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Abstract

Larval zebrafish innately perform a suite of behaviors that are tightly linked to their evolutionary past, notably escape from
threatening stimuli and pursuit and capture of prey. These behaviors have been carefully examined in the past, but mostly
with regard to the movements of the trunk and tail of the larvae. Here, we employ kinematics analyses to describe the
movements of the pectoral fins during escape and predatory behavior. In accord with previous studies, we find roles for the
pectoral fins in slow swimming and immediately after striking prey. We find novel roles for the pectoral fins in long-latency,
but not in short-latency C-bends. We also observe fin movements that occur during orienting J-turns and S-starts that drive
high-velocity predatory strikes. Finally, we find that the use of pectoral fins following a predatory strike is scaled to the
velocity of the strike, supporting a role for the fins in braking. The implications of these results for central control of
coordinated movements are discussed, and we hope that these results will provide baselines for future analyses of cross-
body coordination using mutants, morphants, and transgenic approaches.
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Introduction

Fish, in order to capture prey, avoid predators, and navigate

their environments, need to coordinate movements across their

bodies. This involves fluid movements of the eyes, tail, jaws, and

fins. The pectoral fins are especially important for propulsion,

steering, and stability, and have been shown to undergo a wide

variety of motions, depending on the species and the type of

movement being executed (reviewed by [1]). In labriform

swimming, where propulsion is largely provided by the pectoral

fins, these fins move in a manner that generates constant or near-

constant propulsive force [2,3,4]. During other forms of

swimming, they contribute to changes in pitch [5], turning [6],

hovering [7], and braking [7]. While the muscular control of

pectoral fins has been thoroughly studied [8,9,10,11,12,13], and

their basic innervation has been described [14,15,16,17,18], the

central neural circuits controlling their movements, and the neural

mechanisms by which they are coordinated with other parts of the

body are less well understood. This is due in part to the fact that

most research on pectoral fins has been done in an assortment of

species selected for particular swimming motions or ecological

niches. For practical reasons, most of these species are not well

suited to laboratory rearing, genetic manipulation, or functional

microscopy, and this has restricted the analyses that have been

done on central control of pectoral fin movement and coordina-

tion.

Larval zebrafish (Danio rerio) display a small number of simple

locomotor behaviors that are critical to their survival. In the

absence of stimuli, larvae move using slow swims and routine turns

[19]. When confronted with a threatening stimulus such as a loud

noise or being touched with a probe, larvae show escape behavior,

which has been described as a high-amplitude bend of the tail

resulting in a change of direction followed by a rapid swim away

from the site of the startle [19,20,21]. The fast swims during startle

responses have been shown to be distinct from routine slow swims

in terms of their tail kinematics. At roughly 4 days post fertilization

(dpf), zebrafish larvae begin predatory behavior, in which they

track, pursue, and attack prey (typically paramecia) [22,23]. These

behaviors have been extraordinarily useful for studying motor

circuits, because they are simple, repeatable, and can be induced

in a lab setting. Furthermore, the well-characterized hindbrain

and spinal anatomy of zebrafish combined with mutants, laser

ablations, and transgenic expression of proteins have permitted

researchers to describe the genetic, physiological, and neural

underpinnings of these motions. Notable examples include the

Mauthner neurons’ role in triggering startle responses [20,24,25],

the spinal circuits mediating lateral inhibition during escape

[25,26], the identification of spinal KA neurons as the drivers of

forward swimming [27], and neural control of swimming

[28,29,30,31].

A majority of the studies on zebrafish larval locomotion have

focused on movements of the tail, and on the spinal circuits that

control these movements. Less is known about the involvement of

the fins in these behaviors, and the neural mechanisms by which

fins are controlled and coordinated with the rest of the body are

poorly understood. In zebrafish, the pectoral fins have their basic

musculature [32,33] and motor innervation [34,35] by 5dpf. Their

activity during larval forward swimming has been detailed
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previously. During slow swimming in larvae, the pectoral fins show

coordinated alternating movements in which each fin abducts

when the tail bends to the opposite side of the body, and then

adducts back against the body when the tail bends ipsilaterally

[36,37,38,39]. These fin movements are absent during fast swims

that are a part of escape behavior [38,39]. Additionally, the

pectoral fins have been implicated in braking and backing

maneuvers following prey capture [23,36], and in routine turns

throughout development [40]. The involvement of the fins in

startle behavior, and the intricate details of fin activity in orienting

turns and predatory strike have not been explored in zebrafish.

Given the advantages that larval zebrafish provide for

characterizing neural circuits [41,42] there is a strong incentive

to describe baseline behaviors in this model system. Specifically, a

full description of pectoral fin-tail coordination would make it

possible to explore the neural networks that underlie coordinated

movement. Here, we present a method for describing the

relationship between the tail and pectoral fins of zebrafish larvae,

and we then use this method to describe the movements of

pectoral fins across the entire range of innate larval locomotor

behaviors. We find movements consistent with prior studies,

including those described for slow swimming and braking, and also

identify novel roles for the fins. These include coordinated

movements during long-latency, but not short-latency startle

responses, probable stabilizing movements during orienting turns,

and graded post-capture braking movements that are scaled to the

speed of the preceding strike.

Results

A method for measuring tail-fin coordination in larval
zebrafish

In order to describe the movements of the head, trunk, and

pectoral fins of fish, and also their relationship with prey items

during capture episodes, we devised a technique involving the

manual placement of anatomical landmarks followed by automat-

ed calculations of the animal’s kinematics (Fig. 1). For each

analyzed frame of a high-speed movie, landmarks were placed

along the midline of the larva, at the base and tip of each pectoral

fin, and (in the case of prey capture) on the targeted paramecium

(Fig. 1A, B, and C). The XY coordinates for each of these points

were automatically generated, and the resulting data on the

bearing, tail bend, extension of the fins, and distance to prey were

calculated (Fig. 1D). These data allowed us to map the movements

of the tail and each fin, and also provided information on the

larva’s swim velocity, bearing to prey, and distance to prey

(Fig. 1E).

The pectoral fins in short versus long latency startle
The essential tail kinematics of startle behavior have been well

described in larval zebrafish [19,21,43] and other species of fish

[44,45,46]. A typical response to an acoustic or touch stimulus

involves a rapid bend of the tail (C-bend), followed by a counter

bend and swimming away from the site of startle. Our findings

reinforce this, as illustrated by the typical startle sequence shown in

Fig. 2.

Upon sensing the stimulus, the larva performs a C-bend

(Fig. 2A,C,D). This results in a change in bearing of roughly 180u.
This is followed by a strong counter bend in the tail (Fig. 2E,F) that

partially reverses the initial bearing change. Following the bend

and counter bend, the larva shows strong and alternating tail

bends that propel it away from its original location (Fig. 2G).

These tail bends then drop in amplitude as their frequency

decreases (Fig. 2H,I). The slower, shallower tail beats are

accompanied by alternating abductions of the pectoral fins, with

the fin opposite the tail bend abducting while its counterpart

adducts against the body (Fig. 2H,I). The kinematics of each of

these responses matches those previously described for C-start

[19,24,43], fast swimming [19], and slow swimming [37,38,39].

The C-bend itself has recently been shown to take two forms in

larval zebrafish [43]. Larvae typically respond to intensely startling

stimuli with a rapid, dramatic, and relatively consistent C-start

known as a short-latency startle. Stimuli that are weaker, but still

strong enough to elicit a startle often result in long-latency startle

responses. These, as their name indicates, take longer to occur,

and differ in other important ways [43]. Short latency startles

include higher amplitude tail bend angles in the C-start, and are

strikingly consistent in their kinematic details, indicating that they

are an ‘‘all-or-none’’ response. Long-latency responses are less

vigorous and more variable in their kinematics, with the

Figure 1. Method of kinematic analysis. Panel A shows a single
frame from a high-speed movie of a 14 dpf larva that is pursuing a prey
item, in this case a paramecium. In panel B, ten landmarks have been
manually placed on the larva and prey. Panel C shows the resulting
point-and-line representation of the larva and prey, with numbers
automatically assigned to each point. The XY coordinates of each point
are shown in panel D, along with automatically extracted information
on the larva’s fins, tail, and position relative to the paramecium. Panel E
shows a portion of the overall pursuit and capture event, indicating the
tail bend, extension of each fin, and distance and bearing to the
paramecium through time. The arrow indicates the frame represented
in panels A–D. Scale bar in A represents 1 mm.
doi:10.1371/journal.pone.0032295.g001

Pectoral Fin Use in Larval Zebrafish
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magnitude of the tail bend scaling with the strength of the

stimulus.

We find an additional important difference between short- and

long-latency responses in that short-latency C-bends occur without

pectoral fin involvement, while long-latency C-bends include

coordinated movements among pectoral fins and tail (Fig. 3).

During short-latency startle responses, the bend and counter bend

of the tail lead to changes in the direction of the larva, but the

pectoral fins remain adducted throughout this stage of the

behavior (Fig. 3A). In contrast, pectoral fin movements are

typically a larva’s first action in long-latency startles (Fig. 3B). Both

fins abduct strongly, often contacting the head at their apex, while

the initial C-bend occurs. They then adduct in unison to a

retracted position as the counter bend in the tail occurs. This

timing suggests a possible role in adding to the larva’s propulsion

away from the initial site where the startle occurred, or in fine-

tuning the direction of the swim away from the source of the

sound. These slower responses are more likely to be long-latency

C-bends [43] than routine turns [20,40], based on the maximal

tail bend angles (167u+/25u, mean +/2 s.e.m.) and bearing

changes (117u+/210u, mean +/2 s.e.m.) that we measured, and

the fact that they arise from auditory stimuli.

Pectoral fin kinematics of prey tracking
In order to describe more nuanced movements and maneuvers

that require feedback, we observed the tail and fin movements of

larvae as they tracked and attacked paramecia (Fig. 4). As has been

previously described [22,23], we found prey tracking to be

composed of two operations: forward swims (Fig. 4A–C) and J-

turns (Fig. 4A,E). These allowed larvae to approach and to orient

toward prey, respectively, and set the stage for a predatory strike.

We also observed examples in which forward swims and J-turns

were apparently combined or executed simultaneously.

During forward swims, larvae showed shallow, slow tail bends,

roughly equal in magnitude in the two directions. We found this to

be accompanied by alternating abductions of the pectoral fins,

with the fin opposite the tail bend abducted (Figs. 4A,B, and C;

5A). Forward swims resulted in an approach of the prey, but in

Figure 2. Overall structure of larval startle. The bearing (0u at t = 0), tail bend angle, and pectoral fin extensions are shown for the entirety of a
response to a startling auditory stimulus (Panel A). Individual frames from the behavior are shown in Panels B–I), with accompanying timestamps. The
approximate time for each of these frames is indicated by an arrow in Panel A. This startle event is composed of three phases, a rapid high-amplitude
bend of the tail (C-bend), a strong counter bend and tail beat (fast swim), and then a slower, less dramatic alternating tail beat accompanied by
pectoral fin extensions (slow swim). Scale bar in B represents 1 mm. The larva shown is 7 dpf.
doi:10.1371/journal.pone.0032295.g002
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Figure 3. Pectoral fin involvement in long-latency, but not short-latency startle. Charts representing typical short-latency (Panel A) and
long-latency (Panel B) startle responses are shown. In short-latency startle responses, the fins remain adducted during the C-bend and counter bend.
Both pectoral fins are abducted and adducted in unison during the C-bend and counter bend of long-latency startles. Individual frames from a short-

Pectoral Fin Use in Larval Zebrafish
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little or no change in the bearing of the larva with regard to the

prey. These kinematics resemble both previously described slow

swims [37,38,39] and the slow swims that we observed at the end

of startle responses (Fig. 2).

J-turns were more variable in the kinematics of both tail and fin

movements (Figs. 4A,E; 5B). As others have described

[19,22,23,36], J-turns involve the bending of the distal portion of

the tail in one direction only, resulting in the larva’s assuming a

‘‘J’’ shape. Consistent with other studies [19,22,23,36], we found J-

turns to result in a change of bearing, generally toward the prey,

but in no appreciable approach toward to the target. We found the

pectoral fins to be invariably active during J-turns, but these

movements were variable from animal to animal and event to

event. In a majority of cases, the two pectoral fins abducted and

adducted in unison during J-turns, although in some cases a single

fin would move. We did not observe alternating movements of the

fins during J-turns. Interestingly, the fin contralateral to the

direction of the tail bend (the outside fin, hereafter) invariably

(n = 18) abducted to a greater degree than the fin ipsilateral to the

tail (the inside fin). Outside fins abducted to 123.8+/26.0u

Figure 4. Components of prey capture. The chart in panel A shows a larva’s pursuit and capture of a paramecium (arrow, B). The individual
elements of the behavior are indicated by red lines. Panels B–I show individual frames from the movie of this sequence, with approximate times of
the frames indicated by arrows in Panel A. The paramecium is indicated with an arrow in panel B, and all panels show the same field of view. Panels B
and C show opposite tail bends of a forward swim, with extensions of the outside pectoral fin in each case. The larva pauses in panel D. Panel E shows
the unilateral tail bend typical of a J-turn, with the outside pectoral fin extended. An S-bend is seen in panel F, which leads to the capture of the
paramecium in panel G. Strong abductions of both pectoral fins are seen immediately after capture (Panel H), before the larva turns and swims away
(Panel I). Time stamps are shown for each panel. The scale bar in B represents 1 mm. The larva shown is 7 dpf.
doi:10.1371/journal.pone.0032295.g004

latency (Panel C) and a long-latency startle (Panel D) are shown, with the approximate times of the frames indicated by the arrows in Panels A and B.
Panel E shows a scatter plot of startle events with and without fin involvement, and the latency to respond to the stimulus. n = 9 for responses with
active fins and 10 for inactive fins, and p,0.0001 (two-tailed unpaired t-test). Scale bars in C and D indicate 1 mm. The larvae shown are 7 dpf.
doi:10.1371/journal.pone.0032295.g003
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(mean+/2s.e.m.), while inside fins averaged 102.2+/26.7u
(n = 10, paired t-test, p,0.0001). In some instances, the outside

fin also had a greater number of movements than the inside fin.

These results do not clarify the pectoral fins’ function in the

execution of a J-turn. One possibility is that they are driving the

change in direction, and that the greater activity from the outside

fin rotates the anterior aspect of the animal’s trunk in the opposite

direction. Another possibility is that the tail provides the force for

the change in direction, and that the fins are involved in stabilizing

the larva. To identify the kinematic element that drives bearing

change, we performed linear regressions of various quantitative

kinematic measurements against the magnitude of the change in

the animal’s direction for the same maneuver. We found a strong

and significant relationship between the maximal angle of the tail

bend in a J-turn and the change in the animal’s direction for that

turn (Fig. 5C). Similar tests of the abduction of the inside fin, the

abduction of the outside fin, and the differential between inside

and outside fin abductions versus bearing changed failed to reveal

any significant relationships (Fig. 5D). Combined, these analyses

indicate that it is the J-bend in the tail, rather than movements of

the pectoral fins, that drives the larva’s turn.

Predatory strike and recovery
The purpose of prey tracking is to bring the larva into position

to attack the prey. Once it is close to the prey and well oriented,

the larva can strike and capture it. Attacking maneuvers for fish,

including zebrafish larvae, have been described as being either

predominantly sucking or ram feeding motions [23,36]. Fish that

rely heavily on suction typically have little forward momentum at

the time of capture, whereas those fish executing ram feeding rely

on forward momentum to overtake their prey. In our study, we

have observed both types of attack, but have found that most

strikes combined ram feeding with suction (Fig. 6).

In some of the attacks that we observed (1/11 at 7 dpf and 4/8

at 14 dpf), the larva captured the prey using suction alone. An

example is shown in Fig. 6A and Video S1. In this case, the larva

sucks the paramecium into its mouth (Fig. 6A) without any

forward momentum of its own. In this case, the capture event is

followed by a single moderate abduction of both pectoral fins

before the animal comes to rest.

More frequently (8/11 at 7 dpf and 3/8 at 14 dpf), we observed

cases where forward swimming (ram feeding) and suction were

combined in the capture strike (Fig. 6B and Video S2). In this

Figure 6. Pectoral fin abduction scales with strike velocity. Panels A, B and C show the movements of the tail and both pectoral fins for strikes
of increasing velocity. The velocity of the larva is shown in blue. The moment of capture (t = 0) is indicated by a vertical dotted line. Panel D shows the
correlation that exists between strike velocity and the total fin adduction that occurs following the strike (n = 8; unpaired t-test with Welch’s
correction, p,0.001; linear regression, R2 = 0.70). The events shown in panels A, B, and C are indicated.
doi:10.1371/journal.pone.0032295.g006

Figure 5. Pectoral fin movements in prey tracking. Panel A shows the kinematics of a larva swimming toward a paramecium. The forward swim
takes the form of shallow, roughly symmetrical tail bends, with extension of the outside pectoral fin. This results in alternating extensions of the fins.
The distance to the paramecium decreases as a result of this maneuver. A J-turn is represented in Panel B. The tail bends in a single direction (left, or
negative, in this case), and the pectoral fins beat in unison. The bearing to the prey drops, but the distance to the prey remains unchanged. There is a
strong relationship between the degree of the tail bend and the size of the bearing change (Panel C, p,0.001 (unpaired t-test with Welch’s
correction), linear regression R2 = 0.78), while the activities of the fins have no direct effect on the magnitude of the turn (Panel D, p.0.05 in all cases,
unpaired t-test with Welch’s correction).
doi:10.1371/journal.pone.0032295.g005
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representative example, the attack takes the form of repeated

shallow tail beats that are accompanied by alternating extensions

of the pectoral fins (Fig. 6B), as in a slow swim. The forward

motion of the larva (gauged by the blue line in Fig. 6B) is more

rapid than for a pure suction capture (Fig. 6A). Evidence for

suction can be found in a movement of the paramecium toward

the larva’s mouth, and a streamlining of the paramecium into the

larva’s mouth at the time of capture (Video S2). Following the

capture, the pectoral fins show two high-amplitude abductions.

The final type of capture that we observed (2/11 at 7 dpf and

1/8 at 14 dpf) involved an explosive forward swim and a capture

of the prey reliant entirely on forward momentum (Fig. 6C and

Video S3). Here, an S-bend of the tail propels the larva forward,

providing velocity for the strike (blue line in Fig. 6C). Following

capture, the larva extends it pectoral fins repeatedly, dramatically,

and in unison.

It has been proposed that abduction of the pectoral fins after

ram feeding provides braking for the fish, causing it to hold its

position rather than drift forward away from the site of the strike.

To test this idea, we compared the number and magnitude of

pectoral fin adductions with the velocity of the larva at the

moment of prey capture for all capture events performed at 7 dpf.

We found a significant correlation between the larva’s strike

velocity and the combined angles of post-strike fin abductions

(Fig. 6D). These data support the idea that the pectoral fins are

used to slow the larva, since higher velocity strikes would require

more braking in order to stabilize the larva’s position.

Discussion

We have observed and quantified the kinematic movements of

zebrafish larvae as they execute common locomotor behaviors.

The objective of the study has been to describe how the tail and

pectoral fins are coordinated as these movements proceed, and

how this coordination may underlie the successful completion of

the larva’s spatial goals. We have found pectoral fin involvement in

almost all of the stereotyped movements that larvae execute, the

exceptions being short-latency C-bends and fast swimming. In

some cases, these results confirm and reinforce observations of

pectoral fin movements seen in previous studies, such as the

alternating movements of the fins during slow swimming

[36,37,38,39] and the extension of fins following prey capture

[23,36].

Pectoral fins as a component of a slow, nuanced startle
response

The typical startle behavior that we observed involved a C-bend

followed by a fast swim, and then a slow swim. Fast swims, which

are not routinely performed in the absence of stimuli, are

characterized by a high temporal frequency, high angular tail

bend, high velocity, and pronounced head yaw [19]. Slow swims

show a lower frequency, with lower magnitude tail bends and yaw.

Additionally, slow swims have been demonstrated in both

zebrafish [37,38,39] and other species [47] to include alternating

pectoral fin movements like the ones that we show in Fig. 2. In all

of these respects, the startle behaviors that we observe appear to be

composed of previously described C-bends and fast and slow

swims.

One of the novel observations relates to larvae’s varied

responses to startling stimuli. When confronted with a robust

auditory startle stimulus, a larva quickly responds with a high

amplitude bend of the tail, and a strong counter bend that propels

it away. On average, this short-latency response occurs within

5.3 msec of the stimulus [20]. The short-latency response is

notable for its consistency, with only slight variations in response

latency, angular velocity, bend duration, and counter bend

magnitude. In contrast, long-latency startle responses take longer

to initiate (28.2 msec after the stimulus, on average), and show a

greater range of kinematic features [20]. Indeed, the kinematics of

long-latency startles increase in magnitude with increased stimulus

intensity [20]. As a consequence, short-latency startles can be

viewed as all-or-none responses, while long-latency responses are

graded.

Here, we add the observation that pectoral fins have a

stereotyped and coordinated role in long-latency C-bends, but

are not involved in short-latency responses. In long-latency startles,

the pectoral fins are the first body part to respond, with

coordinated abductions that precede the tail bend. These

abductions become maximal as the tail bend reaches its highest

angle, and the fins then adduct against the body as the counter

bend occurs. The pectoral fins’ lack of involvement in fast

responses is consistent with the neural mechanisms underlying

short-latency C-bends. These responses are mediated by the

Mauthner neurons [20], which explains both the behavior’s short

latency and invariability. In contrast, Mauthner neurons are not

needed for long-latency startles [43], which is consistent with more

central neural processing. Gahtan et al. [48] have previously

shown that, in the absence of Mauthner neurons, startling stimuli

lead to activity in a large and distributed array of descending

neurons in the hindbrain and the nucleus of the medial

longitudinal fasciculus. It is likely that a subset of these active

neurons indirectly mediate the movements of the pectoral fins that

we observe in long-latency C-bends. The breadth of this network

makes it plausible that it is controlling and tuning the timing and

magnitude of muscle contractions in multiple muscle groups,

which is a prerequisite for orchestrating a complex coordinated

movement like the long-latency startle [49].

These observations fit well with pectoral fin involvement in

long-latency, but not short-latency C-bends, and more generally

with an evolutionary strategy involving two types of startle

responses. Short latency startles provide a fast and dramatic

response to the most threatening categories of inputs: touch and

high-volume auditory stimuli. The Mauthner neurons allow for

the speed of the response, but this circuit lacks the complexity

necessary for graded responses, or for the recruitment of multiple

motor pattern generators, as is required for the coordinated

movement of different body parts. Less urgently threatening

stimuli may not require as fast a response, so more central

processing can take place, including a scaling of the response in

proportion to the stimulus and the orchestration of motor

programs for different body parts. Given the timing of pectoral

fin movements, it is possible that they simply add propulsive force

to the tail’s counter bend. It has also been suggested that the long-

latency startle may incorporate spatial information, allowing for a

purposeful turn away from the sound source [20]. This suggests a

possible role for the pectoral fins in fine-tuning the final bearing of

the larva as it extends out of a counter bend, and into its escape

swim. Further kinematic experiments incorporating a spatially-

controlled auditory stimulus would be necessary to test this

possible role for the fins.

Fin involvement in prey capture
Prey tracking has been described as comprising forward swims,

which move the larva toward the prey spatially, and J-turns, which

allow the larva to orient toward the prey [22,23]. We have

observed both of these behaviors, as well as movements that

combine both. We have found that forward swimming included

alternating use of the pectoral fins, in coordination with tail

Pectoral Fin Use in Larval Zebrafish
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movements, and that the fins are invariably but inconsistently

involved in J-turns. As a larva executes a J-turn, its tail bends at the

distal tip while both fins beat in unison. Although both fins are

active, the one opposite the tail bend invariably abducts to a

greater angle than its contralateral counterpart. We have shown

that it is the magnitude of the tail bend, rather than fin activity,

that predicts the rotational magnitude of the turn. This makes it

unlikely that the fins are directly driving the change of the larva’s

bearing. Other possible functions for the fins include preventing

counterrotation or backward creep as a result of the tail bend, or

stabilizing the larva in some other way.

The pectoral fins have a distinct role in the recovery from a

predatory strike. Almost all strikes are followed by simultaneous

extension of both pectoral fins, as previously reported [23,36]. We

found the number and magnitude of these extensions to be

variable. Slow strikes are often followed by a single, low amplitude

abduction of the fins, or in the case of some suction-based strikes,

no fin movements. Strikes that involve moderate forward

movement usually include one or two strong abductions of the

fins. High-speed strikes are generally followed by two or more

strong fin movements. The qualitative observations held true in a

quantitative analysis of strike speed versus fin usage. We found a

significant positive correlation between the larvae’s forward

velocity at the time of the strike and the number and magnitude

of pectoral fin abductions that followed. This provides support for

the idea that these fin movements are used to slow the animal’s

forward momentum [23,36]. The faster a larva’s strike, the more

dramatic the braking maneuver needs to be. This braking would

allow the larva to reestablish its normal swim patterns, or to

resume pursuit of prey in the event of a failed strike.

Pectoral fin function in larval movement
Recently, Green et al [37] have explored the locomotor and

physiological roles of pectoral fins in slow swimming zebrafish

larvae. They found that fgf24 morphant larvae lacking pectoral fins

nonetheless swam normally. Neither swim performance nor

stability was affected in these larvae. However, they showed a

role for the slow-swim pectoral fin movements in drawing water

across the surface of the larva, apparently to aid respiration.

Bolstering this argument, normal larvae were found to execute

more fin movements in oxygen-depleted water.

While the pectoral fins have a respiratory function in slow

swimming, this is unlikely to be the reason for the other movements

reported here. During long-latency startle, the C-bend and

subsequent fast swimming transport the larva several millimeters

in a fraction of a second, thoroughly mixing the water contacting the

larva. During J-turns, the pectoral fins move asymmetrically, with

more movements from the outside fin than the inside fin. Such

asymmetry would not likely aid in respiration, but could providing a

stabilizing counterbalance to the asymmetrical movements of the

tail. Finally, the movements of the fins following a predatory strike

are scaled with the velocity of the strike. This means that the fins are

most active in the cases where the water around the larva will be

mixing the most. As described above, the most obvious explanation

for this result is that the fins are providing a braking force, allowing

the larva to stabilize its position following the strike.

With the results presented here and elsewhere, these functions for

the pectoral fins remain speculative. These predicted functions for

the pectoral fins could be tested by observing the escape and prey

capture performance of fgf24 morphants lacking pectoral fins [37].

Final thoughts and future directions
Many of the interesting coordinated movements that larval fish

execute take place rapidly, and as a consequence, they can only be

properly analyzed through high-speed imaging. The downside of

this is that quantitative data must be extracted from a large

number of frames in order to describe the movements. This, in

turn, has provided a strong incentive to automate kinematic

analyses. The result has been several effective programs for

describing movements of the trunk and tail automatically [20,50]

or semi-automatically [38]. These automated approaches benefit

from the relative clarity with which the tails of larvae can be

imaged, even at high speed. Observing the pectoral (and other) fins

is more difficult because they are thin, often move quickly, and

disappear against the body when adducted. All of these factors

complicated, and eventually prevented, our efforts to automate fin

kinematic measurements. The manual system reported here is

accurate but labor-intense, and a strong incentive remains to

automate this process, either through improved imaging or

software.

Zebrafish larvae present an appealing system for studying basic

motor functions and the neural circuits that drive them. Available

genetic techniques allow for the roles of specific genes to be

analyzed, and transgenic approaches permit genetically encoded

tools to be expressed in specified parts of circuits. As a

consequence, several groups have recently used zebrafish larvae

to elucidate circuits underlying forward swimming and startle

[25,26,27,51,52]. These studies have, however, been restricted to

the control of the trunk and tail in these behaviors, and the motor

circuits controlling the fins remain less well characterized. One

goal of this report is to provide kinematic descriptions and

quantitative measurements of the fin activity that accompanies

better-characterized tail movements. These should allow for future

studies into the motor centers driving forelimb movements, and

into the brain regions that coordinate and calibrate fluid motions

across the body.

Materials and Methods

Ethics Statement
All experiments were carried out in accordance with relevant

regulatory standards for animal ethics, and were approved by the

University of Queensland Animal Welfare Unit.

Fish rearing
Zebrafish (Danio rerio) of the Tupfel long fin (TL) strain were

housed at 26uC, and fed a standard diet of live artemia. Larvae

were raised in E3 media at 28.5uC, with regular water changes

and cleaning. The larvae used in this study were tested at 7 or

14 dpf, with average lengths of 4.65 mm and 6.93 mm, respec-

tively. Animals tested at 14 dpf were fed rotifers from 5 dpf until

the time of testing.

Startle and prey capture
For startle experiments, larvae were placed, 2 or 3 per dish, into

55 mm Petrie dishes in E3 media. Dishes were placed into a

custom-built Plexiglas platform with a 70 mm computer-con-

trolled speaker mounted on it. This platform was placed under a

Nikon SMZ-745T dissecting microscope and illuminated from

below by the microscope’s halogen lamp. The startle stimulus took

the form of a 550 hz tone that was applied while high-speed

imaging was in progress. The categorization of startles as being fin-

active or fin-inactive was done by a scorer who was blind to the

latency of the startle. For prey capture, 2 or 3 larvae were placed

in a 55 mm Petrie dish with roughly 100 paramecia (Paramecium

caudatum, Southern Biological, Nunawading, Victoria, Australia)

and filmed as for startle behavior.
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Image capture
Movies were taken at 506 frames per second at a resolution of

120061064 pixels using a Fastec HiSpec camera (Fastec Imaging,

San Diego, CA, USA) mounted on a Nikon SMZ-745T dissecting

microscope. Imaging began at the time of stimulus presentation for

startle behavior. For prey capture, an operator triggered Fastec

software upon observing a strike movement, thus saving the prior

five seconds of data. Kinematics were quantified for each third

frame in most cases, but less often during periods of inactivity.

Method for quantifying fin-tail coordination
For each frame analyzed, points were manually placed at (1) the

anterior-most point, (2) the midline between the base of the

pectoral fins, (3) the midline between the resting points for the tips

of the pectoral fins, (4) the midline halfway from the pectoral fins

to the tip of the tail, and (5) the tip of the tail. These five points laid

out the midline of the animal, defined the animal’s bearing (from

point 2 to point 1), the tail bend (sum of the angles at points 3 and

4), and provided a baseline (from point 2 to point 3) from which to

calculate pectoral fin extensions. Additional points were placed at

the (6) base and (7) tip of the right pectoral fin, and the (8) base and

(9) tip of the left pectoral fin. These allowed the angles of the fins to

be compared to the baseline angle, yielding the degree of

abduction of each of the fins. Finally, for prey capture events, a

point (10) was placed on the prey. This permitted the bearing and

distance to the prey to be calculated.

Coordinate data were exported into Microsoft Excel, where

calculations were carried out as follows. Bearing was the angle of

the line from the trunk midline to the tip of the nose. A bearing of

zero was defined as the bearing at t = 0, and was positive if the

animal rotated clockwise and negative if counterclockwise. For

prey capture, bearing was the angle between the larva’s bearing

and the true bearing to the prey, and was positive if the prey was to

the larva’s right, negative if to the left. Tail bend was defined as the

sum of the angles formed at the two most posterior angles of the

schematic larva (positive for a right bend, negative for a left bend).

Fin extension was the absolute value of the difference between the

angle of the fin and the angle of the trunk where the fin would

normally lie flat. Macros for ImageJ and templates for Excel will

be provided upon request.

To quantify strike velocity, the distance travelled by the larva

during seven frames of the high-speed movie spanning the capture

were divided by 14 ms, the period of elapsed time during these

frames. Total fin abduction following a strike was quantified by

averaging the left and right maximal fin abductions for each fin

movement, and then summing the averages if more than one fin

movement followed the strike.

A table (Table S1) of mean values for the data presented in this

paper is available as supplementary material.

Supporting Information

Table S1 Mean data. The mean values for measurements

taken in this study are indicated 6 standard deviation.

Experimental n is indicated in parentheses.

(DOC)

Video S1 Movie of the predatory strike represented in
Fig. 6A. The paramecium is captured solely by suction, and there

is no forward movement from the larva at the time of capture. The

pectoral fins adduct moderately after the capture. The movie plays

at 1/10 real speed.

(MOV)

Video S2 Movie of the predatory strike represented in
Fig. 6B. The paramecium is captured by a combination of

suction and ram-feeding. There are two high-amplitude adduc-

tions of the pectoral fins following the capture. The movie plays at

1/10 real speed.

(MOV)

Video S3 Movie of the predatory strike represented in
Fig. 6C. The paramecium is captured by an explosive forward

swim resulting from an S-start. The pectoral fins show three strong

adductions after the paramecium is captured. The movie plays at

1/10 real speed.

(MOV)
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