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The rapid and efficient phagocytic clearance of apoptotic cells, termed efferocytosis, is a
critical mechanism in the maintenance of tissue homeostasis. Removal of apoptotic cells
through efferocytosis prevents secondary necrosis and the resultant inflammation caused
by the release of intracellular contents. The importance of efferocytosis in homeostasis is
underscored by the large number of inflammatory and autoimmune disorders, including
atherosclerosis and systemic lupus erythematosus, that are characterized by defective
apoptotic cell clearance. Although mechanistically similar to the phagocytic clearance of
pathogens, efferocytosis differs from phagocytosis in that it is immunologically silent and
induces a tissue repair response. Efferocytes face unique challenges resulting from the
internalization of apoptotic cells, including degradation of the apoptotic cell, dealing with
the extra metabolic load imposed by the processing of apoptotic cell contents, and the
coordination of an anti-inflammatory, pro-tissue repair response. This review will discuss
recent advances in our understanding of the cellular response to apoptotic cell uptake,
including trafficking of apoptotic cell cargo and antigen presentation, signaling and
transcriptional events initiated by efferocytosis, the coordination of an anti-inflammatory
response and tissue repair, unique cellular metabolic responses and the role of efferocytosis
in host defense. A better understanding of how efferocytic cells respond to apoptotic cell
uptake will be critical in unraveling the complex connections between apoptotic cell removal
and inflammation resolution and maintenance of tissue homeostasis.

Keywords: efferocytosis, intracellular trafficking, transcriptional regulation, cellular metabolism, inflammation
resolution, host defense
INTRODUCTION

Efferocytosis is the process of rapid and efficient clearance of apoptotic cells by both professional
and non-professional phagocytic cells (1, 2). From an evolutionary perspective, efferocytosis is an
ancient mechanism that allowed early multicellular organisms to regulate their growth through the
disposal of dying cells during development (3). In complex multicellular organisms, efferocytosis is
Abbreviations: LAP, LC3-associated phagocytosis; PI3KCIII, class III phosphatidylinositol-3-kinase; TLR, Toll-like receptor;
DCs, dendritic cells; PtdSer, phosphatidylserine; LXR, liver X receptor; PPAR, peroxisome proliferator-activated receptor;
SPM, pro-resolving mediator.
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critical in growth and development, for the resolution of
inflammation, and for maintaining tissue homeostasis (4–6).
Mechanistically, efferocytosis closely resembles phagocytosis—
the internalization and clearance of pathogens and other foreign
particulates (7). Indeed, though efferocytosis utilizes a distinct
and well-characterized set of cell surface receptors (e.g. TAM
family receptors, Tim4, aV integrins) and soluble opsonins (e.g.
Gas6, MFGE8, CD93) that bind to ligands found on the plasma
membrane of apoptotic cells (e.g. phosphatidylserine), much of
the processes downstream of apoptotic cell internalization such
as intracellular trafficking of apoptotic cell cargo and cellular
responses to internalized of apoptotic cell contents are either
thought to be wholly analogous to phagocytosis or to be poorly
understood (1, 7–10). Strikingly, efferocytes such as macrophages
can distinguish between normal apoptotic cells and those
infected with an intracellular pathogen, despite the fact that
much of the contents of an infected apoptotic cell (e.g. lipids,
nucleic acids, proteins) are identical to that of a non-infected cell,
allowing the efferocyte to mount an appropriate immunological
response to pathogens within efferocytosed cells (3). This
demonstrates that efferocytosis is a distinct process from
phagocytosis, that and efferocytes are fine-tuned to be able to
distinguish between apoptotic versus pathogenic cargo.

The major efferocytic cell—or efferocyte—within the body is
the macrophage (11). These immune cells are responsible for
clearance of apoptotic cells and debris across many tissues (12,
13). There is emerging evidence that efferocytic macrophages
form a distinct subset of tissue-resident macrophages that differ
in both function and pattern of gene expression compared to
other tissue-resident macrophage populations (14, 15). Indeed,
A-Gonzalez et al. (14) found that tissue-resident murine
efferocytic macrophages from across a range of different tissues
share a common transcriptional profile, which is characterized
by downregulation of proinflammatory cytokines such as IL1b
and expression of the mannose receptor CD206 (14).
Interestingly, although this population upregulates several
anti-inflammatory genes, it’s gene expression profile does not
co-cluster with alternatively activated (M2) macrophages
(14). This suggests that efferocytic macrophages cannot
simply to be thought of as “anti-inflammatory” macrophages,
and instead occupy a distinct space in the macrophage
transcriptional landscape.

The purpose of this review will be to discuss the distinct
cellular responses elicited upon uptake of apoptotic cells by an
efferocyte, with a focus on macrophages as the major efferocytic
cell population within the body. In particular, we will review
differences in trafficking of apoptotic cell cargo and presentation
of antigens following internalization, alterations in cell signaling
and transcriptional regulation, as well as explore how changes in
cargo trafficking and gene expression contribute to the anti-
inflammatory phenotype that characterize efferocytes. Further,
we will explore recent advances in our understanding of how
efferocytes deal with the metabolic stress of internalizing
apoptotic cells, how efferocytes respond upon uptake of
infected apoptotic cells, and the role of efferocytosis in
host defense.
Frontiers in Immunology | www.frontiersin.org 2
EFFEROSOME TRAFFICKING AND
ANTIGEN PRESENTATION

Following recognition, apoptotic cells are engulfed by the
efferocyte into a plasma membrane-derived vacuole termed an
efferosome (8). Similar to phagosomes that contain internalized
pathogens, efferosomes undergo a highly regulated series of
sequential fusions with early endosomes, late endosomes, and
finally lysosomes (Figure 1) (16–18). These fusion events are
regulated by proteins including Rab GTPases and SNAREs, with
the fusion events delivering the hydrolytic enzymes which
degrade the apoptotic cell within the efferosome (19–23). This
process is termed efferosome maturation and is analogous to the
maturation processes observed following phagocytosis and
endocytosis (8, 24).

The efferosome maturation process bears many similarities to
phagosome maturation, including the recruitment of the Rab
GTPases Rab5 and Rab7 (23, 25, 26). Rab5 is recruited to
efferosomes as the apoptotic cell is internalized, and remains
bound to the efferosome for several minutes following the release
of the efferosome from the plasma membrane (19, 27). Here,
Rab5 mediates the fusion of the efferosome with early
endosomes, beginning the degradative process which will
ultimately disassemble the apoptotic cell (19, 20). Rab5 is
exchanged for Rab7 several minutes after efferosome
formation, with Rab7 mediating the fusion of late endosomes
and lysosomes to the efferosome – thus generating a highly
hydrolytic environment capable of the complete degradation of
the apoptotic cell (18, 27). Recent work by our group and others
have demonstrate important differences between the regulation
of efferosome maturation versus phagosome maturation (27, 28).
Efferosome acidification is a central process that facilitates the
degradation of apoptotic cargo through activation of lysosomal
proteases (29, 30).

Efferosomes have also been shown to employ LC3-associated
phagocytosis (LAP, Figure 1), a noncanonical form of autophagy
that involves recruitment of autophagy mediators including the
class III phosphatidylinositol-3-kinase (PI3KCIII) complex
ATG5 and ATG7 to the surface of nascent efferosomes (31,
32). These elements then direct the rapid maturation of the
efferosome and processing of the apoptotic cargo in a manner
that suppresses antigen presentation and serves to polarize
macrophages towards an anti-inflammatory phenotype (33).
While the exact signals which allow for LAP to be employed
for efferosome maturation remain unknown, work from the
Medzhitov group has demonstrated that phagosome-derived
Toll-like receptor (TLR) signaling is required to direct
materials into the classical phagocytic (e.g. non-LAP) pathway
where they then undergo antigen presentation (34, 35). This
indicates that the detection of pathogen products via TLR’s
serves not only to induce the expression of genes involved in
inflammation and antigen presentation, but also induces
immediate differences in the trafficking of cargo bearing TLR
ligands compared to those lacking these ligands (36). Rab39a
may serve to inhibit LAP following phagocytosis, as this GTPase
inhibits autophagy following TLR signaling, and is required for
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the delivery ofMHC I to phagosomes for antigen cross-presentation
(37, 38). However, there are no published studies of the role of
Rab39a in efferocytosis, and therefore its role in efferocytosis-
associated LAP remains unclear. Interestingly, LAP and the
formation of LC3-associated efferosomes is dependent on the
Beclin1-interacting protein Rubicon (39). Rubicon is a negative
regulator of canonical autophagy and downregulation of this
protein results in an increase in the number of autophagosomes
(39, 40). Indeed, deletion of Rubicon in a mouse model of
autoimmune disease significantly increases susceptibility to the
development of systemic lupus erythematosus-like features in
these animals, potentially due to altered processing of apoptotic
cells (41).

Differences in acidification and trafficking of efferosomes, as
compared to phagosomes, also plays a role in ensuring the
immunologically silent degradation of apoptotic cells (34, 42,
43). There is conflicting evidence in the literature on the kinetics
of efferosome maturation as compared to phagosome maturation
(35, 42). Erwig et al. reported that in murine macrophages, early
maturation and acidification of efferosomes containing apoptotic
Frontiers in Immunology | www.frontiersin.org 3
neutrophils proceeded at a faster rate than phagosomes
containing IgG-opsonized neutrophils (42). Inhibition of the
small GTPase RhoA using a small molecule inhibitor was
sufficient to negate these differences (42). In contrast, Blander
and Medzhitov have shown that efferosome maturation
proceeded at a slower rate than phagosomes (35). Of note, in
the case of Blander and Medzhitov, the phagocytic target
employed was inactivated Escherichia coli and the authors
argue that it was activation of TLR2 and TLR4 signaling that
drove accelerated phagosome maturation (35). In contrast, the
IgG-coated neutrophils used by Erwig and colleagues would not
have stimulated TLRs in the same fashion (42).

Our group has recently demonstrated that efferosome
localization appears to play a role in distinguishing the fate of
apoptotic cargo (28). Canonically, phagosomes undergo dynein-
mediated trafficking towards the cell centre as they mature,
where lysosomes are concentrated due to a similar dynein-
mediated trafficking pathway (16, 44–46). Thus, by moving to
the cell centre, phagosomes can efficiently undergo fusion with
lysosomes to acquire the hydrolytic enzymes that degrade
FIGURE 1 | Efferosome Maturation Pathways. Efferocytosis can occur through the canonical endo-lysosomal maturation pathway (left) in which the GTPases Rab5
and Rab7 mediate the sequential fusion of early endosomes (EE), late endosomes (LE), and lysosomes (LY) with the maturing efferosome. Unlike phagocytosis, this
efferosome maturation pathway also involves Rab17 which directs the degraded contents from the efferosome to the recycling endosome from where they may be
exocytosed, thereby avoiding the delivery of these materials to antigen loading compartments. In addition to the canonical pathway, some efferosomes may mature
through an LC3-mediated, autophagy-like pathway (right). In this pathway, the efferosome recruits the protein LC3 which then mediates a rapid degradation of the
efferosome in a fashion which suppresses antigen presentation. Similar to LC3-associated phagocytosis, the recruitment of the autophagy-related proteins ATG5 and
ATG7, as well as Rubicon to the nascent efferosome appear to be important for efferocytosis through this pathway. The activity of ATG5 and ATG7 are inhibited by
Rab35a, which is activated downstream of TLR signaling. Figure produced using BioRender.
April 2021 | Volume 12 | Article 631714
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phagosome cargos (29, 47). In contrast, we have shown that
while efferosomes also undergo an initial migration towards the
cell centre where they fuse with lysosomes, they subsequently
fragment into smaller efferosome-derived vesicles (EDVs) which
migrate away from the cell centre and towards the periphery
(28). At the periphery, EDVs undergo fusion with the recycling
endosome compartment, presumably to facilitate exocytosis of
degraded apoptotic cargo or resorption of nutrients (28). This
process is driven by the small GTPase Rab17 (Figure 1), which is
required for both the fragmentation of efferosomes into EDVs
and for the movement of the EDVs to the cell periphery (27, 28).
Macrophages that overexpress a dominant-negative mutant of
Rab17 accumulate efferosomes at the cell center (28).
Furthermore, the presence of Rab17 on efferosomes also
prevents the delivery of MHC class II, circumventing
autoantigen presentation from degraded apoptotic cargo (27).
Expression of a dominant-negative Rab17 impairs this pathway,
leading to MHC II accumulation in mature efferosomes (27).

The presence of three processes that work simultaneously to
limit antigen presentation of efferosome-derived antigens – LAP,
accelerated maturation, and Rab17-mediated redirection of cargo
out of the maturing efferosome – indicates that limiting
autoantigen presentation is a fundamental response of
phagocytes following efferocytosis. Moreover, efferocytes engage
in non-trafficking-based mechanisms to limit autoimmune
responses to efferocytosed materials. As described later in this
review, efferocytosis is often accompanied by the upregulation of
cytokines such as IL-10 which suppress the activity of mature T
cells and promotes the formation of Treg cells from naive T cells
(48). Consequentially, T cell responses are inhibited following
efferocytosis. For example, Rodriguez-Fernandez et al.
demonstrated that in human DCs, efferocytosis of PtdSer-
containing liposomes biased the stimulation of autologous T
cells from a proliferative to a tolerogenic profile, likely through
altered cytokine expression by the DCs (49). Consistent with these
mechanisms acting to limit autoreactivity, emerging evidence
indicate that defects in the suppression of antigen presentation
following efferocytosis is a driver of autoimmune disease (50, 51).
In mouse models of systemic lupus erythematosus, dysregulated
expression of specific pro-efferocytic receptors such as Tim4, C1q
or CLM-1 result in either deficient apoptotic cell clearance or
inappropriate antigen presentation that then promotes the
development of autoimmune disease in these mice (52). In
humans, mutations in efferocytic receptors, especially in
MERTK and its opsonins, are associated with a similar increase
in the risk of autoimmune disorders including multiple sclerosis
and rheumatoid arthritis, highlighting the importance of efficient
efferocytosis in limiting autoimmunity (53–57).

Interestingly, some professional antigen presenting cells have
mechanisms that allow efferosome-derived antigens to be cross-
presented on MHC I. A recent study by Canton et al.
demonstrated that type 1 conventional dendritic cells use the
receptor DNGR-1 to recognize actin-myosin complexes exposed
to the efferosome lumen during the early stage of efferosome
maturation (58). Recognition of actin-myosin complexes leads to
an alternative maturation pathway where the efferosome does
not acquire its normal degradative capacity, and instead, Syk-
Frontiers in Immunology | www.frontiersin.org 4
induced NADPH oxidase activity damages the efferosomal
membrane, releasing the efferosome’s cargo into the cytosol.
Once in the cytosol, the efferocytosed materials are processed
and presented via the canonical MHC I presentation pathway
[reviewed in (59)]. Interestingly, the restriction of this process to
the early stages of efferosome maturation suggests that this
process may only occur in response to engulfed cells that have
pre-exposed actin-myosin complexes – e.g. cells which have lost
membrane integrity as they progress through late stage
apoptosis, or cells which have died a lytic form of cell death
such as necroptosis or necrosis (9). Alternatively, this pathway
may enable the routine “screening” of apoptotic cell-derived
antigens viaMHC I, which because it relies on T cells previously
activated to the same antigen presented on MHC II by
professional antigen presenting cells, lacks the autoimmune
potential of MHC II presentation (60).
CELL SIGNALING AND
TRANSCRIPTIONAL REGULATION

Differences between the cellular response of phagocytes to
efferocytosis of apoptotic cells versus phagocytosis of pathogens
require that there be efferocytosis-specific signal transduction
events and transcriptional regulation (1, 2). We are just
beginning to develop an understanding of the key transcriptional
factors that control the cellular events that occur following
efferocytosis. Two key families of transcriptional factors that
drive this response are members of the liver X receptor (LXR)
and peroxisome proliferator-activated receptor (PPAR) families of
nuclear receptors (61–63). These transcription factor families bind
to the same DNA motifs, and often act as heterodimers, meaning
that their functions are often overlapping and redundant (64). Both
receptor families bind to many of the same ligands, notably lipid-
derived metabolites, with their activation leading to the preferential
formation of heterodimers that then bind to direct 5’ – RGKTCA –
3’ repeats (65). Once bound, these LXRs and PPARs coordinate
with other transcription factors to either activate or repress
transcription (64, 66, 67).

LXRs are well-characterized regulators of cholesterol, glucose
and fatty acid metabolism (68). The two members of the LXR
family, LXRa and LXRb, are both activated following efferocytic
apoptotic cell uptake, and in turn increase the cell’s efferocytic
capacity via two distinct mechanisms (69). The first mechanism –
described in-detail later in this review – is the upregulation of the
metabolic pathways required to process the large quantities of
lipids, sterols and proteins present in an efferocytosed apoptotic
cell. The second mechanism is the upregulation of efferocytic
receptors and signaling molecules. Stimulation of LXRs in vivo
with apoptotic thymocytes has been shown to upregulate MERTK,
a key efferocytic receptor involved in apoptotic cell recognition
and uptake (69, 70). This enhances the efferocytic capacity of the
efferocyte, and increases MERTK-mediated anti-inflammatory
activity via increased activation of SOCS3, a suppressor of
cytokine-induced JAK/STAT signaling (71). Conversely,
peritoneal macrophages isolated from LXR double-knockout
mice have been shown to have diminished capacity to engage in
April 2021 | Volume 12 | Article 631714
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efferocytosis, without any impairment in the phagocytosis of E. coli
(69). Indeed, activation of LXRa/b appears to be required to shift
macrophages away from a pro-inflammatory state following
efferocytosis, with exposure of LXR double-knockout
macrophages to apoptotic thymocytes resulting in increased
expression of several pro-inflammatory mediators including
IL1b, MCP-1 and the scavenger receptor MARCO (69).

Given the functional overlap between LXRs and PPARs, it is of
no surprise that the observed role of the PPAR family in
efferocytosis closely parallels the role of LXRs. As with LXRs,
PPARs have previously been implicated in macrophage
polarization and in enhancing lipids metabolism and synthesis of
lipid-derived molecules such as eicosanoids and arachidonic acid
(72). Similar to the LXR family of transcription factors, activation
of certain members of the PPAR family, including PPARg and
PPARd, appear to directly enhance efferocytic activity in
macrophages (63, 66, 73). Majai et al. demonstrated that
downregulation of PPARg activity using a small-molecule
inhibitor resulted in a diminished capacity of human monocyte-
derived macrophages to efferocytosed apoptotic neutrophils (66).
This resulted from the downregulation of several key efferocytic
receptors including CD36, AXL, TG2 and PTX3 (66). Using
PPARg-specific agonists, Zizzo & Cohen demonstrated that
PPARg activation leads directly to upregulation of MERTK and
its opsonin Gas6 in macrophages, as well as to polarization of
macrophages to a pro-efferocytic M2c phenotype (74).
Furthermore, efferocytosis of apoptotic cells by macrophages has
been shown to directly suppress key inflammatory pathways,
including activation of PKCa, a kinase involved in many cellular
functions including inflammatory cytokine transcription and the
generation of bactericidal free radicals (64). Indeed, activation of
PPARg in response to efferocytosis of apoptotic cells in murine
macrophages has been shown to attenuate reactive oxygen species
formation in response to proinflammatory mediators (64).
Similarly, efferocytosis induces the expression of SOCS1 and
SOCS3, which in turn inhibit Jak/STAT signaling through
inflammatory cytokine receptors, thereby reducing the
responsiveness of efferocytic macrophages to inflammatory
stimuli (75). Finally, the uptake of apoptotic thymocytes by
murine bone marrow-derived macrophages has been shown by
Mukundan and colleagues to upregulate PPARd and stimulate
PPARd-dependent expression of C1qb, a member of the
complement cascade that has been identified as an opsonin
involved in the efferocytic clearance of apoptotic macrophages (63).

Defects in efferocytosis have been implicated in the
pathogenesis of several inflammatory and autoimmune disorders,
including atherosclerosis (76, 77). Our group recently discovered
that atherosclerotic macrophages upregulated the hematopoietic
transcription factor GATA2 in response to modified lipoproteins
(78). Upregulation of GATA2 led to the downregulation of
multiple proteins required for efficient efferocytosis, including
downregulation of the efferocytic receptor aX integrin, multiple
signaling molecules required for these receptors function including
multiple Src-family kinases, impaired efferosome-lysosome fusion
via decreased expression of Rab7, and impairment in multiple
degradative pathways needed for the degradation of apoptotic
cargos including lysosomal acidification (10, 78). Interestingly,
Frontiers in Immunology | www.frontiersin.org 5
mutations in the GATA2 gene has been linked to increased risk
of cardiovascular disease in human cohort studies (79). It remains
to be seen whether there are other transcription factors that act to
impair efferocytosis during autoimmune or inflammatory diseases.
RESOLUTION OF INFLAMMATION

A key feature of efferocytosis is the limitation of inflammation
and the resolution of inflammatory responses (5, 9). We have
previously discussed how efferosome maturation acts to prevent
antigen presentation on MHC II, and how efferocytosis activates
transcriptional programs that restrain inflammation (27, 78). It is
well established that efferocytosis induces the production of anti-
inflammatory mediators (80, 81). Meagher et al. showed as early
as 1992 that the uptake of apoptotic neutrophils by macrophages
does not lead to release of the pro-inflammatory mediator
thromboxane A2, in contrast with phagocytosis of bacterial
pathogens (80). Only a few years later Fadok and colleagues
demonstrated that efferocytosis in macrophages resulted in
suppression of a host of proinflammatory molecules including
IL1b, IL8, IL10, GM-CSF and TNFa (81). Furthermore, these
investigators determined that efferocytosis upregulated anti-
inflammatory mediators including TGFb and prostaglandin
E2 (81).

More recent studies have demonstrated that efferocytic
macrophages carry anti-inflammatory functions and gene
expression signatures. A landmark study in 2017 showed that
pro-efferocytic macrophages across various tissues carried a
distinct gene expression signature that differentiated them
from other tissue-resident macrophages (14). In particular, this
pro-efferocytic signature is characterized by downregulation of
the inflammatory cytokine IL1b (14). Campana et al. further
demonstrated that in a sterile liver inflammation model,
efferocytosis of apoptotic hepatocytes induced a M2-like
phenotype and activation of the STAT3-IL6-IL10 pathway
(82). Finally, in an acute coronary ligature model, Howangyin
and colleagues demonstrated that mouse macrophages lacking
the efferocytic receptor MERTK and its opsonin MFGE8 had
decreased production of the vascular tissue repair factor VEGF-A
and increased tissue damage in a model of myocardial
infarct (83).

Beyond simply downregulating the production of pro-
inflammatory factors, there is growing evidence that efferocytosis
also directly induces the resolution of inflammation (61, 84).
Specialized pro-resolving mediators (SPMs) are a class of
signaling molecules including resolvins and lipoxins that are
derived from free fatty acids that play a key role in limiting
inflammation in physiological settings (85). The work of Cai
et al. demonstrated that mice lacking the efferocytic receptor
MERTK have decreased levels of LXA4 and RvD1 when
challenged with zymosan in a model of inducible peritonitis (86).
These authors further demonstrated that activation of MERTK
using a cross-linking antibody resulted in decreased levels of the
enzyme 5-lipooxygenase in the macrophage nucleus, which has
previously been shown to result in increased SPM production (86).
Interestingly, SPM signaling enhances the efferocytic capacity of
April 2021 | Volume 12 | Article 631714
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macrophages and reduces their sensitivity to efferocytosis-induced
cell stress, suggesting that SPM production may be a self-
reinforcing stimuli which acts in an autocrine or paracrine
manner to enhance the efferocytic capacity within a tissue when
apoptotic cells are present (87, 88).
EFFEROCYTE METABOLISM

The uptake and degradation of apoptotic cells places a unique
metabolic demand on efferocytes (89). These cells must not only
quickly degrade the apoptotic cell, but must also ensure that
components of the degraded apoptotic cell - especially excess
lipids and cholesterol - are redistributed and not allowed to
accumulate within the efferocyte (90, 91). A failure to prevent the
accumulation of metabolites such as cholesterol and lipids is a
source of significant cellular stress that promotes inflammation
and can lead to the death of the efferocyte (92, 93). Evidence
indicates that efferocytes such as macrophages have unique
means of dealing with this additional metabolic load (94, 95).
Frontiers in Immunology | www.frontiersin.org 6
Lipid catabolism is enhanced via a distinctive metabolome
characterized by an increase in the generation of ATP from the
b-oxidation, accompanied by a concordant enhancement of the
mitochondrial electron transport chain, fatty acid oxidation, and
oxidative phosphorylation (Figure 2) (94). These adaptations
allow efferocytes to rapidly process excess lipids obtained from
internalized apoptotic cells.

Efferocytes have multiple molecular mechanisms in place to
deal with the metabolic stress induced by cholesterol
accumulation, most of which converge on increasing the rate of
cholesterol export from the cell (96, 97). Following uptake of an
apoptotic cell, cholesterol is exported from the efferosome by
NPC1 and NPC2 to cytosolic cholesterol carriers (98). These
carriers transport cholesterol throughout the cell, but in the
absence of cholesterol export, these carriers ultimately deliver
cholesterol to the ER (98, 99). Here, cholesterol accumulates
within the ER membrane, eventually forming lipid droplets
(100). Unaddressed, these droplets can accumulate to the point
where they induce the ER’s unfolded protein response, leading to
apoptosis of the efferocyte (92). Efferocytes such as macrophages
FIGURE 2 | Efferocyte Metabolism. The biomolecules released as efferocytosed apoptotic cells are degraded must be processed by the efferocyte, incurring a
significant metabolic load. Cholesterol (C) is exported from the efferosome to cytosolic carriers which, in the presence of cholesterol transporters such as pABCA1
and ABCG1, can export this cholesterol to circulating high density lipoprotein. In the absence of sufficient export, cholesterol is esterified into cholesterol esters (CE)
which can accumulate in the endoplasmic reticulum (ER). DNA is degraded in the efferosome by DNase II, and proteins by a range of cathepsin and other proteases,
with the resulting nucleotides and amino acids transported into the cytosol where they are recycled. The amino acid arginine is converted in the cytosol to the
putrescine, which activates Dbl to enhance Rac1 activity, thereby promoting the efferocytosis of additional apoptotic cells. Lastly, the activation or PPAR and LXR
nuclear receptors by lipid-derived metabolites induces a pro-efferocytic metabolic profile via upregulation of cholesterol export machinery and upregulation of lipid
b-oxidation. Figure prepared in BioRender.
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increase the expression of genes involved in cholesterol export to
avoid this fate, notably the cholesterol efflux pumps ABCA1 and
ABCG1, which export cytosolic cholesterol to lipid-poor
apolipoproteins and HDL (Figure 2) (101, 102). Macrophages
have multiple pathways by which these cholesterol efflux pumps
can be induced. This includes the induction of ABCA1
transcription by LXR following apoptotic cell uptake (103). In
parallel, signaling through the efferocytic receptor BAI1 induces a
signaling through the BAI1/ELMO/Rac1 pathway that leads to
upregulation of ABCA1 in an LXR-independent manner (104).
Both the LXR-dependent and -independent pathways enable
macrophages to export excess cholesterol absorbed during
efferocytosis, thus maintaining cholesterol homeostasis within
the cell and avoiding death of the efferocyte (103, 104). The
consequences of impaired cholesterol efflux can be dire. The
increased ER stress caused by lipid droplet formation not only
leads to death via the unfolded protein response but is also
inflammatory due to activation of the NLRP3 inflammasome
(105). In addition to causing cell death, the accumulation of
cholesterol can directly impair efferocytosis. In one study, Viaud
et al. inhibited lysosomal acid lipase, an enzyme required for
hydrolysis of cholesterol esters within lysosomes into free
cholesterol prior to their export via NPC1/2 to cytosolic carriers
(106). This resulted in accumulation of cholesterol esters within
the lysosome interfered with Rac1 activation, blocking the
engulfment of additional apoptotic cells (106).

In addition to excess lipids and cholesterol, efferocytes must
also deal with excess amino acids, short peptides, and apoptotic
cell DNA (107). While amino acids and peptides are exported
from efferosomes by lysosomal transporters, and via trafficking
to the recycling endosome, apoptotic cell DNA is degraded
by DNase II in professional efferocytes such as macrophages
(108). This is a critical step in maintaining the immunologically
silent nature of efferocytosis, with deletion of DNase II from
macrophages resulting in the upregulation of pro-inflammatory
mediators such as TNFa, likely via activation of TLR9 by
partially digested DNA fragments containing unmethylated
CpG motifs (108, 109).

Another important alteration to cellular metabolism following
efferocytosis are those allowing for additional rounds of
efferocytosis (110). Professional efferocytes such as macrophages
must often clear multiple apoptotic cells in succession, and
impaired clearance of multiple apoptotic cells is regarded as a
marker of defective efferocytosis (110, 111). Several components
of cellular metabolism are altered in order to facilitate continuous
efferocytosis. Wang et al. showed that efferocytic uptake of
apoptotic cells induced Drp1-mediated mitochondrial fission
along with mitochondrial calcium ion release (110). When this
fission process was inhibited macrophages lost their ability to
successively engulf apoptotic cells. These macrophages exhibited
defective sealing of the efferosome and decreased continuous
efferocytic capacity (110). Interestingly, this process is
accompanied by a loss of mitochondrial membrane potential
driven by the uncoupling protein Ucp2, increased glucose
uptake via SLC2A1, and a shift to glycolysis over oxidative
phsophroylation (2, 111, 112). In parallel, these cells upregulate
the lactate transporter SLC16A1, enabling the rapid export of the
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end-product of glycolysis (112). This shift in cellular energetics
may be required to sustain rapid, successive apoptotic cell uptake
and degradation, although how the decoupling of oxidative
phosphorylation observed in these studies occurs in cells
seemingly also requiring increased oxidative phosphorylation for
the b-oxidation of fatty acids remains unresolved (94, 95, 112).
Broadly speaking, mitochondrial fission and fusion are important
processes that serve to regulate mitochondrial DNA segregation,
mitochondrial reactive oxygen species levels and calcium
homeostasis (113). These processes have also been shown to be
coupled to particular metabolic states in macrophages (113, 114).
For example, classically activated, pro-inflammatory macrophages
require massive upregulation of glycolysis within the cell (114).
Nair et al. demonstrated that blockade of mitochondrial fission
with Mdivi-1, a mitochondrial division inhibitor, led to reversal of
metabolic reprogramming towards glycolysis in macrophages
treated with LPS (115). Therefore, alteration of mitochondrial
fusion and fission following efferocytosis may represent alignment
with the unique metabolic state adopted by efferocytes following
apoptotic cell internalization. Finally, recent work has shown that
apoptotic cell-derived arginine and ornithine are converted by
macrophages into to putrescine through the activity of the
enzymes arginase 1 and ornithine decarboxylase (116).
Putrescine subsequently increases Rac1 activity through
upregulation of the GTP exchange factor Dbl, enhancing the
ability of the efferocyte to engulf additional apoptotic cells (Figure
2) (116). During efferocytosis, macrophages further process
putrescine into other polyamines such as spermidine and
spermine, but these don’t appear to have the same efferocytosis-
enhancing effect as putrescine (116). However, it should be noted
that some polyamines, in particular spermidine, confer protection
from atherosclerosis by promoting enhanced cholesterol efflux
and appear to have cardioprotective effects in animal models of
heart failure (117, 118).
HOST DEFENSE

An often-underappreciated role of efferocytosis is its role in host
defense (3, 119). Efferocytosis plays an important role in control
of intracellular pathogens, most notably, control of
Mycobacterium tuberculosis (120). In its natural life cycle, M.
tuberculosis is internalized by macrophages, where it persists
within the phagosome by halting phagosome maturation prior to
acidification (121). But while M. tuberculosis can proliferate
within these phagosomes, the infected macrophages eventually
undergo apoptosis and are cleared through efferocytosis by other,
healthy macrophages (3, 121). Because the bacterium is trapped
within the apoptotic cell, it is unable to inhibit efferosome
maturation as efficiently as it inhibits phagosome maturation
(122). Consequentially, the clearance of infected macrophages by
efferocytosis is an important mechanism for controlling
M. tuberculosis through killing within fully matured
efferosomes (3, 120). Importantly, the efferocytic degradation
of M. tuberculosis-infected apoptotic cells results in antigen
presentation on MHC II – unlike what is observed with
uninfected apoptotic cells. While the exact mechanism which
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allows for the normally non-immunogenic efferocytic pathway to
result in antigen presentation remains unclear, it is mediated at
least in part by annexin 1, which is required for cross-
presentation of M. tuberculosis antigens on MHC I to CD8+
T cells (123).

The ability of macrophages to recognize intracellular
pathogens within infected apoptotic cells is a relatively new
finding, and the mechanisms that underlie this process remain
incompletely defined. It is thought that engagement of TLRs
within the maturing efferosome is required, with TLR4 known to
be required for the recognition of infected apoptotic cells in other
models (124). The detection of pathogens within apoptotic cells
is not restricted to bacteria. Efferocytosis of apoptotic cells
infected by the herpes simplex virus appears to trigger
recognition within the efferosome and subsequent preparation
and cross-presentation of viral antigens to CD8+ T cells, where it
plays an important role in the control of the virus in a mouse
models of infection (125).

It is also unclear whether differences exist in how efferocytes
handle the processing of excess cholesterol, lipids and nucleic
acids derived from apoptotic cell uptake should that cell be
infected with an intracellular pathogen. Indeed, the lipidomic
response to pathogen phagocytosis appears to be the opposite of
that following efferocytosis. Lipid synthesis is increased following
pathogen phagocytosis, including synthesis of ceramides on the
phagosome itself (126), and an accompanying upregulation of
lipogenesis via TLR-mediated activation of the transcription
factors sterol regulatory element binding transcription factor 1
and 2 (SREBP1/2) (127–130). To our knowledge however, no
study to date has examined whether a similar phenomenon
occurs in maturing efferosomes or whether there is any
difference in how efferocytes handle excess lipids and other
metabolites following uptake of an infected apoptotic cell.
DISCUSSION

Efferocytosis is an essential homeostatic mechanism which clears
apoptotic cells and debris before the dying cell progresses to
necrosis and induces an inflammatory response (1, 13). Although
mechanistically similar to phagocytosis, efferocytosis is mediated
by a distinct set of receptors, engages a unique maturation
pathway, and ultimately results in the efficient degradation of
internalized apoptotic cells while avoiding antigen presentation
and inflammation (16). To engage in efferocytosis, macrophages
take on a unique gene expression and metabolic profile to ensure
they are equipped with the necessary metabolic capacity to
process the contents of multiple dying cells (14, 94). In this
review, we explored several cellular responses to apoptotic cell
uptake observed in efferocytes, especially in professional
efferocytic cells such as macrophages.

The process of efferosome maturation is similar to that of
phagosome maturation, with processes ultimately resulting in
cargo degradation (8). However, while phagosomes acquire
antigen-presentation machinery – resulting in the presentation
of phagosome-derived antigens on both MHC I and II –
efferosomes avoid this process and instead dispose of apoptotic
Frontiers in Immunology | www.frontiersin.org 8
cargo in an immunologically silent fashion (1, 28). Similarly,
while phagocytosis results in activation of several signaling
cascades that lead to generation of a pro-inflammatory
response, efferocytosis engages a different set of pathways which
upregulate anti-inflammatory and tissue remodeling mediators.
This is accomplished through the activation of distinct
transcription factors in cells undergoing phagocytosis versus
efferocytosis. Indeed, efferocytic macrophages carry a common
gene expression signature associated with these functions that
distinguish them from pro-inflammatory, tissue patrolling, and
other tissue-resident macrophages (14). Efferocytosis of apoptotic
cells also appears to induce a unique set of metabolic adaptations
designed to permit the efferocyte to effectively deal with the
increase burden of lipids, cholesterol and other apoptotic cell-
derived macromolecules, while simultaneously priming the cell to
engage in additional rounds of efferocytosis (94, 110). Finally,
efferocytosis has a role in host defense against intracellular
pathogens, including both bacteria and viruses (119, 120, 125).

Although there have been significant advances in our
understanding of efferocytosis over the past few decades, there
remain significant gaps in our understanding – especially regarding
the role of efferocytosis in pathogen clearance, and in our
understanding of the metabolic reprogramming of efferocytes. In
particular, we current lack a detailed mechanistic understanding of
how efferocytes are able to distinguish between infected versus non-
infected apoptotic cells. It is further unclear how efferocytes
respond metabolically to infected apoptotic cells. Furthermore, it
remains unclear whether differences in immunological outcomes
following pathogen versus apoptotic cell uptake are solely the result
of differences in the receptors used to recognize each type of cargo,
or if the processing of cargo within the phagosome or efferosome
also plays a significant role. Finally, we are only beginning to
unravel the complexities of immunometabolic responses to
apoptotic cell uptake and further work is needed to fully define
how efferocytes are able to cope efficiently with the massive intake
of lipids, proteins and nucleic acids. With a growing body of
evidence that defects in efferocytosis are involved in inflammatory
and autoimmune disease, a clearer understanding of how
professional efferocytes such as macrophages respond to
apoptotic cell uptake will be crucial in furthering our
understanding of the pathogenesis of these disorders and
identifying potential therapeutic options.
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