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Abstract
Studies attempting to functionally interpret complex-disease susceptibility loci by GWAS and eQTL integration have predom-
inantly employed microarrays to quantify gene-expression. RNA-Seq has the potential to discover a more comprehensive set
of eQTLs and illuminate the underlying molecular consequence. We examine the functional outcome of 39 variants associ-
ated with Systemic Lupus Erythematosus (SLE) through the integration of GWAS and eQTL data from the TwinsUK microarray
and RNA-Seq cohort in lymphoblastoid cell lines. We use conditional analysis and a Bayesian colocalisation method to pro-
vide evidence of a shared causal-variant, then compare the ability of each quantification type to detect disease relevant
eQTLs and eGenes. We discovered the greatest frequency of candidate-causal eQTLs using exon-level RNA-Seq, and identified
novel SLE susceptibility genes (e.g. NADSYN1 and TCF7) that were concealed using microarrays, including four non-coding
RNAs. Many of these eQTLs were found to influence the expression of several genes, supporting the notion that risk haplo-
types may harbour multiple functional effects. Novel SLE associated splicing events were identified in the T-reg restricted
transcription factor, IKZF2, and other candidate genes (e.g. WDFY4) through asQTL mapping using the Geuvadis cohort. We
have significantly increased our understanding of the genetic control of gene-expression in SLE by maximising the leverage
of RNA-Seq and performing integrative GWAS-eQTL analysis against gene, exon, and splice-junction quantifications. We con-
clude that to better understand the true functional consequence of regulatory variants, quantification by RNA-Seq should be
performed at the exon-level as a minimum, and run in parallel with gene and splice-junction level quantification.
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Introduction
Genome-Wide Association Studies (GWAS) have successfully
identified a large number of genetic loci that contribute to
complex-disease susceptibility in humans (1). Evidence sug-
gests these variants are enriched within regulatory elements of
the genome and their effects play a central role in modulation
of intermediate quantitative phenotypes such gene expression
(1–6). Many expression quantitative trait loci (eQTL) mapping
studies have since been conducted across a wide-range of eth-
nicities (7,8), cell-types (9–16), disease states (17–22) and in re-
sponse to various environmental stimuli (23,24)—with each
contributing to our understanding of the architecture of human
regulatory variation in complex-disease.

In spite of diverse study designs, a significant constraint on
the majority of such investigations is the use of 3�-targeted mi-
croarrays to profile gene expression. The effects of splicing are
less likely to be detected through quantification of pre-defined
probes that target common exons of a gene (25) and may ex-
plain why only a limited number of susceptibility loci localize to
causal eQTL signals (26,27). Technical limitations of microarrays
and noise from the small probe design of exon-arrays, further
hinder the accuracy of expression measurements (25,28–30).
RNA-Seq based eQTL mapping studies are beginning to emerge
(31,32) and, although large-scale analysis pipelines are still be-
ing streamlined, such types of investigations will greatly in-
crease the likelihood of capturing disease associated eQTLs as
quantification of overall gene and independent exon expres-
sion, as well as relative transcript abundance (including novel
isoforms and non-coding RNAs) is possible (33–39).

Integrative studies using RNA-Seq to functionally annotate
complex-disease susceptibility loci however have been limited
(35,40–44). Direct comparison of eQTLs between studies is also
complicated by the diverging strategies used to map sequenced
reads to their genomic origins, how multi-mapping and exon-
exon spanning reads are dealt with, the choice of reference ge-
nome assemblies and genomic annotations, and finally the
methods used to infer gene abundance (45–47). Moreover, nu-
merous investigations have aimed to explain the functional rel-
evance of susceptibility loci by interrogation of GWAS SNPs
themselves in eQTL datasets and simply testing for association
with gene expression (48–50). Such inferential observations
should be treated with caution as they may possibly be the re-
sult of coincidental overlap between disease association and
eQTL signal due to local LD and general ubiquity of regulatory
variants (51). This has become particularly important as statisti-
cal power in eQTL cohorts grow and availability of
summary-level data accession through eQTL data-browsers
increases (52–54).

In this investigation, we integrate eQTL data derived from
both microarray and RNA-Seq experiments with our GWAS re-
sults in Systemic Lupus Erythematosus (SLE [MIM: 152700]); a
heritable autoimmune disease with undefined aetiology and
over 50 genetically associated loci (55–57). We use summary-
level cis-eQTL results in lymphoblastoid cell lines (LCLs) taken
from the TwinsUK cohort to directly compare the microarray (9)
and RNA-Seq (39) results in detecting SLE associated eQTLs
along with their accompanying eGenes. We apply a rigorous
two-step approach – a combination of conditional (58) and
Bayesian colocalisation (59) analysis – to test for a shared causal
variant at each locus. We demonstrate the benefits of using
RNA-Seq over microarrays in the eQTL analysis by identifying
not only novel SLE candidate-causal eGenes but also putative
molecular mechanisms by which SLE-associated SNPs may act;

including differential exon usage, and expression modulation of
non-coding RNA. Our investigation was extended to include
RNA-Seq expression data in whole blood in order to validate the
eQTL signals detected in LCLs and uncover the differences in ge-
netic control of expression between cell-types. Finally, we inter-
rogate the Geuvadis RNA-Seq cohort (35) to identify SLE
associated alternative-splicing quantitative trait loci (asQTLs)
and highlight the advantages of profiling with a multitude reso-
lutions to detect eQTLs that would otherwise remain concealed.
Through functional annotation of SLE associated loci using mi-
croarray and RNA-Seq derived expression data, we have sup-
plied comprehensive evidence of the need to use RNA-Seq,
principally at exon-level resolution, to detect disease contribut-
ing eQTLs and, in doing so, have suggested novel functional
mechanisms that serve as a basis for future targeted follow-up
studies.

Results
Discovery and classification of SLE candidate-causal
eQTLs and eGenes

We integrated the 39 SLE associated SNPs taken from our recent
GWAS in Europeans (Supplementary Material, Table S1) with
eQTLs from the TwinsUK gene-expression cohort profiled using
microarray and RNA-Seq (at both gene-level and exon-level res-
olutions—Table 1). To accomplish this, we subjected the geno-
mic intervals withinþ/-1Mb of the 39 GWAS SNPs to eQTL
association analysis against expression quantifications in LCLs
then tested statistically for evidence of a shared causal variant
between the disease-association and eQTL signal (see Methods).
Exons (‘meta-exons’, created by merging all overlapping exonic
portions of a gene into non-redundant units) were quantified
using read-counts against the GENCODE v10 annotation; with
gene-level quantification defined as the sum of all exon quanti-
fications belonging to the same gene. Full results of the condi-
tional and colocalisation analysis for each significant
association are presented in Supplementary Materials, Tables
S2–S4 for microarray, RNA-Seq (gene-level), and RNA-Seq (exon-
level), respectively. Statistically significant SLE-associated
eQTLs showing evidence of a shared causal variant or in strong
LD between the disease and eQTL signal following conditional
and colocalisation analyses were classified as SLE candidate-
causal eQTLs. Candidate-causal eGenes were defined as genes
whose expression is modulated by the eQTL. These results are
summarised as a heatmap under the TwinsUK eQTL analysis
header in Fig. 1 with candidate-causal associations highlighted.

Exon-level quantification yields the highest frequency of
candidate-causal eQTLs and can be used to infer
disease-associated isoforms

Figure 1 illustrates the clear improvement of RNA-Seq relative
to microarray in the discovery of candidate-causal eQTLs and
their corresponding eGenes when annotating complex-disease
susceptibility loci. In total, 8 eQTLs regulating expression of
27 eGenes were detected using RNA-Seq but missed using mi-
croarray (Supplementary Material, Fig. S1). Only one eQTL
(rs2286672) and two eGenes (PDHB, INCA1) were found by micro-
array only. These associations were either not significant post
multiple testing using either RNA-Seq method, or were not
deemed candidate-causal (Supplementary Materials, Tables S3–
S4). Exon-level RNA-Seq analysis led to the greatest frequency
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of candidate-causal eQTLs and eGenes. A total of 14 eQTLs mod-
ulating expression of 34 eGenes were detected using exon-level
RNA-Seq contrasted to 11 eQTLs and 19 eGenes at gene-level
RNA-Seq and only 8 eQTLs with 12 eGenes identified using mi-
croarray. Interestingly, exon-level analysis led to the greatest
frequency of non-candidate-causal associations. Only 14 of the
34 significant associations (q< 0.05) showed evidence of a
shared causal variant post conditional and colocalisation test-
ing (Supplementary Material, Fig. S1).

We were able to leverage the resolution of exon-level eQTL
analysis to map associations back to specific gene isoforms and
investigate potential splicing mechanisms (Supplementary
Material, Table S5). An example of this is illustrated in Fig. 2. The
risk variant rs3794060 [C] was classified as being a candidate-
causal eQTL for eGene NADSYN1 (NAD Synthetase 1) at both
gene- and exon-level. Alignment of exon-level associations
against the 22 annotated transcripts of NADSYN1 suggests a po-
tential splicing mechanism largely affecting meta-exons 11 and
12 (P¼ 1.79�10�60, 1.06�10�58 respectively) which are unique to
the single isoform ENST00000528509. With the same methodol-
ogy, we were also able to identify potential whole-gene effects
where every single exon of a gene and thus every transcript is
modulated. This was found for example in rs2476601 where all
six transcripts of BCL2L15 comprised a differentially expressed
meta-exon (Supplementary Material, Table S5).

Exon-level RNA-seq uncovers regulatory variants
associated with multiple functional effects

Exon-level eQTL analysis generated the greatest ratio of
candidate-causal eGenes to eQTLs (2.42) suggesting that disease-
associated haplotypes may be more functionally potent than pre-
viously thought. In comparison, an eGene to eQTL ratio of 1.73
was observed using gene-level quantification and just 1.5 with
microarray. A maximum of six eGenes associated with a single

eQTL was identified at exon-level for the GWAS SNP rs12802200
(HRAS, TMEM80, RNH1, ANO9, PHRF1 and RASSF7); which supports
our recent observations of rs12802200 being a cis-eQTL for multi-
ple genes across various immune cell-types at this locus (60).
This locus has also been shown to correlate with increased auto-
antibody production and interferon-a activity in sufferers of SLE
(61), thus dysregulation of multiple target genes represents an in-
triguing mechanism for functional investigation. Other
candidate-causal eQTLs with multiple functional effects that
were detected using RNA-Seq but not microarray are as follows:
rs2476601 (DCLRE1B, BCL2L15, MAGI3), rs3024505 (IL10, IL24,
FCAMR), rs564799 (IL12A, SMC4, IFT80, RP11-432B6.3), rs7726414
(TCF7, SKP1), and rs3794060 (DHCR7, NADSYN1, RP11-66L16.2).
Following integration of known Topologically Associated
Domains (TADs) from both IMR90 and h1-eESC cells of the
ENCODE Project, we found that multiple eGenes under the control
of a solitary eQTL were always found in the same TAD and did
not cross TAD boundaries; suggesting proximal looping interac-
tions within a TAD may be perturbed by a single eQTL.

RNA-seq underlines the role of non-coding RNA in SLE

Quantification of polyadenylated non-coding RNAs from the
TwinsUK RNA-Seq cohort revealed three candidate-causal
eQTLs influencing the expression of four non-coding eGenes
(Supplementary Material, Table S4); none of which were cap-
tured using microarray.

We validated the function of known association rs2431697
(Fig. 3A); where the protective minor allele [C] leads to upregula-
tion of the miRNA MIR146A, a negative regulator of the type I
Interferon pathway (62). rs2431697 was the best eQTL for
MIR146A at gene-level (P¼ 1.5�10�06) and at exon level for both
of its exons (P¼ 3.4�10�12 and 1.2�10�04). The decrease in ex-
pression of MIR146A reported in peripheral blood leukocytes of

Table 1. Details of genotype-expression (eQTL) cohorts used in study

Cohort Name TwinsUK Geuvadis
Total subjects 856 373
Ethnicity EUR (UK) EUR (CEU, GBR, FIN, TSI)
Sex F M/F
Age 37–85 NA

Investigation Comparison of candidate-causal eQTL and eGene
detection between microarray and RNA-Seq

Validation and comparison of LCL
RNA-Seq discoveries in whole blood

Identification of
asQTLs using RNA-Seq

Citation Grundberg et. al (9) Buil et. al (39) Buil et. al (39) Buil et. al (39) Lappalainen et. al (35)
Expression profile type Microarray RNA-Seq RNA-Seq RNA-Seq RNA-Seq
Unit of expression Probe Gene Meta-exon Meta-exon Splice-junction
Cell-type LCL LCL LCL Whole Blood LCL

Subjects used in analysis 777 683 765 384 373
Data format Genevar

(summary results)
Read-count Summary

eQTL results
Summary eQTL results Raw sequence alignments

RNA Platform Illumina HT-12 V3 Illumina HiSeq2000 Illumina HiSeq2000 Illumina HiSeq2000
RNA-Seq mapper NA BWA v0.5.9 (GRCh37/hg19) BWA v0.5.9 (GRCh37/hg19) GEM v1.349 (GRCh37/hg19)
Reference transcriptome NA GENCODE V10 GENCODE V10 GENCODE V10
RNA-Seq read length NA 49-bp PE 49-bp PE 75-bp PE

Breakdown of genotype-expression (eQTL) cohorts used in analysis. TwinsUK cohort in lymphoblastoid cell lines (LCLs) used for microarray and RNA-Seq comparison

(profiled at gene and meta-exon resolution); meta-exons are described as non-redundant overlapping portions of exons generated flattening of the transcriptome an-

notation. All TwinsUK (MuTHER) samples used in analysis are derived from the original 856 individuals. Validation of LCL data in whole blood carried out at meta-exon

level using 384 of the 856 individuals. Geuvadis cohort used for asQTL identification; splice-junction quantifications were generated by Altrans (57) from the raw se-

quence alignments. Summary eQTL results include only the eQTL association results per test (where full genotype and expression data were not obtainable).
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SLE patients disrupts binding of transcription factor Ets-1 which
in turn uncouples of the type-1 IFN response (62).

We discovered a novel function of rs2736340, located in the
bi-directional promoter region of eGenes BLK and FAM167A
(Fig. 3B). We replicated the known effect of rs2736340 which
leads to increased expression of FAM167A and decreased ex-
pression of BLK, causing altered B-cell development (63).
Interestingly however, exon-level RNA-Seq revealed rs2736340
also modulates the expression of two non-coding RNAs anti-
sense to the 30 region of BLK. These are: RP11-148O21.2 and RP11-
148O21.4. rs2736340, significantly modulated the expression of
all three exons of RP11-148O21.2 and the two exons of RP11-
148O21.4. Expression disruption of these antisense RNAs caused
by SLE risk variants present an additional functional mecha-
nism at this locus.

Likewise, rs3794060 leads to allele-dependent expression
variation of both exons of antisense non-coding RNA, RP11-
660L16.2I (Fig. 3C). The best eQTL for the two exons is highly

correlated with rs3794060 (rs2282621, r2:0.99). RP11-660L16.2I is
located in the bi-directional promoter between DHCR7 and
NADSYN1. Both were also defined as being candidate-causal
eGenes detected using RNA-Seq. These findings using
exon-level RNA-Seq support our proposition of risk haplotypes
causing multiple functional effects—in the latter two cases
simultaneous modulation of protein-coding genes as well as
non-coding RNAs.

Validation of exon-level candidate-causal eQTLs using
whole-blood RNA-seq

To validate our eQTL discoveries from lymphoblastoid cell lines
in a primary tissue-type, we extended our analysis to include
the TwinsUK exon-level RNA-Seq dataset of 384 individuals pro-
filed in whole-Blood (Table 1). Full results are provided in
(Supplementary Material, Table S6). We observed good

Figure 1. Heatmap of candidate-causal eQTLs and eGenes detected across the four expression-quantification types. Relative association P-values are shown. If a candi-

date-causal association (marked *) is identified in at least one quantification type, then the P-value is shown for all quantifications (no * means the association is not

candidate-causal). Rows are ordered by decreasing cumulative significance. To normalize across quantification types, relative significance of each association per col-

umn was calculated as the –log2 (P/Pmax); where Pmax is the most significant association per quantification type. Data used for heatmap are found in Supplementary

Materials, Tables S2, S3, S4, S8 for microarray, gene-level, exon-level, and splice-junction level eQTL analysis respectively.
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correlation of effect-sizes (b) between LCLs and whole-blood for
all matched exon-level associations (R2¼0.74, Supplementary
Material, Fig. S2). Seven of the 39 GWAS SNPs were classified as
candidate-causal eQTLs in whole-blood, modifying 19
candidate-causal eGenes. All seven of the whole-blood eQTLs
and 15 of the 19 eGenes were deemed candidate-causal in LCLs,
suggesting strong conservation across whole-blood cell types
(Supplementary Material, Fig. S3). The remaining four eGenes
specific to whole-blood were: PXK (rs9311676); IRF7 and TALDO1
(rs12802200); and SCAMP2 (rs2289583). Interestingly, the eQTLs
regulating these four eGenes in whole-blood also regulated mul-
tiple eGenes in LCLs, implying they may tag highly regulatory
haplotypes that cause cell-type specific expression disruption
across multiple genes. Three of the four candidate-causal non-
coding eGenes from LCLs were found in whole-blood (RP11-
148O21.2, RP11-148O21.4, and RP11-660L16.2). MIR146A was not
significant, which is likely to be a result of its lymphocyte-
specific gene expression profile (62). We further validated these
whole-blood associations in an entirely independent dataset by
eQTL interrogation of the GTEx cohort (64) in whole-blood
(n¼ 393). Five of the seven whole-blood associations in the
TwinsUK cohort were significant eQTLs for at least one eGene in
GTEx whole blood (Supplementary Material, Table S7).

Inspection of specific exons modulated by candidate-causal
eQTLs between each cell-type revealed instances of variability
in the genetic control of exon usage. A known splicing event in
B-cells caused by branch-point SNP rs17266594 results in the
loss of exon 2 in BANK1 and subsequently leads to B-cell hyper-
responsiveness (65) (Supplementary Material, Fig. S4). In whole-
blood the GWAS variant, rs10028805, is associated with altered
expression of exon 2 (P¼ 8.4�10�05), with the best eQTL for this
effect being in near-perfect LD (rs4411998; r2:0.98). Both
rs10028805 and rs4411998 are in strong LD with the branch-
point SNP rs17266594 (r2>0.9). In LCLs however, the best eQTL
for exon 2, rs4572885 (P¼ 9.74 �10�23), has a large effect but is
less correlated with the GWAS SNP (r2:0.65) and conditional
analysis judges this association to be independent of the best
eQTL for exon 2. Interestingly, there is low correlation between
the branch-point SNP rs17266594 and the best eQTL for exon
2 in LCLs (r2:0.42); suggesting the regulatory mechanism of exon
2 splicing in BANK1 may be under two separate genetic influ-
ences between the two cell-groups.

We saw a near identical pattern of differential exon usage of
NADSYN1 between LCLs and whole-blood driven by rs37940460
(Supplementary Material, Fig. S5). rs37940460 leads to extensive

expression disruption of two meta-exons (11 and 12) of
NADSYN1 located near the centre of the gene (meta-exon
11: LCL P¼ 1.79�10�60; whole-blood P¼ 1.28�10�27; meta-exon
12: LCL P¼ 1.06�10�58; whole-blood P¼ 6.30�10�26). This novel
example of specific exon expression disruption, validated in a
primary cell-type, will help to resolve the functional conse-
quence of the NADSYN1 locus.

asQTL mapping reveals additional candidate-causal
eGenes and alternative-splicing events

We extended our investigation to determine whether interroga-
tion of alternative-splicing quantitative trait loci (asQTLs),
would reveal any additional candidate-genes or potential func-
tional mechanisms. We undertook cis-asQTL analysis within
aþ/-1Mb window around each SNP against 33,039 splice-
junction quantifications, corresponding to 817 genes, using the
Geuvadis cohort (Table 1). After testing for a shared causal vari-
ant between the GWAS and asQTL signal, six SLE candidate-
causal asQTLs for 26 splice-junctions corresponding to seven
eGenes remained (Supplementary Material, Table S8). Four
eGenes (TCF7, SKP1, BLK, and NADSYN1) had previously been de-
tected through eQTL mapping using the TwinsUK cohort, the re-
maining three candidate-causal eGenes (IKZF2, WDFY4, and
IRF5) were detected by asQTL mapping solely.

IKZF2 is novel candidate-causal eGene detected only by asQTL
analysis. The GWAS association signal around the 30 end of IKZF2
tagged by risk variant rs3768792[G] drove an increase in the fraction
of splicing between exon 6A and exon 6B (P¼ 3.8�10�05); a bridge
that is unique to the truncated isoform (ENST00000413091,
239 amino-acids) of IKZF2 (Fig. 4). Interestingly, this isoform pos-
sesses a premature termination codon found on exon 6B that is not
found on the canonical isoform (ENST00000457361, 526 amino-
acids) as in this isoform, exon 6A is spliced to exon 7. This effect re-
sults in the premature truncation of the full-length protein and the
subsequent loss of the two zinc-finger dimerization domains found
on exon 8. We were able to replicate the effect of this asQTL in vitro
by qPCR of the exon 6A-6B splice-site in LCLs between 6 individuals
of the rs3768792[AA] genotype and 6 individuals of the
rs3768792[GG] genotype (Supplementary Material, Fig. S6). We de-
tected a log2 fold-change of 3.36 (P< 0.0001) in splicing of the exon
6A-6B bridge in risk homozygotes relative to non-risk homozygotes.
qPCR of the exon 1-2 bridge (common to all transcripts of IKZF2)
showed no difference (log2 fold-change: 0.07, P¼ 0.56). Interestingly,

Figure 2. Gene-level and exon-level analysis implicate NADSYN1 as a candidate-causal eGene. (A) eQTL analysis of rs3794060 reveals the risk variant [C] leads to down-

regulation at the gene-level of NADSYN1. (B) Exon-level quantification leads to inference of gene-level effect being driven by expression disruption of two meta-exons

of NADSYN1 (meta-exon 11 and meta-exon 12). Association P-values of rs3794060 against exon quantifications are plotted with reference to the specific exon in the col-

lapsed-gene model of NADSYN1 (all annotated transcripts combined).
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Figure 3. Non-coding candidate-causal eGenes detected by exon-level RNA-Seq. Three panels denote the eQTLs and corresponding non-coding eGenes identified from

eQTL analysis against exon-level quantifications. The top panels display the signal from the GWAS association plotted as –log10 (P), with the exon-level eQTL P-values

for the effects showing colocalisation with the GWAS signal. The bottom panel shows RNA-Seq expression from ENCODE (GM12878). (A) rs2431697 is a candidate-

causal eQTL for MIR146A. (B) rs2736340 is a candidate-causal eQTL for RP11-148O21.4 and RP11-148O21.2. (C) rs3794060 is a candidate-causal eQTL for RP11-6OL16.2.

Figure 4. Novel eGene IKZF2 and potential causal mechanism using splice-junction quantification. asQTL analysis of rs3768792 against splice-junction quantifications

identifies IKZF2 as a candidate-causal eGene with risk variant [G] causing upregulation of the exon 6A–exon 6B junction that is unique to truncated isoform

ENST00000413091. A) GWAS association signal across the IKZF2 locus (chr2q34), tagged by rs3768792 localised in the 30-UTR of IKZF2. asQTL association signal of

rs3768792 against splice-junction quantification of exon 6A–exon 6B shows significance and colocalisation with the GWAS signal. B) The exon 6A–exon 6B junction is

unique to truncated isoform ENST00000413091. Exon 6B harbours a premature stop-codon and therefore is not translated into the full-length protein that contains the

dimerization domains in exon 8. C) Close-up of the exon 6A–exon 6B junction and association (P¼3.80�10�05) with GWAS SNP rs3768792. A potential causal asQTL in

near-perfect LD was identified that is located within the polypyrimidine tract of the junction and may induce splicing (rs2291241, P¼ 1.70�10�05).
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we identified an additional asQTL variant (rs2291241) in near-
perfect LD with the rs3768792 GWAS variant (r2:0.99), located 9 bp
upstream of exon 6B in truncated isoform ENST00000413091. This
second asQTL, located within the polypyrimidine tract in the exon
6A/exon 6B intron, is a highly plausible driving variant and may act
through promotion of the described splicing event.

We also discovered a novel putative SLE-associated splicing
mechanism involving WDFY4 (Fig. 5). Risk variant rs2263052[G]
greatly increased the fraction of link-counts between exon 34A
and exon 34B (P¼ 3.3�10�19) which are unique to the truncated
isoform ENST00000374161. This isoform (552 amino-acids) lacks
the two WD40 domains found in the full length isoform
(ENST00000325239, 3184 amino-acids) that are essential to enzy-
matic activity (66). There is a consequential decrease in the frac-
tion of link-counts between exon 34A and exon 35 (P¼ 3.0�10�06)
that are unique to the canonical isoform of WDFY4. Interestingly,
a known missense variant found in exon 31 of WDFY4, rs7097397
(Arg1816Gln), in strong LD (r2:0.7) with rs2263052, has also been
implicated in SLE through GWAS (67); suggesting the risk haplo-
type may harbour two functional mechanisms influencing
WDFY4 (amino-acid change and upregulation of a shorter iso-
form) that are both involved in pathogenesis.

Classification of novel SLE candidate-causal eGenes dis-
covered by RNA-seq

We replicated the known SLE associated eQTLs and eGenes dis-
covered using microarrays, including rs564799 for IL12A,
rs2736340 for BLK, rs9311676 ABHD6, and rs2289583 for ULK, CSK,

and MPI. Several of these associations have been extensively
studied in terms of their role in SLE pathogenesis, for example,
rs10028805 for BANK1 (65) and rs7444 for UBE2L3 (68). We com-
pared the eGenes detected solely by RNA-Seq against our previ-
ous eGene discoveries found in microarray-based eQTL cohorts
of primary immune-cell types across an array of conditions (60).
We identified a total of 16 eGenes that were not captured within
any of the microarray expression cohorts, and have strength-
ened the evidence that they are likely causal to SLE through
their reported function, tissue specific expression, and associa-
tions with other complex traits in Table 2. The majority of these
novel eGenes showed strongest expression in highly relevant
tissues types such as in the spleen and thymus, and also in
whole blood and lymphoblastoid cell lines. Similarly, many of
these eGenes had previously been reported as candidate genes
in other autoimmune traits such as Multiple Sclerosis, Type 1
Diabetes, and Rheumatoid Arthritis.

Discussion
Detailed characterization of the functional effects of human
regulatory genetic variation associated with complex-disease is
paramount to our understanding of molecular aetiology and
poised to make significant contributions to translational medi-
cine (69). Use of eQTL mapping studies to interpret GWAS find-
ings have proved fundamental in our progression towards this
goal—through prioritization of candidate genes, refinement of
causal variants, and illumination of mechanistic relationships
between disease-associated genetic variants and gene

Figure 5. Identification of splicing mechanism in WDFY4. (A) Our SLE GWAS indicates WDFY4 as the candidate gene at the chr10q11.23 locus tagged by intronic variant

rs2663052, as well as the missense coding variant rs7097397 in exon 31 that is in strong LD. Cis-eQTL analysis showed rs2663052 is correlated with upregulation of the

exon 34A–34B junction of WDFY4 (signal is colocalised with GWAS) that is unique to the short isoform (ENST00000374161). This isoform lacks the two enzymatic WD40

domains of the full length isoform (ENST00000325239). (B) Two potential functional mechanisms may occur when harbouring the risk haplotype that carries both risk

alleles. Firstly, an Arg to Gln amino-acid substitution by rs7097397 in exon 31 that is shared by both the canonical and short isoforms of WDFY4, and secondly an upre-

gulation of the short isoform (P¼ 3.31�10�19) that lacks functional domains, caused by rs2663052 or correlated variants, with corresponding down-regulation of the

full-length isoform (P¼3.01�10�06).
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Table 2. Summary of novel candidate-causal eQTLs and eGenes

eQTL eGene Gene Function Summary GTEx Tissue Expression GWAS Catalog Traits

rs17167273 TCF7 Transcriptional activator involved in T-cell lym-
phocyte differentiation. Necessary for the sur-
vival of CD4(þ) CD8(þ) immature thymocytes.

LCLs, Spleen, Whole Blood Multiple sclerosis

rs3768792 IKZF2 This gene encodes a member of the Ikaros family
of zinc-finger proteins. Three members of this
protein family (Ikaros, Aiolos and Helios) are
hematopoietic-specific transcription factors
involved in the regulation of lymphocyte
development.

LCLs, Whole Blood Eosinophil counts

rs10774625 HECTD4 E3 ubiquitin-protein ligase which accepts ubiqui-
tin from an E2 ubiquitin-conjugating enzyme
in the form of a thioester and then directly
transfers the ubiquitin to targeted substrates.

Cerebellum, Cerebellar
Hemisphere, Thyroid

Metabolite levels, HDL cho-
lesterol, Esophageal
cancer

rs3794060 RP11-66OL16.2 Known antisense RNA. – –
NADSYN1* Nicotinamide adenine dinucleotide (NAD) is a co-

enzyme in metabolic redox reactions, a precur-
sor for several cell signaling molecules, and a
substrate for protein posttranslational
modifications.

Spleen, Colon, Terminal
Ileum

Vitamin D insufficiency

rs2431697 MIR146A microRNA 146a. LCLs –
rs3024505 FCAMR Functions as a receptor for the Fc fragment of IgA

and IgM. Binds IgA and IgM with high affinity
and mediates their endocytosis. May function
in the immune response to microbes mediated
by IgA and IgM.

Kidney, Liver, Terminal
Ileum

–

IL10 Inhibits the synthesis of a number of cytokines,
including IFN-gamma, IL-2, IL-3, TNF and GM-
CSF produced by activated macrophages and
by helper T-cells.

LCLs, Spleen, Whole Blood Inflammatory bowel dis-
ease, Ulcerative Colitis,
Crohn’s disease

IL24 This gene encodes a member of the IL10 family
of cytokines. Overexpression of this gene leads
to elevated expression of several GADD family
genes, which correlates with the induction of
apoptosis.

Spleen, LCLs, Whole Blood Inflammatory bowel dis-
ease, Alzheimer’s disease

rs2476601 DCLRE1B 5-3 exonuclease that plays a central role in telo-
mere maintenance and protection during S-
phase. Participates in the protection of telo-
meres against non-homologous end-joining
(NHEJ)-mediated repair.

LCLs, Fibroblasts, Cerebellar
Hemisphere

Rheumatoid arthritis, Type
1 diabetes autoantibodies

MAGI3 Cooperates with PTEN to modulate the kinase ac-
tivity of AKT1. Its interaction with PTPRB and
tyrosine phosphorylated proteins suggests
that it may link receptor tyrosine phosphatase
with its substrates at the plasma membrane.

Thyroid, Cerebellar
Hemisphere, Lung

Rheumatoid arthritis, Type
1 diabetes autoantibodies

rs2663052 WDFY4* WDFY family member 4. LCLs, Spleen, Whole Blood Rheumatoid arthritis,
Stroke

rs2736340 RP11-148O21.2 Known antisense RNA. Spleen, LCLs, Terminal
Ileum

–

RP11-148O21.4 Known antisense RNA. Spleen, LCLs, Terminal
Ileum

–

rs2396545 ANO9 Has calcium-dependent phospholipid scram-
blase activity; scrambles phosphatidylserine,
phosphatidylcholine and galactosylceramide.

Terminal Ileum, Colon, Skin –

rs2289583 UBE2Q2 Accepts ubiquitin from the E1 complex and cata-
lyzes its covalent attachment to other pro-
teins. In vitro catalyzes Lys-48-linked
polyubiquitination.

Colon, Esophagus, Bladder Chronic kidney disease,
Urate levels

Candidate-causal eGenes detected by RNA-Seq that have not been documented in previous microarray analyses in LCLs and other primary immune-cell types. Gene

Function Summary is taken from a combination of Entrez gene and UNIProt annotation. GTEx tissue expression reports the top three tissue types where the gene is

most expressed. The top three traits from GWASs where the gene is reported as the candidate gene is also given.

*Found with microarray as well, but RNA-Seq allows for detection of novel alternative-splicing mechanism.
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expression (69,70). However, there is often a disparity between
disease-associated genetic variation and phenotypic alteration,
which historically may be due to the use of microarray-based
technologies to profile genome-wide gene expression. With the
advent of RNA-Seq, we can achieve more accurate quantifica-
tion of the mRNA output of genes, individual exons, and iso-
form abundance, as well as unannotated and non-coding
transcripts. Detection of splicing variants at susceptibility loci
using RNA-Seq has the potential to uncover the role of specific
isoforms implicated in disease risk, which are likely to have re-
mained concealed by microarray, as a largely independent sub-
set of variants control alternative splicing of isoforms compared
to overall gene abundance (35).

Our motivation for this study was to directly compare the
ability of microarray and RNA-Seq profiled at various resolu-
tions to detect candidate-causal eQTLs and their associated
eGenes from GWAS, and assess their effectiveness in explaining
potential regulatory mechanisms. We performed cis-eQTL asso-
ciation analysis combined with conditional and colocalisation
testing for 39 SLE susceptibility loci against expression quantifi-
cations from both microarray and RNA-Seq experiments from
the TwinsUK (gene- and exon-level) and Geuvadis (splice-junc-
tion-level) cohort (summarized in Fig. 1). Our investigation ex-
plicitly shows that RNA-Seq is more powerful than microarrays
for the identification of candidate-causal eQTLs and their ac-
companying eGenes. Exon-level RNA-Seq yielded the greatest
frequency of candidate-causal associations, and for this reason,
we believe exon-level quantification should be used as the pri-
mary quantification type when performing integrative GWAS-
eQTL analysis. To maximise the likelihood of capturing the true
function of regulatory variants however, exon-level quantifica-
tion should be run in parallel with gene-level and splice-
junction level quantifications. Excluding one or more levels of
analysis will result in false-negative candidate-causal eQTLs.
For example, the novel eGene, TCF7 was detected at gene-level
only. TCF7 has been implicated in Type 1 Diabetes risk (71), but
there is only weak LD (r2<0.4) between the reported missense
variant and SLE risk SNP rs7726414 (19 kb upstream of TCF7) or
any protein-coding variants of TCF7, suggesting in SLE the
causal mechanism may be dysregulation of expression of TCF7
rather than a missense change. The literature suggests TCF7
plays a role in B cell and T cell development and knockdown re-
sults in the impaired gene expression regulation of CD34þ cells
(72). At numerous loci, there was an exon-level effect not ob-
served at the gene-level, suggesting subtle exon-level effects
influencing perhaps just a single exon will be masked by whole
gene-level quantification. Recent work has suggested ‘union-
exon’ based approaches to quantify overall gene expression (as
used in TwinsUK) allow reads to be assigned with greater confi-
dence, but significantly underestimates actual expression out-
put and is prone to variability when the number of isoforms of
the gene increases or when shorter isoforms are more highly
expressed (47). Transcript-based approaches which rely on ex-
pectation maximization algorithms to distribute reads among
gene isoforms should be considered when attempting to quan-
tify whole gene expression as these effects are diminished, al-
though high genomic overlap of isoform structures complicates
these models (47). We have shown that greater biological in-
sight is gained from using exon-level quantification (created by
merging all overlapping exonic portions of a gene into non-
redundant units) than from whole gene expression estimates
(union-exon approach). Using the unique exons of the transcript
annotation, one can isolate the specific isoforms(s) regulated by
the eQTL (Fig. 2); though this is not always possible due to

considerable overlap. We also stress there must be stringent
colocalisation procedures when performing GWAS-eQTL inte-
gration strategies at exon-level as this quantification type led to
the greatest proportion of non-candidate-causal associations.

Exon-level quantification largely increased the average ratio
of candidate-causal eGenes to eQTLs compared with gene-level
and microarray. The ability of RNA-Seq exon-level analysis to
identify multiple target eGenes for an individual eQTL is sup-
ported by observations from capture Hi-C experiments (73,74). It
has been shown that chromatin interactions can control tran-
scription in cis in a largely sequence-specific manner, thus it is
likely that some GWAS variants may functionally act through
the disruption of chromatin dynamics resulting in perturbation
of expression of multiple genes (73,75,76). Specific instances of
this type of effect have been observed in colorectal cancer risk
loci where for example the risk SNP rs6983267 within 8q24 dis-
rupts a chromatin regulatory network involving interactions be-
tween three genes CCAT2, CCAT1 and MYC (73). Our results
support this notion of multiple perturbed genes at a single sus-
ceptibility locus. rs3024505 for example was found to be associ-
ated with three plausible candidate-causal eGenes: IL10, IL24,
and FCAMR (located 1 kb, 130 kb, and 191 kb away from
rs3024505 respectively). These chromatin capture data also sup-
port the argument of using exon-level quantification and ex-
tending the traditional cis-eQTL distance (typicallyþ/-0.25–1Mb)
to encompass the length of the TAD which holds the disease-
association signal (77). Trans-eQTL analyses should also be at-
tempted at exon-level resolution. Interestingly with exon-level
RNA-Seq, we were able to find examples of a single eQTL able to
cause dysregulation of multiple molecular genetic mechanisms.
For example, rs3794060 led to a gene-level effect of DHCR7, a po-
tential splicing effect of NADSYN1 specific to a single isoform,
and dysregulation of a non-coding RNA, RP11-660L16.2.
Similarly, rs2263052 increased the fraction of splicing of a trun-
cated isoform of WDFY4 and is also in strong LD with a mis-
sense variant rs7097397 (Arg1816Gln). Our data support and
further the concept of susceptibility haplotypes carrying multi-
ple functional effects.

Exon-level and splice-junction level analyses also enabled
not only the discovery of novel candidate SLE eGenes (Table 2),
but also potential splicing-mechanisms which would have been
missed by microarrays and even gene-level quantification. We
replicated by qPCR a splicing mechanism discovered by asQTL
analysis within IKZF2 caused by tagging variant rs3768792.
IKZF2 is a transcription factor thought to play a key role in T-reg
stabilisation in the presence of inflammatory responses (78).
Other members of this gene family, IKZF1 and IKZF3, are also as-
sociated with SLE (60). Since the Ikaros transcription factor fam-
ily primarily regulate gene expression through homo-/hetero-
dimerization and DNA binding/protein-protein interactions, the
rs3768792[G] dependent asQTL effect on exon 6A to 6B resulting
in less functional IKZF2 could be highly deleterious (Fig. 5). IKZF2
is known to regulate T-reg-associated genes, including IL-2 and
FoxP3 (79,80), therefore we hypothesize that upregulation of the
shorter isoform of IKZF2 caused by rs3768792[G], which lacks
the dimerization domain, reduces translocation of the protein
into the nucleus and regulation of T-reg specific target genes.
A similar mechanism was found at candidate-causal eGene
NADSYN1. Using exon-level quantification, we were able to pin-
point the specific transcript of NADSYN1 (ENST00000528509)
that drives the gene-level association (Fig. 2). Interestingly, this
transcript is translated into a 294 amino acid long protein (ca-
nonical transcript 706 amino acids). The shorter protein lacks
the NAD (þ) Synthetase domain (located in positions 339-602aa,
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Pfam: PF02540) implicating loss of this domain as a potential
causal mechanism. Although no autoimmune phenotype has
been described at this locus, rs3794060[C] is correlated with al-
tered circulating 25-hydroxy vitamin D concentrations (81). The
ability to resolve a potential functional mechanism down to a
single transcript greatly facilities the design and implementa-
tion of targeted follow-up studies which aim to assess the phe-
notypic consequence of disease-associated variant(s). Such
experiments could include site directed mutagenesis to intro-
duce splice-sites and over-express target isoforms. Similarly,
the CRISPR/Cas9 system for targeted genome editing presents
an exciting opportunity for eQTL targeted follow-up studies
in vivo and the investigation into the transcriptomic conse-
quence of specific regulatory variants. Integration with epige-
netic data (promoter methylation, histone modification and
expression of non-coding RNA) will also allow insight into po-
tential regulatory mechanisms and fine-mapping of regulatory
variants.

We stress that to better understand disease aetiology, large
RNA-Seq based eQTL cohorts should be generated across a mul-
titude of disease-relevant cell-types and conditions. Though
LCLs are a good surrogate model for primary B-cells, the effect
of EBV transformation is likely to disrupt their underlying epige-
netic and transcriptomic background. The percentage of asQTLs
in LCLs will exhibit significantly less replication in primary cell
types due to cell-type variability in the genetic control of iso-
form usage (33). We believe to better understand the implica-
tions of the genetic control of gene expression in genomic
medicine, a gold standard of eQTL mapping strategies using an
explicit set of quantification types (gene-, exon-, splice-
junction, isoform), gene-annotations, and analytical pipelines,
should be adopted.

In summary, we have demonstrated the effectiveness of
eQTL analysis using RNA-Seq, primarily and exon-level, by in-
creasing the number of candidate genes derived from an SLE
GWAS. We have shown that the power of RNA-Seq for eQTL an-
notation lies not only the assessment of the variants regulating
the expression of candidate genes but also in the discovery of
specific molecular aberrations.

Materials and Methods
Selection of SLE-associated SNPs

SLE associated SNPs were taken from our recent publication
(60). The study comprised a primary GWAS, with validation
through meta-analysis and replication study in an external
cohort (7,219 cases, 15,991 controls in total). Independently-
associated susceptibility loci taken forward for this investiga-
tion were those that passed either genome-wide significance
(P< 5�10�08) in the primary GWAS or meta-analysis and/or
those that reached significance in the replication study
(q< 0.01). We defined the ‘GWAS SNP’ at each locus as either be-
ing the SNP with the lowest P-value post meta-analysis or the
SNP with the greatest evidence of a missense effect as defined
by a Bayes Factor. We omitted non-autosomal associations and
those within the Major Histocompatibility Complex (MHC), and
SNPs with a MAF<0.05. In total, 39 GWAS SNPs were taken for-
ward (Supplementary Material, Table S1).

TwinsUK eQTL analysis

Expression profiling by microarray (9) and RNA-Seq (39) of indi-
viduals from the UK Adult Twin Registry (TwinsUK) was carried

out in two separate studies on the MuTHER (Multiple Tissue
Human Expression Resource) cohort (Table 1). The MuTHER co-
hort is composed of 856 healthy female individuals of European
descent aged between 37-85 years. We considered expression
quantification data from both resting LCLs and whole blood.
Profiling by microarray was performed using the Illumina
Human HT-12 V3 BeadChips. For RNA-Seq, samples were
sequenced using the Illumina HiSeq2000 and the 49-Bp paired-
end reads mapped with BWA v0.5.9 to the GRCh37 reference ge-
nome. Exons (‘meta-exons’ created by merging all overlapping
exonic portions of a gene into non-redundant units) were quan-
tified using read-counts against the GENCODE v10 annotation;
with gene quantification defined as the sum of all exon quantifi-
cations belonging to the same gene (union-exon). Full quality
control and normalization procedures are described in the re-
spective articles. Data from each of the TwinsUK eQTL studies
were provided in different formats. In each instance it was nec-
essary to generate summary eQTL statistics per GWAS SNP
(SNP, expression-unit, b, standard error of b, and P-value of as-
sociation) for integration analysis. Per quantification type
(microarray, RNA-Seq gene-level, and exon-level), each GWAS
SNP was subject to cis-eQTL analysis against all expression-
units withinþ/-1Mb using no P-value threshold. If the GWAS
SNP was not found in an eQTL dataset, the most highly corre-
lated, closest tag SNP with r2�0.7, common to all datasets, was
used as proxy. Adjustment for multiple testing of eQTL results
per quantification type were undertaken using FDR with q<0.05
deemed significant.

Microarray cis-eQTL mapping
We used the Genevar (GENe Expression VARiation) portal to
generate summary-level eQTL results (53). We ran the associa-
tion between normalized expression data of the 777 available
individuals and each GWAS SNP implementing the external al-
gorithm option (two-step mixed model–based score test). In to-
tal 768 probes (559) genes, were tested for association.

RNA-seq (gene-level) cis-eQTL mapping
RNA-Seq gene-level quantification was provided as residualized
read-counts (effect of family structure and other covariates re-
gressed out). We had full genetic data for 683 individuals and
performed the analysis of each GWAS SNP against the trans-
formed residuals using the linear-model function within the
MatrixeQTL R package (82). 520 genes were tested against in cis.

RNA-seq (exon-level) cis-eQTL mapping
P-values from the association of all SNPs against exon-level
quantifications for 765 individuals using linear-regression were
provided. We generated the t-statistic using the lower-tail
quantile function t-distribution function in R with 763 degrees
of freedom. The standard error and b were derived from the
t-statistic. We then extracted the summary cis-eQTL results for
each GWAS SNP. 4,786 exons, corresponding to 716 genes were
taken forward for association analysis.

Candidate-causal cis-eQTL classification

Conditional analysis
We used the COJO (conditional and joint genome-wide association
analysis) function of the GCTA (Genome-wide Complex Trait
Analysis) application to determine whether the GWAS SNP had an
independent effect on expression from that of the best cis-eQTL
(58). For each significant association (q< 0.05), we re-performed
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the analysis using all SNPs withinþ/-1Mb of the expression-unit
in hand. We used the available genotype information of the 683
TwinsUK individuals to extract allele coding along with the MAF,
and integrated this with the eQTL summary data. We discarded
SNPs with: MAF< 0.05, imputation call-rates< 0.8, and HWE
P< 1�10�04. We used these individuals as the reference panel to
calculate local pairwise linkage disequilibrium (LD) between vari-
ants. Per significant association, all cis-eQTLs were conditioned on
by the best cis-eQTL. We then extracted the conditional P-value of
the GWAS SNP and considered associations to be independent to
the best cis-eQTL if Pcond<0.05.

Colocalisation analysis
We employed the 0coloc0 Bayesian statistical method using sum-
mary data implemented in R to test for colocalisation between
eQTL and disease causal variants derived from the GWAS (59).
The method makes the assumption of there being a single causal
variant for each trait (disease association and gene-expression
from two separate studies) per locus and calculates the posterior
probabilities under five different causal variant hypotheses: as-
sociation with neither trait (H0), association with one trait but
not the other (H1, H2), association with both traits but from inde-
pendent signals, and association with both traits with a shared
causal signal (H4). We extracted the necessary SNP statistics for
the disease-associated regions from our own GWAS and applied
the same SNP filters used in the conditional analysis. We tested
for colocalisation between the GWAS summary data and eQTL
data for each significant association within aþ/-1Mb window of
the GWAS SNP. We assigned the prior probabilities, p1 and p2
(SNP is associated with GWAS and gene expression respectively),
as 1 x 10�04 i.e. 1 in 10,000 SNPs are causal to either trait, with
p12 (SNP is associated with both traits) as 1�10�06 or 1 in 100
SNPs associated with one trait are also associated with the other.
For each eQTL association colocalisation test, if the posterior
probability PP3 (two distinct causal variants, one for each trait) is
greater than PP4 (single causal variant common to both traits),
then greater posterior support is given to the hypothesis that in-
dependent causal variants exist in both traits and thus the eQTL
is unlikely to be attributed to SLE genetic association.

Definition of candidate-causal eQTL and eGene

We defined a GWAS SNP as an SLE candidate-causal eQTL if it met
the following criteria: significant post-multiple testing adjustment
(q< 0.05), not independent to the best eQTL from conditional anal-
ysis (Pcond> 0.05), and supporting evidence of a shared causal vari-
ant between gene expression and the primary GWAS signal based
on colocalisation (PP3<PP4). The gene whose expression is modu-
lated by the candidate-causal eQTL is defined as an SLE
candidate-causal eGene. As the individuals used for eQTL analysis
per quantification type were selected from the same pool of 856,
but sample sizes differed – we performed power calculations to es-
timate the differences in power between groups. We show this is
a very high powered study for both RNA-Seq and Microarray data
when the effect size (R2) is 0.05 or above. The difference in power
for weak effects is not great between quantification types
(Supplementary Material, Table S9).

Validation of LCL candidate-causal eQTLs in
whole blood

Cis-eQTL summary data from whole blood at RNA-Seq exon-
level were made available for 384 individuals of the

856 TwinsUK cohort individuals (Table 1). Expression profiling
and genotyping were identical to that as described for LCLs. We
applied the same methodology to this dataset to generate full
eQTL summary statistics, perform conditional and colocalisa-
tion analysis, and classify SLE candidate-causal eQTLs and as-
sociated eGenes. In total, 3,793 exons were tested against,
corresponding to 654 genes.

Geuvadis cis-asQTL analysis

We investigated SLE disease-associated alternative splicing
QTLs (asQTLs) using European samples from the raw alignment
files of the Geuvadis (35) 1000 Genomes RNA-Seq project pro-
filed in LCLs (Table 1). Genotype data and read-alignments were
downloaded from ArrayExpress for the 373 Europeans (compris-
ing 91 CEU, 95 FIN, 94 GBR, and 93 TSI). We performed PCA on
chromosome 20 using the R/Bioconductor package SNPRelate
(83) and decided to include the first three principal components
as covariates in the eQTL model as well as the binary imputa-
tion status (mixture of Phase 1 and Phase 2 imputed
individuals). We removed SNPs with MAF< 0.05, imputation
call-rates< 0.8, and HWE P< 1�10�04. We removed non-
uniquely mapped, non-properly paired reads, and reads with
more than eight mismatches for read and mate using SAMTools
(84). We used the Altrans (85) method against GENCODE v10 to
generate relative quantifications (link-counts) of splicing
events; which in brief, utilizes split and paired-end reads to
count links between exon-boundaries, which themselves are
created by flattening the annotation into unique non-
redundant exon-groups. Following PCA of the link-counts, we
decided to normalize all link-counts with the first 10 principle
components then removed exon-boundaries with zero links in
more than 10% of individuals. Link-counts were converted to
link-fractions (coverage of the link over the sum of the coverage
of all the links that the first exon makes) and merged in both 50-
30 and 30-50 directions. Per GWAS SNP we performed cis-eQTL
analysis against the normalized link-fractions in MatrixeQTL
with a linear-model (82). 33,039 link-fractions were tested
against corresponding to 817 genes in total. After FDR multiple-
testing adjustment we considered associations with q< 0.05 as
significant. As full genetic and expression data were available,
we decided to use the Regulatory Trait Concordance (RTC)
method to assess the likelihood of a shared functional variant
between the GWAS SNP and the asQTL signal (51). For each sig-
nificant asQTL association we extracted the residuals of the
linear-regression of the best cis-eQTL against normalized link-
fractions and re-performed the analysis using all SNPs within
the defined hotspot interval against this pseudo-phenotype.
The RTC score was defined as (NSNPs-RankGWAS SNP)/NSNPs where
NSNPs is the number of SNPs in the interval, and RankGWAS SNP is
the rank of the GWAS SNP association P-value against all other
SNPs in the interval. We classified an SLE candidate-causal
asQTL as a GWAS SNP with a significant association (q< 0.05)
with link-fraction quantification and an RTC score> 0.9.

qPCR validation of asQTL

Twelve human lymphoblastoid cell lines (6 x rs3768792 [AA], 6 x
rs3768792 [GG] were obtained from Coriell Biorepository and
cultured at 5% CO2 and 37

�
C in RPMI 1640 medium supple-

mented with 2 mM L-glutamine, 15% fetal bovine serum,
100 unit/ml penicillin and 100 mg/ml streptomycin. Total RNA
was extracted using the RNeasy Micro Kit (Qiagen) and cDNA
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synthesized with the cDNA Synthesis Kit (Thermo Scientific).
Primers were purchased from Sigma and reactions performed
using the Applied Biosystems 7500. IKZF2 exon 6A-exon 6B
splice-site, UPL #3, forward primer: TGGAATCAGCTCTAAC
TATTGGTG, reverse primer: ACGCTGCCACAACTATCTCC.
Relative mRNA and fold change was calculated in relation to
GAPDH expression using the DDCt method.

Supplementary Material
Supplementary Material is available at HMG online.
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Keildson, S., Bell, J.T., Yang, T.P., Meduri, E., Barrett, A., et al.
(2012) Mapping cis- and trans-regulatory effects across mul-
tiple tissues in twins. Nat. Genet., 44, 1084–1089.

10. Fairfax, B.P., Makino, S., Radhakrishnan, J., Plant, K., Leslie,
S., Dilthey, A., Ellis, P., Langford, C., Vannberg, F.O. and
Knight, J.C. (2012) Genetics of gene expression in primary im-
mune cells identifies cell type–specific master regulators
and roles of HLA alleles. Nat. Genet., 44, 502–510.

11. Naranbhai, V., Fairfax, B.P., Makino, S., Humburg, P., Wong,
D., Ng, E., Hill, A.V.S. and Knight, J.C. (2015) Genomic modu-
lators of gene expression in human neutrophils. Nat.
Commun., 6, 7545.

12. Nica, A.C., Parts, L., Glass, D., Nisbet, J., Barrett, A., Sekowska,
M., Travers, M., Potter, S., Grundberg, E., Small, K., et al. (2011)
The architecture of gene regulatory variation across multi-
ple human tissues: the MuTHER study. PLoS Genet., 7,
e1002003.

13. Myers, A.J., Gibbs, J.R., Webster, J. a., Rohrer, K., Zhao, A.,
Marlowe, L., Kaleem, M., Leung, D., Bryden, L., Nath, P., et al.
(2007) A survey of genetic human cortical gene expression.
Nat. Genet., 39, 1494–1499.

14. Field, J.M., Hazinski, M.F., Sayre, M.R., Chameides, L.,
Schexnayder, S.M., Hemphill, R., Samson, R.A., Kattwinkel,
J., Berg, R.A., Bhanji, F., et al. (2010) Part 1: Executive sum-
mary: 2010 American Heart Association Guidelines for
Cardiopulmonary Resuscitation and Emergency
Cardiovascular Care. Circulation, 122, 640–657.

15. Emilsson, V., Thorleifsson, G., Zhang, B., Leonardson, A.S.,
Zink, F., Zhu, J., Carlson, S., Helgason, A., Walters, G.B.,
Gunnarsdottir, S., et al. (2008) Genetics of gene expression
and its effect on disease. Nature, 452, 423–428.

16. Schadt, E.E., Molony, C., Chudin, E., Hao, K., Yang, X., Lum,
P.Y., Kasarskis, A., Zhang, B., Wang, S., Suver, C., et al. (2008)
Mapping the genetic architecture of gene expression in hu-
man liver. PLoS Biol., 6, e107.
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