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Abstract. Cycloastragenol (CAG), a secondary metabolite 
from the roots of Astragalus zahlbruckneri, has been reported 
to exert anti‑inflammatory effects in heart, skin and liver 
diseases. However, its role in asthma remains unclear. The 
present study aimed to investigate the effect of CAG on airway 
inflammation in an ovalbumin (OVA)‑induced mouse asthma 
model. The current study evaluated the lung function and levels 
of inflammation and autophagy via measurement of airway 
hyperresponsiveness (AHR), lung histology examination, 
inflammatory cytokine measurement and western blotting, 
amongst other techniques. The results demonstrated that CAG 
attenuated OVA‑induced AHR in vivo. In addition, the total 
number of leukocytes and eosinophils, as well as the secre‑
tion of inflammatory cytokines, including interleukin (IL)‑5, 
IL‑13 and immunoglobulin E were diminished in bronchoal‑
veolar lavage fluid of the OVA‑induced murine asthma model. 
Histological analysis revealed that CAG suppressed inflamma‑
tory cell infiltration and goblet cell secretion. Notably, based 
on molecular docking simulation, CAG was demonstrated to 
bind to the active site of autophagy‑related gene 4‑microtu‑
bule‑associated proteins light chain 3 complex, which explains 
the reduced autophagic flux in asthma caused by CAG. The 
expression levels of proteins associated with autophagy path‑
ways were inhibited following treatment with CAG. Taken 
together, the results of the present study suggest that CAG 
exerts an anti‑inflammatory effect in asthma, and its role may 
be associated with the inhibition of autophagy in lung cells.

Introduction

Asthma is a common chronic inflammatory disease in the 
respiratory system that is characterized by wheeze, shortness 
of breath, chest tightness, cough and obvious expiratory 
airflow limitation (1). Previous statistics have indicated that 
>334 million individuals suffer from asthma, at the risk of 
high mortality and global economic burden (2). Airway hyper‑
responsiveness (AHR), airway inflammation, inflammatory 
cytokine infiltration and mucus hypersecretion are commonly 
associated with asthma  (3). T  helper (Th)2 cell‑mediated 
type 2 inflammation and eosinophil abundance are associ‑
ated with the progression and exacerbation of asthma (4,5). 
Currently, inhaled corticosteroids and bronchodilators are 
used as the main treatment for asthma (6). However, some 
asthmatic patients who overuse these may suffer from various 
side effects, including osteoporosis, infection and drug 
dependence (7). Therefore, it is important to identify other 
effective and safe therapeutics for asthmatic patients.

Autophagy, like self‑eating, is involved in the innate and 
adaptive immune responses of asthma (8). In the presence of 
allergens, damaged proteins and organelles decompose them‑
selves, which are captured by autophagosomes and degraded 
by lysosomes to achieve the immune balance in asthma (9). It 
has been proposed that in the initiation of autophagy, Beclin 1, 
a major activator of autophagy (10), participates in the recruit‑
ment of autophagy proteins to form autophagosomes  (11). 
Microtubule‑associated proteins light chain (LC) 3 is hydro‑
lyzed to LC3I by autophagy‑related gene (ATG) 4, which is 
subsequently hydrolyzed to LC3II during autophagosome 
formation (12). Furthermore, sequestosome 1 (SQSTM1/p62, 
p62) can reflect the level of autophagy, and a reduced level of 
p62 is generally considered as a marker of activated autophagy, 
as the enhancement of autophagy leads to the degradation 
of the stress‑inducible cellular adapter protein p62 (13). The 
stable state of autophagy can regulate both energy homeo‑
stasis and the quality of proteins and organelles in airway 
inflammation (14). Otherwise, overactivation of autophagy 
causes the deterioration of inflammation  (15). Previous 
studies reported that autophagy is activated in asthma and 
acts as a double‑edged sword, whereby either enhancement 
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or decrease of autophagy can ease the airway inflammation 
of asthma  (16,17). Liu et al  (18) proved that inhibition of 
autophagy alleviates airway inflammation and AHR in severe 
asthmatic mice. Furthermore, McAlinden et al (19) demon‑
strated that in the airway remodeling of asthma, the autophagy 
inhibitor represses airway smooth muscle proliferation and 
profibrotic signaling. However, the specific mechanism by 
which autophagy mediates the airway inflammation of asthma 
remains unclear.

Traditional Chinese medicine is an effective method to 
treat asthma (20). A series of studies (21,22) have reported that 
Astragalus membranaceus (huangqi) has anti‑asthma effects, 
whereby it reduces inflammatory cytokines and improves 
efficacy by modulating immune balance. Aastragaloside IV, 
as the main active component of Astragalus membranaceus 
also exerts strong anti‑allergic effects  (23), whereby it 
protects mice with allergic rhinitis from inflammation (24), 
enhances Th1‑associated anti‑inf lammatory cytokines 
and diminishes Th2‑associated pro‑inflammatory cyto‑
kines (25). Cycloastragenol (CAG), as the main metabolite 
of Astragaloside  IV in  vivo, is a potent small molecule 
telomerase activator  (26). CAG has been reported to exert 
anti‑inflammatory effects in cardiovascular, hepatic, skin and 
aging diseases  (27,28). Notably, CAG is also considered a 
modulator of autophagy, associated with the balance between 
pro‑inflammation and anti‑inflammation. However, whether 
CAG regulates airway inflammatory conditions remains 
unclear as the anti‑asthmatic effects of CAG have not yet 
been investigated. Thus, the present study used ovalbumin 
(OVA)‑induced asthmatic mice to investigate the anti‑inflam‑
matory effects of CAG in asthma and determine its potential 
molecular mechanisms.

Materials and methods

Animals. A total of 20 BALB/c female mice [6‑weeks‑old (29); 
body weight, 18±2 g] were purchased from Jiesijie Laboratory 
Animal Co., Ltd. [license no. SYXK(Hu)2020‑0032; 
http://www.jsj‑lab.com/]. All mice were maintained under 
specific pathogen‑free conditions with a 12‑h light/dark cycle 
and a free access to food and water at a controlled temperature 
of 22±2˚C with 55% relative humidity. All animal experiments 
were ethically reviewed and approved by the Animal Care and 
Use Committee of the Fudan University (authorization no. 201
8‑10‑HSYY‑DJC‑01; Shanghai, China).

OVA‑induced asthmatic mice and treatment. Age‑ and 
sex‑matched BALB/c mice were randomly divided 
into five groups (4  mice/group), including the normal 
control (NC), OVA‑induced asthma model (Asthma), low 
CAG dose (Asthma/31.25  mg/kg CAG), middle CAG 
dose (Asthma/62.5  mg/kg CAG) and high CAG dose 
(Asthma/125 mg/kg CAG) groups. The OVA and three doses 
of CAG groups were immunized on days 0, 7 and 14 intra‑
peritoneally by OVA (100 ug/mouse, grade V, Sigma‑Aldrich; 
Merck  KGaA) mixed with 10  mg aluminum hydroxide 
(Thermo Fisher Scientific, Inc.), which was dissolved in 0.2 ml 
sterile saline. Furthermore, mice were intranasally challenged 
with 50 µg OVA (dissolved in 50 µl PBS) on days 21‑25 (30‑32). 
The NC group was immunized with saline and challenged by 

PBS instead. CAG (Winherb Medical Technology Co., Ltd.; 
https://www.sh‑winherb.com/Index.aspx) was respectively 
administrated to the three doses of CAG groups intragas‑
trically (dissolved in 0.2  ml 0.5% sodium carboxymethyl 
cellulose/mouse) on days 21‑25. The mice were anesthetized 
with 2% phenobarbital sodium (50 mg/kg) intraperitoneally 
and sacrificed after 24 h.

Measurement of AHR. The mice were tracheostomized, 
intubated and placed in a single‑chamber, whole‑body plethys‑
mograph connected to the ventilator (DSI Buxco Electronics; 
https://www.datasci.com/products/buxco‑respiratory‑products/
finepointe‑resistance‑and‑compliance). To evaluate airway 
responsiveness, changes in total lung resistance  (RL) and 
dynamic lung compliance (Cdyn) were measured in response to 
aerosolized methacholine (Mch, Sigma‑Aldrich; Merck KGaA) 
at increasing doses of 0, 6.25, 12.5, 50 and 100 mg/ml. The 
mice were subsequently euthanatized with 2% phenobarbital 
sodium (150 mg/kg) intraperitoneally.

Collection of bronchoalveolar lavage fluid (BALF) and 
leukocyte classification and counts. Following measure‑
ment of AHR, lungs were lavaged using the tracheal cannula 
(https://www.biomart.cn/infosupply/76901595.htm) with 
300  µl aliquots of ice‑cold PBS twice, and centrifuged 
at 500 x g for 10 min at 4˚C. The supernatants were stored 
at ‑80˚C until further analyses of cytokines. Total cells were 
resuspended in 50 µl PBS and counted using the Mindray 
BC‑5000Vet automated hematology analyzer (Mindray; 
https://www.mindray.com/cn/product/BC‑5000.html).

Lung histology. At room temperature, lung sections 
(4% phosphate‑buffered and formalin‑fixed for 24 h) of the 
middle lobe of the left lung (4‑µm thick) were embedded 
in paraffin, stained with hematoxylin and eosin (H&E; 
cat. no. G1003; Wuhan Servicebio Technology Co., Ltd.) for 
total 10 min or periodic acid‑schiff (PAS; cat. no. G1008; 
Wuhan Servicebio Technology Co., Ltd.) for total 40 min and 
dehydrated with 100% ethanol (cat. no. 100092683; Sinopharm 
Chemical Reagent Co., Ltd.) for 5 min three times and xylene 
(cat. no. 10023418, SCRC) for 5 min twice, according to the 
manufacturer's instructions. Inflammation score of H&E 
staining (33) and the percentage of PAS+ bronchial cells (34) 
were determined as previously described.

ELISA. The levels of interleukin (IL)‑5, IL‑13 and immuno‑
globulin E (IgE) in the BALF were determined using ELISA 
kits (IL‑5, Mouse, cat. no. 70‑EK205‑48; IL‑13, Mouse, 
cat. no. 70‑EK213/2‑48; IgE, Mouse, cat. no. 70‑EK275‑48; 
MultiSciences), according to the manufacturer's instruc‑
tions.

Molecular docking simulation. The 3D structure of CAG was 
obtained from PubChem Compound (https://www.ncbi.nlm.
nih.gov/pccompound, PubChem CID: 13943286) (35). The 
X‑ray crystal structure of the ATG4‑LC3 complex [Protein 
Data Bank (PDB) ID: 2Z0D] was acquired from RCSB PDB 
(https://www.rcsb.org) (36). Subsequently, both of them were 
converted into pdbqt formats via AutoDockTools 1.5.6 (37) 
and were optimized by removing water molecules and adding 
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polar hydrogen atoms. The potential binding sites of the 
ATG4‑LC3 complex within CAG were determined using the 
molecular docking study employing the docking program 
AutoDock Vina  (38). The coordinates of the target active 
pocket were center_x=‑5.906, center_y=‑15.694 and center_
z=27.844. Size_x=40, size_y=40 and size_z=40 were applied. 
The docking process was also calculated using AutoDock 
Vina (all default values). The highly scored docking result was 
visualized using PyMoL 2.3.0 (39) and Discovery Studio 2017 
R2 Client (40).

Western blotting. To extract protein, lung tissues were minced 
and homogenized in ice‑cold RIPA lysis buffer containing 
phosphatase inhibitors and a protease inhibitor (Beyotime 
Institute of Biotechnology) and centrifuged at 14,000 x g 
for 10 min at 4˚C. Protein concentrations were quantified 
using the Pierce BCA Protein Assay kit (Thermo Fisher 
Scientific, Inc.). Protein (30 µg) was loaded into each well and 
separated via 12% SDS‑PAGE. The separated proteins were 
transferred onto 0.45 µm PVDF membranes and blocked with 
5% milk for 1 h at room temperature. The membranes were 
incubated with the following primary antibodies; Anti‑rabbit 
LC3B (1:1,000; cat. no. 3868S; Cell Signaling Technology, 
Inc.), anti‑rabbit SQSTM1/p62 (1:1,000; cat. no. 5114T; Cell 
Signaling Technology, Inc.) and anti‑rabbit Beclin 1 (1:1,000; 
cat. no. 11306‑1‑AP; ProteinTech Group, Inc.) overnight at 4˚C. 
Following the primary incubation, membranes were incu‑
bated with HRP‑conjugated secondary antibodies (1:10,000; 
cat. no. SA00001‑2; ProteinTech Group, Inc.) for 1.5 h at room 
temperature. Protein bands were visualized using ImageQuant 
LAS‑4000 mini (Cytiva) and analyzed using ImageJ 1.53 
software (National Institutes of Health).

Immunohistochemistry. Paraffin‑embedded sections of lungs 
(4% phosphate‑buffered and formalin‑fixed for 24 h at room 
temperature; 4‑µm thick) were dewaxed in xylene, rehydrated 
in ethanol and blocked with 3% BSA (cat.  no.  G5001; 
Wuhan Servicebio Technology Co., Ltd.) for 30 min at room 
temperature. Following antigen retrieval, sections were incu‑
bated with anti‑LC3B antibody (1:300; cat. no. 14600‑1‑AP; 
ProteinTech Group, Inc.), anti‑SQSTM1/p62 antibody 
(1:400; cat.  no.  88588S; Cell Signaling Technology, Inc.) 
and anti‑Beclin  1 antibody (1:400; cat.  no.  11306‑1‑AP; 
ProteinTech Group, Inc.) for 12 h at 4˚C. Then, sections were 
incubated with HRP‑conjugated secondary antibodies (1:200; 
cat. no. GB23303; Wuhan Servicebio Technology Co., Ltd.) for 
50 min at 24˚C. Cells were counted in five randomly selected 
fields using an optical microscope (magnification, x400) and 
analysis was performed using ImageJ 1.53 software (National 
Institutes of Health), as previously described (41).

Statistical analysis. Statistical analysis was performed 
using GraphPad Prism 8.0 software (GraphPad Software, 
Inc.). Each experiment was repeated ≥3  times. Data are 
presented as the mean ± SEM. One‑way ANOVA followed 
by Tukey's post hoc test was used for intragroup and inter‑
group comparisons  (42,43). Kruskal‑Wallis test followed 
by Dunn's post hoc test was used for infla0mmation score. 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

CAG attenuates AHR in the OVA‑induced murine asthma 
model. Mice were sensitized, intranasally challenged and 
administrated treatment according to the protocol presented in 
Fig. 1A. At 24 h after the final OVA challenge, lung function 
was evaluated through direct measurements of RL and Cdyn. 
The results demonstrated that compared with the NC group, 
dose‑dependent increases of RL at doses 6.25 (P<0.05), 12.5 
(P<0.01), 50 (P<0.01) and 100 mg/ml Mch (P<0.001) were 
observed in the Asthma group (Fig. 1B), as well as significant 
dose‑dependent declines of Cdyn at doses of 6.25 (P<0.05), 
12.5 (P<0.01), 50 (P<0.05) and 100 mg/ml Mch (P<0.001) 
(Fig. 1C). Alternatively, compared with the Asthma group, 
notable reductions of RL (P<0.05; Fig.  1B) and enhance‑
ments of Cdyn (P<0.05; Fig. 1C) were observed in both the 
Asthma/62.5 mg/kg CAG and Asthma/125 mg/kg CAG groups 
at doses of 12.5 and 50 mg/ml Mch. Notably, at 100 mg/ml 
Mch, significant decreases of RL (Fig. 1D) and elevations of 
Cdyn (Fig. 1E) were observed in the Asthma/62.5 mg/kg CAG 
(P<0.05) and Asthma/125  mg/kg CAG (P<0.01) groups. 
Although the Cdyn of mice in the Asthma/31.25 mg/kg CAG 
group increased at 100 mg/ml Mch (P<0.05), the low dose of 
CAG had no significant effect on the decrease of RL. Taken 
together, these results suggest that 62.5 and 125 mg/kg CAG 
have the ability to attenuate AHR and improve dynamic lung 
compliance, particularly 125 mg/kg CAG.

CAG alleviates immune cell abundance and eosinophil 
recruitment. To investigate whether CAG effects immune 
cells in asthma, BALF was collected and inflammatory cell 
classification and counts were determined. The results demon‑
strated that compared with the NC group, the Asthma group 
displayed significantly higher numbers of total leucocytes 
(P<0.01), neutrophils (P<0.05), lymphocytes (P<0.05), mono‑
cytes (P<0.05) and eosinophils (P<0.01). Notably, 125 mg/kg 
CAG suppressed the levels of these cells (P<0.05), particularly 
eosinophils (P<0.01). Notably, 62.5 mg/kg CAG significantly 
inhibited the levels of total leucocytes and eosinophils (P<0.05) 
compared with the Asthma group (Fig. 2A).

CAG decreases inflammatory cell infiltration and mucus 
hypersecretion. To assess the inflammation of bronchus in lung 
tissues, histological changes were detected via H&E (Fig. 2B) 
and PAS (Fig. 2C) staining. After OVA induction, there was 
excessive mucus secretion in the Asthma group, while this 
elevated mucus secretion was reversed in the 125  mg/kg 
CAG group (Fig. 2C). According to the H&E staining results, 
inflammatory cells were significantly infiltrated in the Asthma 
group compared with the NC group (P<0.05). Notably, only 
125  mg/kg CAG significantly suppressed inflammation 
compared with the Asthma group (P<0.05; Fig. 2D). The PAS 
staining results demonstrated that the PAS+ bronchial cell 
count significantly increased in the Asthma group following 
OVA induction (P<0.001; Fig. 2E), which suggests that mucus 
secretion of the Asthma group is extremely excessive. As 
expected, 125 mg/kg CAG significantly relieved mucus secre‑
tion (P<0.05). Although the low dose of 31.25 mg/kg CAG 
had modest relief in both lung function and airway inflamma‑
tion, the tendency was not significant. Thus, according to the 
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results of the measurement of RL, the counts of total cells and 
eosinophils and H&E staining, 62.5 and 125 mg/kg CAG were 
selected for subsequent experimentation.

CAG alleviates inflammatory cytokines and IgE in BALF. The 
effects of 62.5 and 125 mg/kg CAG on the levels of Th2 cyto‑
kines and IgE, which are common in allergic asthma (44), were 
investigated. The results demonstrated that the levels of IL‑5 
(P<0.05; Fig. 3A), IL‑13 (P<0.01; Fig. 3B) and IgE (P<0.01; 
Fig.  3C) were significantly higher in the Asthma group 
compared with the NC group. Notably, 125 mg/kg CAG signif‑
icantly decreased the levels of IL‑5 (P<0.05), IL‑13 (P<0.05) 
and IgE (P<0.01). However, 62.5 mg/kg CAG significantly 
decreased the level of IL‑5 (P<0.05). Collectively, these 
results suggest that 125 mg/kg CAG regulates Th2‑associated 
inflammation.

Molecular docking study. After confirming the anti‑inflam‑
matory function of CAG (Fig. 4A) in asthma, the present study 
investigated the specific mechanism and performed molecular 
docking between the ATG4‑LC3B complex and CAG to 
determine whether CAG can modulate autophagy‑related 
proteins, and the potential interaction between them. The 
highest binding energy of CAG towards the ATG4‑LC3B 
complex was ‑8.0 kcal/mol, and the docking analysis predicted 
that CAG made hydrogen‑bonding interactions with LEU232 
and GLN43 at the active site (Fig. 4B). Furthermore, CAG 
probably formed a pi‑alkyl with LYS42.

CAG inhibits autophagy‑related proteins in lung tissues. To 
further verify the regulation of CAG on the expression of 
autophagy‑related proteins, the present study examined the 
major autophagy‑related factors, LC3B, p62 and Beclin 1. 

Figure 1. Effects of CAG on airway hyperresponsiveness to Mch in OVA‑induced asthmatic mice (n=4 mice/group). (A) Asthma induction and administration 
protocols in murine. (B) RL% and (C) Cdyn% to Mch. (D) RL% and (E) Cdyn% to 100 mg/ml Mch. Data are presented as the mean ± SEM. *P<0.05, **P<0.01, 
***P<0.001 vs. the NC group; #P<0.05, ##P<0.01 vs. the Asthma group. CAG, cycloastragenol; Mch, methacholine; OVA, ovalbumin; RL, total lung resistance; 
Cdyn, dynamic lung compliance; NC, negative control.
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Figure 2. Effects of CAG on inflammatory cells, airway inflammation and mucus hypersecretion in ovalbumin‑induced asthmatic mice (n=4 mice/group). 
(A) Number of Total, Neu, Lym, Mon and Eos in BALF. (B) Histological examination of H&E staining (magnification, x100; scale bar, 100 µm). (C) Histological 
examination of PAS staining (magnification, x200; scale bar, 50 µm). (D) Inflammation score acquired with H&E staining. (E) The percentage of PAS+ bronchial 
cells. Data are presented as the mean ± SEM. *P<0.05, **P<0.01, ***P<0.001 vs. the NC group; #P<0.05, ##P<0.01 vs. the Asthma group. CAG, cycloastragenol; 
Total, total leucocytes; Neu, neutrophils; Lym, lymphocytes; Mon, monocytes; Eos, eosinophils; BALF, bronchoalveolar lavage fluid; H&E, hematoxylin and 
eosin; PAS, periodic acid‑schiff; NC, negative control.

Figure 3. Effects of CAG on inflammatory cytokines and IgE in bronchoalveolar lavage fluid (n=4 mice/group). The expression levels of (A) IL‑5, (B) IL‑13 
and (C) IgE. Data are presented as the mean ± SEM. *P<0.05, **P<0.01 vs. the NC group; #P<0.05, ##P<0.01 vs. the Asthma group. CAG, cycloastragenol; 
IgE, immunoglobulin E; IL, interleukin; NC, negative control.
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According to the results of western blotting, it was found that 
the expression levels of LC3B and Beclin 1 were enhanced, 
while the expression of p62 was diminished in the Asthma 
group. Moreover, 125  mg/kg CAG restored these expres‑
sions (Fig. 5A). The results demonstrated that LC3B protein 
expression was significantly higher in the Asthma group 
compared with the NC group (P<0.01; Fig. 5B). Furthermore, 
p62 protein expression was significantly lower in the Asthma 
group compared with the NC group (P<0.01; Fig.  5C). 

Notably, LC3B protein expression was relieved following 
treatment with 62.5 mg/kg CAG (P<0.05) and 125 mg/kg 
CAG, particularly in the higher dose (P<0.01). In addition, 
62.5 mg/kg CAG (P<0.05) and 125 mg/kg CAG (P<0.01) 
restored the p62 expression, which suggests that high doses of 
CAG can significantly inhibit autophagy in the asthma model. 
Immunohistochemistry analysis (Fig. 5D‑F) revealed a notable 
increase in the expression levels of LC3B (P<0.0001; Fig. 5G) 
and Beclin 1 (P<0.05) (Fig. 5I) with OVA challenge, while 

Figure 4. Molecular docking simulation of CAG. (A) Molecular structure of CAG. (B) The potential molecular interaction of the potent phytochemical, CAG, 
with target ATG4‑LC3 complex (PDB ID: 2Z0D), from the docking study. PyMoL was used to visualize both 3D and 2D formats. CAG, cycloastragenol; 
ATG4‑LC3, autophagy‑related gene 4 light chain 3; D, dimensional.
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Figure 5. Effects of CAG on the expression levels of LC3B, p62 and Beclin 1 in ovalbumin‑induced asthmatic mice (n=4 mice/group). (A) Protein expression 
levels of LC3B, p62 and Beclin 1 in the assessed groups. Relative density quantifications of (B) LC3B and (C) p62. Data are presented as a ratio of LC3B 
and p62 relative to β‑actin. Immunohistochemistry analysis for positive expression levels of (D) LC3B, (E) p62 and (F) Beclin 1 (magnification, x400; scale 
bar, 100 µm). Positive areas of protein expression levels of (G) LC3B, (H) p62 and (I) Beclin 1. Data are presented as the mean ± SEM. *P<0.05, **P<0.01, 
****P<0.0001 vs. the NC group; #P<0.05, ##P<0.01, ###P<0.001 vs. the Asthma group. CAG, cycloastragenol; LC3B, light chain 3B; NC, negative control.
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p62 expression significantly decreased in the Asthma group 
(P<0.01; Fig. 5H). Taken together, these results confirm that 
62.5 and 125 mg/kg CAG decrease LC3B expression (P<0.001) 
and Beclin 1 expression (P<0.05). In addition, 125 mg/kg CAG 
significantly increased p62 expression (P<0.001), which were 
consistent with the western blot results. Overall, 125 mg/kg 
CAG had the potential to alleviate the levels of inflammation 
to attenuate AHR and mucus secretion in asthma pathogenesis, 
probably via the inhibition of the levels of autophagy (Fig. 6).

Discussion

Asthma is characterized by airway inflammation, AHR and 
airway remodeling (45). Although corticosteroids are used to 
treat airway inflammation of asthma, they still have multiple 
adverse reactions, such as infections, diabetes and osteopo‑
rosis (46). Thus, other safe and effective therapies are required 
to relieve inflammation of asthma that contribute to improved 
quality of life and reduce social burden.

CAG, an active sapogenin of Astragaloside IV, has been 
proposed to function on multiple pharmacological effects 
and has been gradually developed as a modern dietary ingre‑
dient  (47). Recent studies  (48‑52) have demonstrated that 
CAG exerts protective effects in inflammation and oxidation. 
However, whether CAG can prevent the progress of asthma in 
murine remains unknown. Thus, the present study investigated 
the course of airway inflammation in asthma and established 
an OVA‑induced acute asthmatic murine model to assess 
the anti‑asthmatic effect of CAG in vivo. Notably, all mice 
survived and had no loss of body weight. Furthermore, AHR, 
immune cell infiltration and the metaplasia and hypersecre‑
tion of goblet cells were restored via CAG, potentially through 
inhibition of autophagy.

RL and Cdyn reflect the state of lung ventilation, whereby 
high RL is associated with airflow obstruction of main 
bronchus and low Cdyn is associated with narrowing of 

peripheral bronchus  (53). The results of the present study 
confirmed that both 62.5 and 125  mg/kg CAG triggered 
the notable decrease of RL and elevation of Cdyn, which 
ameliorated the aggravation of lung function in asthma.

Immune cell counts, as well as H&E and PAS staining, 
are the main indicators of airway inflammation and mucus 
production (54). Overactivation of immune cells, particularly 
eosinophil recruitment and infiltration promote the progress 
of asthma (55). In addition, hyperplastic goblet cells produce 
excessive mucus plugs, exudation and cell debris to cause further 
airway occlusion (56). It has been demonstrated that high doses 
of CAG can suppress immune cells to prevent the development 
of asthma (50); however, 31.25 mg/kg CAG had little efficacy in 
both lung function and immune cell counts. Similar results were 
observed following H&E and PAS staining.

Then we observed the effects of 62.5 mg/kg CAG and 
125  mg/kg CAG on Th2‑associated cytokines (IL‑5 and 
IL‑13). IL‑5 is dominant in Th2‑mediated eosinophilic asthma 
and can reflect the vitality of eosinophils as well as AHR 
while IL‑13 promotes B cells to produce IgE, mucus secretion 
and exacerbates AHR (57). It was found that they were both 
repressed by CAG. So, we further measured IgE, a central 
player in the allergy response, and proved that the enhance‑
ment of IgE in asthma was also controlled by CAG (58). These 
results were consistent with the results of the lung function 
mentioned above and 125 mg/kg CAG was suggested to be an 
effective therapy for asthma.

It has been reported that CAG can regulate the levels 
of autophagy in myocardial cells  (59), thus the present 
study investigated the probable binding between CAG and 
autophagy‑associated targets, based on molecular docking. 
The results suggest that CAG may bind to the ATG4‑LC3 
complex to exert anti‑inflammatory effects. Autophagy is the 
degradation of organelles and protein aggregates that are not 
degradable by proteasomes or invading microorganisms, such 
as viruses and bacteria (60). Autophagy‑associated pathways 
and proteins play crucial roles in immunity and inflamma‑
tion, acting as a central pivot to balance the beneficial and 
harmful effects of the host on infection and stimuli  (61). 
Currently, the evaluation of autophagy is based on the 
autophagy markers, LC3, p62 and Beclin 1, which participate 
in the formation of autophagosome and phagophore  (62). 
Previous studies have proposed that autophagy is promoted 
in the pathogenesis of asthma (63,64), which is consistent 
with the results of the present study. The present study 
further investigated the modulation of autophagy by CAG in 
lung tissues of asthmatic mice. The results demonstrated that 
both 62.5 and 125 mg/kg CAG reverted the increased protein 
expression levels of LC3B and restored the decreased protein 
expression levels of p62 in asthma. Notably, 125  mg/kg 
CAG triggered the regulation of autophagic flux to suppress 
autophagy, which might be associated with the attenuation of 
the development of asthma.

Due to the limitations of the experimental design, the 
present study only simulated the probable bond with CAG and 
autophagy‑related targets, but failed to confirm their direct 
association, which can be verified via knockdown experi‑
ments. In addition, the mechanism by which cells express 
autophagy‑related proteins, and are modulated by CAG in the 
lungs, remain unclear.

Figure 6. Schematic diagram of the probable mode of effects of CAG on asthma. 
CAG suppresses asthma phenotypes in OVA‑induced mice. The molecular 
mechanisms underlying the inhibitory effects of CAG on OVA‑induced 
asthma are suggested to involve repression on AHR, airway inflamma‑
tion and mucus hypersecretion, as well as the suppression of autophagy. 
CAG, cycloastragenol; OVA, ovalbumin; AHR, airway hyperresponsiveness; 
IL, interleukin; IgE, immunoglobulin E; ATG4, autophagy‑related gene 4; 
LC3B, light chain 3B.
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In conclusion, the results of the present study verified CAG 
as a potential therapeutic target for AHR, airway inflammation 
and mucus hypersecretion in asthma, and suggested that these 
functions may be associated with the regulation of autophagic 
flux, mainly including decreased LC3B protein expression and 
increased p62 protein expression. However, further studies are 
required to confirm whether CAG alleviates airway inflamma‑
tion by modulating autophagy. The results of the present study 
demonstrated that CAG exerted anti‑inflammatory effects and 
inhibited autophagy in OVA‑induced asthmatic murine, which 
provides the basis for further research on the target of CAG in 
the treatment of asthma.
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