
and possibly other factors, should be strongly considered in
the laboratories that focus on in vitro studies. Knowledge of
the micronutrient composition of FBS may help to minimize
the bias in experimental results. However, maintaining both
successful and consistent cell cultures can be difficult, as
FBS is a complex natural product and may vary between
batches, even if obtained from a single manufacturer. More
specifically, the quality and concentration of both bulk and
specific proteins in cell cultures can affect cell growth [210].
Adjusting the in vitro micronutrient levels to physiological
values will guarantee a better environment for cell develop-
ment, mimicking the in vivomilieu.

Further studies on the effects of micronutrients on cell
viability, proliferation, and stability, as well as gene expres-
sion and integrity are still required, but the information
already available is a sufficient call to action. As mentioned
by Ferguson and Fenech [141], most investigations have been
limited to studying the effects of single micronutrients and
have not considered genetic consequences. Thus, there is
an important need for studies that also examine nutrient-
nutrient and nutrient-gene interactions. Determining the
physiological range of such significant micronutrients as iron
and then adjusting the concentrations currently found in cell-
culture media may be beneficial for in vitro assays. More
specifically, the viability and genomic stability of cell lines
and primary cultures may be improved. Depending on the
cell type (primary, immortalized, tumor, or normal) and
origin (lung, hepatic, neural, or other), the requirement for a

micronutrientmay varywidely, so this subject should be care-
fully evaluated. Finally, the form of the micronutrient used
in supplementation media may also influence experimental
results. For example, according to Jacobs et al. [211], whether
iron has toxic effects is directly related to the presence of a
chelating agent, which reduces the concentration of free ferric
ion and promotes the formation of ferritin.

Once the relationship between an in vivo imbalance of
micronutrients and genomic stability, whichmay cause many
diseases, including cancer, is established, it will bemandatory
to better understand in vitromicronutrient supplementation.
In fact, certain simple questions, such as “is the concentration
of this micronutrient sufficient for the development of this cell?”
or “are the levels of this micronutrient similar to the levels
observed in human serum?”, may aid the proper design of in
vitro studies.
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