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Sensors have become a key element for the development of the Information Society.
An ever-increasing number of improved sensor devices capture information for decision-
making tools, either to be interpreted by humans or to be plugged back into the system
for autonomous operation, self-diagnostics and resilience. It is possible to find sensor
applications spanning almost any area, including healthcare and medicine, retail and
logistics, smart agriculture and animal farming, industry digitalisation, smart cities, energy
grids, transport or security, among many others [1]. Analytics is a term connected to
the practice of data science that refers to the analysis of data using statistical tools and
techniques, machine learning, information theory, pattern recognition and other methods.
Outcomes stemming from this task constitute essential inputs for data-driven decision-
making [2,3].

The current overabundance of data, generated in many cases by sensors, together
with the refinement of standard methodologies for data science and engineering [4] has led
to the rise of a fourth scientific paradigm, the so-called data-intensive scientific discovery [5].
Indeed, one of the most challenging aspects for the development of data-intensive applica-
tions has been how to cope with massive and complex datasets effectively, especially in
situations in which real-time requirements arise [6,7]. In this regard, sensors provide an
unrivalled data source to match these needs, as they can provide timestamped information
with enough level of detail to characterise observed phenomena adequately.

Information theory [8] plays a central role for knowledge extraction in sensor data
analytics, such as the analysis of data in the frequency domain [9], the essential concept of
entropy [10] and efficient data representation and compression [11]. As a result, many new
methods based on information theory have been developed in modern data science [12].
This Special Issue presents nine original contributions encompassing a wide variety of
sensor data analytics applications, in which information theory is used to obtain knowledge
from data in different domains.

Gajowniczek et al. [13] develop a novel method for data streams clustering, applicable
to complete time series representing customer electricity consumption. This method lever-
ages new Fast Fourier Transform (FFT) [9] features to improve its performance, showing
the importance of information theory principles in this type of analysis. Wearable sen-
sors tracking human activity and behaviour are at the core of several works, including
applications in rehabilitation of visually impaired people [14], automated human activity
recognition [15] and walking behaviour detection for elderly people [16]. The last two
works attach importance to the application of information gain and neural networks to
detect activity profiles accurately. Alfaro et al. [17] propose a new method to distribute the
training process using the SVM algorithm, which can be applicable to Wireless Sensor Net-
works (WSN), aggregating the local contributions from individual sensors using Voronoi
regions. Once again, this demonstrates the critical role of information aggregation in this
kind of energy and location-aware sensor application. Sensor placement optimisation is
the topic of another work [18], using Gaussian priors and the Fisher Information Matrix
(FIM) to show important properties that can enhance recommendations on the best possible
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location for a given device set. Sun et al. present an interesting application of sensor data
analytics to estimate vehicles accident risk [19]. This is an emerging topic that raises signifi-
cant interest among insurance companies, taking advantage of the more precise tracking
capabilities enabled by built-in sensors installed in vehicles. In turn, Esteban-Escaño et al.
present an interesting application of sensor data analysis to predict acidemia in electronic
fetal monitoring [20], using machine learning algorithms, stressing the use of cross-entropy
optimisation function along this process, to adjust the best possible predictive model. Fi-
nally, the last work [21] presents a novel methodology for cattle behaviour profiling and
classification that, again, uses both time-domain and frequency-domain features to improve
the accuracy of this classification task.

In summary, these contributions offer a diverse and representative portfolio of sensor
data analytics applications in different scenarios, in which information theory and data
science methods perform a central role in order to successfully accomplish the proposed
challenges in each case.
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