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Supplementary Text

In the supplementary text we discuss the experimental feasibility of the quantum expander, with

emphasis on the optical loss sources and the beneficial combination of the quantum expander

with external squeezing of the light’s quantum noise; derive the equations in the main text

based on the simplified input-output relations and on the Hamiltonian description of the system;

give details on the astrophysical implications of use of quantum expander; provide details of

derivation of the full spectral density of the detector with various imperfections based on the

optical transfer matrix approach.

S1 Experimental feasibility

In this section we discuss some of the issues of the experimental feasibility. We indicate the

main sources of loss and their contribution into the resulting sensitivity, and analyze the achiev-

able benefit from quantum expansion when combined with external squeezed-light injection.

S1.1 Optical loss

As we discuss in the main text, our quantum expander creates squeezing at high frequencies to

counteract the effect of the detector’s bandwidth. When combined with external squeezing, the
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Fig. S1: Relative contribution of different vacuum modes (optical loss) to the overall sensitivity
of the detector versus frequency. Input vacuum mode (solid red) defines the main sensitivity
level. The rest arises from various sources of loss: loss inside the SE cavity (dashed magenta),
detection loss (dot-dashed blue) and arm cavity loss (dotted green). The parameters are taken
according to Table S1: internal loss is 1500 ppm single-trip, detection loss is 1%, transmission
of the end mirror is 100 ppm (increased relative to Table S1 to emphasize the smallness of its
influence on the sensitivity)

quantum expander produces a high amount of squeezing at high frequencies, which imposes

strict demands on reducing the optical losses. The losses occur inside the detector: inside the

arm cavity, and inside the SE cavity; as well as on the readout train: from the SE mirror to

the detector. The external squeezing additionally suffers from injection loss. On Fig. S1 we

show the contribution of different sources of loss as a function of frequency. We note that the

detection loss and loss inside the SE cavity are the most important contributions. The detection

loss currently is rather high, but the way to mitigate this loss by parametric amplification was
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proposed by Caves (1) and recently re-investigated experimentally (2). The idea of this approach

is to amplify both the signal and the noise by the same amount before it experiences loss,

such that the resulting noise is much above vacuum uncertainty, and the loss does not affect

it significantly. The simplest example of it is detecting some signal G embedded in squeezed

vacuum, with detection efficiency η:

S = η(e−2r +G2)e2q + 1− η, (1)

where r is the squeeze factor and q is the Caves’ amplification factor. The signal-to-noise

ratio is given by SNR = ηe2q (1− η(1− e−2re2q))
−1. Without amplification, q = 0, in the

limit of large squeezing e−2r ≈ 0 the SNR is limited to SNRq=0 ≤ η(1 − η)−1. When the

amplification is large, q →∞, the SNR becomes independent on the loss: SNRq→∞ = e2r, and

only benefits from initial squeezing. The only source of detection loss that cannot be mitigated

by Caves’ amplification is the loss in the Faraday isolator used for injecting external squeezing.

We assume this to be a limitation in the detection loss, which corresponds to the 0.5% (3)

mentioned in the main text.

Internal loss will be increased due to the additional optical surfaces of the nonlinear crystal

and the absorption of the crystal. While the actual contribution to the loss from such a crystal

requires a separate investigation, we give an estimate based on the squeezing cavity design

for the table-top experiments. If the PPKTP crystal will be used, it’s absorption is ∼ 100 ppm

per cm depending on wavelength (4); the surfaces of the crystal will have to be coated with

anti-reflecting coating to minimize the scattering loss. We estimate that the current standard

technology can bring this added loss on the level of 200–500 ppm in single-pass.

We would like to emphasize, that not every configuration of the GWO will be able to get a

significant benefit from quantum expansion when the external squeezing is in use. Depending

on the amount of loss, and amount of external squeezing injected, the benefit will vary. The
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Fig. S2: An improvement in the sensitivity of the detector by quantum expander, relative to the
detector with external squeezing injection, depending on the amount of total loss (internal and
readout). The higher is the external squeezing, the more stringent is the loss requirement for
being able to benefit from using the quantum expander. The sensitivity depends in a non-trivial
way on the losses, which is reflected in the benefit from QE shown on the figure.

reason is an additional de-amplification of the signal in the quantum expander. When the loss is

high, the squeezing of the noise by quantum expander in addition to external squeezing might

be not significant. However, the parametric process inside the detector reduces the signal, hence

the signal-to-noise ratio might even become reduced compared to the detector without quantum

expander, if the sub-optimal parametric gain is chosen. There always exists an optimal gain, for

which the benefit is maximal. If the loss is high, it might be optimal to amplify the signal (and

anti-squeeze the noise), similar to the Caves’ amplification discussed above. We demonstrate

possible improvements to the sensitivity in Fig. S2. We note, that this specific design is based on
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Fig. S3: An example of sensitivity improvement in a particular design of a detector with 1% of
total loss and 10 dB external squeezing injection, the parameters are given in Table S1.

the benchmark parameters adopted by the LIGO-Virgo Collaboration, as presented in Table 1,

and corresponds to the sensitivity as given in Fig. S3. In reality, the benefit from quantum

expansion can be increased by optimizing the optical design (e.g. SE cavity length and mirrors’

reflectivities). The optimized sensitivity given by the quantum expander is a topic of future

studies.

S1.2 Crystal inside the detector

There are several issues to be taken into account with placing the crystal inside the SE cavity.

First, the aperture of the crystal has to be large to avoid beam clipping at the edges of the

crystal. Currently the diameter of the beam inside the SE cavity is ∼ 2 cm (6), with the focal
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parameter description Baseline GWO AdvLIGO
λ optical wavelength 1550 nm 1064 nm

Parm = Pc/2 arm cavity light power 4 MW 840 kW
Larm arm cavity length 20 km 4 km
m mirror mass 200 kg 40 kg
LSE SE cavity length 56 m 56 m
TITM input mirror power transmission 0.07 0.014
TSE SE mirror power transmission 0.35 0.35
TETM end mirror power transmission 5 ppm 5 ppm
e2r external squeezing 10 dB —
λs loss inside SE cavity 1500 ppm 1000 ppm
η detection efficiency 99% ∼85%

Table S 1: In order to plot the spectral densities in the paper we use the following set of
parameters of some baseline GW observatory, without choosing a specific design from many
possibilities of a 3-G topologies. We note that our double-cavity model uses effective param-
eters. In order to use this model for the Michelson topology, an effective light power inside
the arm cavity has to be used: Pc = 2Parm, where Parm is the power inside the arms of the
Michelson topology (5)

point outside the SE cavity. For comparison, the aperture of typical PPKTP crystals used in the

squeezed-light generation is 1×2 mm (4). Either large enough crystals need to be realized or the

beam need to be focused inside the SE crystal, which is in principle possible without increasing

the number of optics inside the SE cavity.

Second, while absorption and scattering are generally important issues to avoid possible

heating and parasitic interferences (7), the crystal will not be illuminated by bright light, because

the detector is operated with a destructive interference of carrier light in the SE cavity (dark port

condition).

Third, the crystal has to be pumped with frequency doubled light of a sufficient intensity,

which would require an additional cavity for the pump light, as it is realized in modern table-top

squeezing experiments (8).

It would also be necessary to deliver the pump to the crystal inside the detector and ensure
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good wavefront matching of the pump and the main beam. Both aspects can be achieved in

several ways. As the wavelength of the pump is so different from the fundamental wavelength,

it is possible to realize optical coatings, such that an additional cavity is formed by the SEM

and ITM for the pump (9). Alternatively, the pump can be brought in by replacing the existing

steering mirrors in the SE cavity with dichroic steering mirrors, being transmissive for the fre-

quency doubled pump. In any case, no additional optics inside the main interferometer would

be required.

Fourth, there is a need for additional control of the pump amplitude and phase to ensure

the optimal squeeze factor and squeeze angle. Finally, the non-linear crystal might affect the

control of the main interferometer, as some of the auxiliary beams could be affected by the

parametric process, which has to be taken into account when designing the detector’s control

scheme.

In conclusion, while a non-linear crystal inside the interferometer is technologically chal-

lenging, we do not foresee fundamental problems, and expect our proposal for quantum expan-

sion to motivate the future research and development work in this direction.

S2 Astrophysical analysis

In this section, we give an illustrative example to estimate the capability of using the quantum

expanders to detect the gravitational waves radiated by neutron star poster-merger remnants.

The method we used here follows the estimation procedure as described in (10, 11). We per-

form a Monte Carlo simulation based on the following assumptions: first, the mass of each

individual neutron star in a binary system follows an independent Gaussian distribution cen-

tered at 1.33M� with variance 0.09M�. The distributions of angular sky position, inclination

and polarisation angles, and the initial phase of the source are assumed to be flat. The searching

range is assumed to be 1 Gpc and the event rate is taken to be ≈ 1 Mpc−3Myr−1. Second, the
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post-merger waveform is assumed to be a parametrized damped oscillation, which depends on

the equation of state of a neutron star, and in frequency domain it is given by the equation:

h(f) =
50Mpc

πd
hp
Q(2fpQ cosφ0 − (fp − 2ifQ) sinφ0)

f 2
p − 4iffpQ− 4Q2(f 2 − f 2

p )
, (2)

where d is the source distance, hp is the peak value of the wave amplitude, Q is the quality

factor of the post-merger oscillation,φ0, fp are the initial phase and the peak frequency of the

waveform, respectively. Among them, hp, Q, fp are parametrized by fitting with the results

generated by numerical simulation (12) and they depend on the choice of equation of states.

In the illustrative examples here, we make use of a relatively stiffer equation of state proposed

in (13), where Q = 23.3, hp ≈ 5× 10−22, and the peak frequency is given by:

fp = 1kHz

(
m1 +m2

M�

)[
a2

(
R

1km

)2

+ a1
R

1km
+ a0

]
, (3)

where R = 14.42 km is the radius of each neutron star, and m1,2 are their masses. The parame-

ters a2, a1, a0 take the value of 5.503,−0.5495, 0.0157, respectively (13). We define the signal

to noise ratio as:

SNR =

∫ fmax

fmin

df
|h(f)|2

Shh(f)
, (4)

where we take the integration range to be fmin = 1000 Hz, fmax = 4000 Hz. We run 100 Monte-

Carlo realizations each with 1000 samples, corresponds to one-year observation. We exclude

the binaries with total mass larger than 3.45M� since they will collapse into a black hole in a

very short period of time, less than one period of post-merger oscillation. For each different

interferometer parameter set, we selected out the loudest event in each Monte-Carlo realization,

set SNR = 5 as a threshold signal-to-noise ratio and produce the Fig. 4 in the main text.

S3 Input-output relations

In this section we derive the sensitivity based on the input-output formalism. For simplicity

in this section we ignore the effects of quantum radiation pressure noise and optical losses.
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These will be included in the full transfer matrix description in Sec. S5. Based on the obtained

equations we give motivation for writing the Hamiltonian of the system in Sec. S4.

Using the perturbation theory, we decompose the light field into a steady-state amplitude

with amplitude A0 and laser carrier frequency ω0 and a slowly varying noise amplitude a(t)

(see details in (14)):

A(t) =

√
2πh̄ω0

Ac
[
A0e

−iω0t + a(t)e−iω0t
]

+ h.c. (5)

â(t) =

∫ ∞
−∞

â(ω0 + Ω)e−iΩt
dΩ

2π
, (6)

where A is the laser beam cross-section area, h̄ is the reduced Plank constant. It is helpful to

consider the input-output relations of our system in the ‘two-photon formalism’ (15,16), where

the amplitude and phase quadrature amplitudes â(c) and â(s) of the modulation field at frequency

Ω are linked to the optical fields â(ω ± Ω) via

â(c)(Ω) =
â(ω + Ω) + â†(ω − Ω))√

2
, (7)

â(s)(Ω) =
â(ω + Ω)− â†(ω − Ω)

i
√

2
. (8)

These operators obey the commutation relation

[ax(Ω), ax(Ω
′)] = [ay(Ω), ay(Ω

′)] = 0 , (9)

[ax(Ω), ay(Ω
′)] = [ax(Ω), ay(Ω

′)] = 2πiδ(Ω + Ω′) . (10)

We make several simplifications to the notation: as we are primarily interested in the phase

quadrature, we will omit index (s) in equations below; we also omit the hats on the operators for

brevity, although all the fields are quantised; we consider only the noise fields in the frequency

domain, so we don’t write that in the equations explicitly: e.g. â(s)(Ω)→ a.
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Fig. S4: Quantum fields in the model of a two-cavity system. Rs,i,e, Ts,i,e are the amplitude
reflectivities and transmissivities of the signal extraction, input and end test mirrors correspond-
ingly; a beam-splitter with power reflectivity λs represents a source of intra-cavity loss, which
causes vacuum noises n̂1,2 to enter the system.

The signal we consider is a phase modulation on the light field induced by motion of the

mirror with infinite mass caused by an external force. This modulation adds a phase shift on

the light reflected off the movable mirror: Erefl = Eine
2ikx(Ω) ≈ Ein(1 + 2ikpx(Ω)), where kp

is the light’s wave vector, Erefl,in are the amplitudes of the reflected and incident light fields,

and x(Ω) is a small mirror displacement. The signal appears only in the equations for the phase

quadrature of the light field.

We model the parametric amplification process as a simple linear amplification of amplitude

quadrature of the light by some factor eq, without considering the effects of the parametric pump

and the finite size of a crystal. In the full model in Sec. 5 we also will introduce the possibility

to tune the amplification quadrature. With this in mind we start with writing down the steady-

state input-output relations (15, 16) for the quantum fluctuations of the phase quadrature of the

light field, for the cavity cavity model depicted of Fig. S4. For the detailed explanation of the

approach we refer the reader to the review by Danilishin and Khalili (14). We choose the arm

cavity to be tuned on resonance, so that for Ω = 0 it has the maximal light power inside.
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ds = Tsa+Rscs, (11)

as = dse
−qeiϕeiΩτSE , (12)

bs = Tic+Rias, (13)

c = de2iΩτarm + 2ikpExe
iΩτarm , (14)

bs = −Rias + Tic , (15)

cs = bse
−qeiϕeiΩτSE , (16)

b = −Rsa+ Tscs , (17)

where Ri,s =
√
RITM,SE, Ti,s =

√
TITM,SE are the amplitude reflectivity and transmissivity of

input test mirror and signal-extraction mirror; q is an amplification factor on the single pass

through the crystal; τarm,SE = Larm,SE/c is the single trip time in arm cavity of length Larm and

signal extraction cavity of length LSE, with c being the speed of light; ϕ = π/2 is the tuning

of the SE cavity with respect to the arm cavity; x is a small displacement of the end mirror due

to the GW signal, E is the large classical amplitude of field inside the arm cavity and kp is the

wave vector of the carrier light field.

We find a solution to these equation, splitting the output b into the noise part bn and signal

Gout: b = bn +Xout.

bn = Ra(Ω)a(Ω) = − e2iϕe2iΩτSE(e2iΩτarm −Ri) + e2q(e2iΩτarmRi − 1)

e2q(e2iΩτarmRi − 1) + e2iϕe2iΩτSE(e2iΩτarm −Ri)Rs

a(Ω) , (18)

Xout = T (Ω)x(Ω) =
2ikpEe

iϕeiΩτSEeiΩτarmeqTiTs
e2q(e2iΩτarmRi − 1) + e2iϕe2iΩτSE(e2iΩτarm −Ri)Rs

x(Ω) , (19)

whereRa(Ω), T (Ω) are the noise and signal optical transfer functions correspondingly.

We can obtain an intuitive expression for these functions by doing several approximations.

We assume Ωτarm � 1, ΩτSE � 1, so eiΩτarm,SE ≈ 1 + iΩτarm,SE; and Ti,s � 1, so Ri ≈

12



1− T 2
i /2 = 1− 2γarmτarm, Rs ≈ 1− T 2

s /2 = 1− 2γτarm, where γarm, γ are the arm cavity and

the signal-extraction cavity linewidth, respectively; a single-pass optical gain is small: q � 1,

so eq ≈ 1 + q = 1 + χτSE, where χ is an effective parametric gain.

With these approximations equations (18-19) can be simplified to

Ra(Ω) =
(γ − χ)Ω + i(Ω2 − ω2

s)

(γ + χ)Ω− i(Ω2 − ω2
s)
, (20)

T (Ω) = −4ikpE√
τarm

√
γωs

(γ + χ)Ω− i(Ω2 − ω2
s)
, (21)

where we defined a sloshing frequency ωs = c
√
T 2
i /(4LSELarm). Notice that these equations

correspond to Eq. (6) in the main text. This helps us to construct a Hamiltonian in the next

section, which would correspond to this model system.

S4 Hamiltonian approach

In this section we derive the sensitivity of the detector (Eq. (6) of the main text) from the Hamil-

tonian of the system. The Hamiltonian is based on the input-output formalism, derived in the

previous section, where a set of approximations was made. These approximations restrict the

analysis to the case when only two modes are taken into account: one in the arm cavity and one

in the signal extraction cavity.

Ĥ = Ĥ0 + Ĥint + Ĥγ + Ĥx − FGWx , (22)

Ĥ0 = h̄ω0â
†â+ h̄ω0â

†
qâq , (23)

Ĥint = h̄ωsâ
†
qâ+

1

2
h̄κβe−2iω0tâ†qâ

†
qe
iφ + h.c. , (24)

Ĥγ = ih̄
√

2γ

∫ ∞
−∞

(
â†q(ω)âin(ω)− â†in(ω)âq(ω)

)
dω , (25)

Ĥx = −F̂rpx̂ = −h̄G0â
†âx̂ , (26)
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where â, âq are the arm cavity and SE cavity modes, and ω0 is their natural resonance frequency;

ωs = c
√
TITM/(4LSELarm) is the coupling rate between two cavities, TITM is the transmission

of the front mirror of the arm cavity, LSE, Larm are the lengths of the signal extraction and arm

cavity, respectively; γ = cTSE/(4LSE) is the coupling rate of the SE mode to the continuum of

input modes âin; x is the displacement of the test mass partially in reaction to the gravitational-

wave tidal force FGW; the mirror motion x is coupled via the radiation-pressure force F̂rp to the

cavity mode with strength G0 = ω0/Larm; κ is the coupling strength due to a crystal nonlin-

earity under a second harmonic pump field with amplitude β and phase φ. The pump field is

assumed to be classical and its depletion is neglected. The effect of the back-action noise can

be neglected, so displacement of the mirror is coupled only to a GW strain: x = h0/Larm.

We obtain the Langevin equations of motion for the cavity modes in the frame rotating at ω0

and expand the quantum amplitudes into a sum of large classical amplitude and small quantum

fluctuation, â→ A+ â:

˙̂a = −iωsâq + iGh0 , (27)

˙̂aq = −iωsâ− γâq +
√

2γain − iχâ†seiφ , (28)

âout = −âin +
√

2γâq , (29)

where we defined an effective coupling strength of GW signal strain G =
√

2PcLarmω0/(h̄c)

and optical power inside the arm cavity Pc = h̄ω0ā, with ā being an average amplitude of the

mode â; and the effective parametric gain χ = κβ,

As we are interested in the spectral properties of the system, we transform into a Fourier

domain: ˙̂a(t) → −iΩâ(Ω). The outgoing light is measured by a homodyne detector, which

measures the quadratures of the light, that are defined as:

â(1) =
â(Ω) + â†(−Ω)√

2
, â(2) =

â(Ω)− â†(−Ω)

i
√

2
. (30)

We obtain the input-output relations for the two quadratures by solving Eqs.(27-29):

14



â
(1)
out(Ω) = â

(1)
in (Ω)

(γ − χ)Ω + i(Ω2 − ω2
s)

(γ + χ)Ω− i(Ω2 − ω2
s)

+ h0(Ω)
2iG
√
γωs

(γ + χ)Ω− i(Ω2 − ω2
s)

= (31)

= â
(1)
in (Ω)Ra(Ω) + h0(Ω)T (Ω) (32)

â
(2)
out(Ω) = â

(2)
in (Ω)

(γ + χ)Ω + i(Ω2 − ω2
s)

(γ − χ)Ω− i(Ω2 − ω2
s)
, (33)

â(2)
q (Ω) = â

(2)
in (Ω)

√
2γΩ

(γ + χ)Ω− i(Ω2 − ω2
s)

+ h0(Ω)
iGωs

(γ + χ)Ω− i(Ω2 − ω2
s)
, (34)

â(1)(Ω) = â
(2)
in (Ω)

i
√

2γωs
(γ − χ)Ω− i(Ω2 − ω2

s)
, (35)

From these input-output relations we can obtain the sensitivity, by computing the spectral

densities. We define the spectral density of the field â(Ω) as:

Sa(Ω)δ(Ω− Ω′) =
1

2
〈â(Ω)â(Ω′) + â(Ω′)â(Ω)〉 . (36)

Then the spectral density the output noise â(c)
out(Ω) is:

Sout(Ω) = Sin(Ω)|Ra(Ω)|2 , (37)

where Sin(Ω) is the spectral density of incoming light field, which we assume here to be vac-

uum: Sin(Ω) = 1. Assuming that we squeeze the signal quadrature of the light: φ = −π/2, we

obtain the following noise spectral density

Sout(Ω) = 1− 4γχΩ2

(γ + χ)2Ω2 + (Ω2 − ω2
s)

2
, (38)

and signal transfer function:

|T (Ω)|2 =
4G2γω2

s

(γ + χ)2Ω2 + (Ω2 − ω2
s)

2
. (39)

The total strain sensitivity is given by the noise normalised to the signal transfer function (sub-

situting the expression for the effective coupling strength G):

Sh(Ω) =
h̄c

8ω0LarmPc

(γ − χ)2Ω2 + (Ω2 − ω2
s)

2

γω2
s

, (40)

which is the equation (9) in the Main text.

15



S5 Transfer matrix approach to full description

In this section we use the transfer matrix approach (14) to compute the sensitivity of the detector

taking into account the radiation pressure noise and optical losses. We start from the same

point as in the section S3, but write down the input-output relations as propagation of the field

amplitudes in terms of transfer matrices for each optical element. The description is broader

than strictly needed to compute the spectral density in the main text (e.g. it includes the effects

of dynamical back action), but we find it helpful to use a general approach. The source code

that implements these equations can be found in (17).

S5.1 Input-output relations

We describe a two-cavity system, as shown on Fig. S4, in terms of input and output quantum

fields. Based on two-photon quadrature amplitudes we define the vector â(Ω) = {â(c)(Ω), â(s)(Ω)}T.

The signal extraction cavity can rotate the quadratures due to its detuning from resonance. The

optical parametric amplification process also squeezes and rotates the quadratures. The effect

of the signal recycling cavity can be described as a set of rotations and squeezing operations:

âs = O(ϕ)O(θ)SO†(θ)O(φ)(
√

1− λsd̂s +
√
λsn̂1)eiΩτSE , (41)

b̂s = −Riâs + Tiĉ , (42)

ĉs =
√

1− λsO(φ)O(θ)SO†(θ)O(ϕ)b̂se
iΩτSE +

√
λsn̂2 , (43)

d̂s = Tsâ +Rsĉs , (44)

where we denote the amplitude reflectivity and transmissivity of the signal recycling and input

mirrors by Rs,i, Ts,i, the power loss inside the cavity (before the crystal) is λs; signal recycling

cavity global delay τSE = LSE/c and the phase delay due to the cavity detuning before and after
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the crystal by φ, ϕ. We now introduce the squeeze angle θ and the rotation matrix

∀φ, O(φ) =

[
cosφ − sinφ
sinφ cosφ

]
, (45)

Y = O(π/2) =

[
0 −1
1 0

]
, (46)

and squeezing matrix

S =

[
eq 0
0 e−q

]
, (47)

with q being the single-pass squeeze factor.

For the arm cavity the corresponding set of equations reads

b̂ = −Rsâ + Tsĉs , (48)

d̂ = Riĉ + Tiâ , (49)

ĉ = O(δarmτarm)̂feiΩτarm , (50)

ê = O(δarmτarm)d̂eiΩτarm , (51)

f̂ = Reê + Tev̂ + 2kReO(π/2)Ex̂−(Ω) , (52)

where k = ω/c is the wave vector of the main field, δarm is the arm cavity detuning and τarm =

Larm/c is the propagation time with Larm being the length of the arm cavity, and c the speed

of light. The field E corresponds to the classical amplitude of the field impinging on the end

mirror.

We find the solution to these equations, first for the complex transmissivity and reflectivity
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of the signal recycling cavity

b̂s = Db [−RiTsM[ϕ, φ]â + Tiĉ] , (53)

d̂s = Dd [RsTiM[φ, ϕ]ĉ + Tsâ] , (54)

âs = M[ϕ, φ]Dd [RsTiM[φ, ϕ]ĉ + Tsâ] , (55)

ĉs = M[φ, ϕ]Db [−RiTsM[ϕ, φ]â + Tiĉ] , (56)

(57)

where we defined

M[φ, ψ] = O(φ)O(θ)SO†(θ)O(ψ)eiΩτSE ,∀φ, ψ , (58)

Db = (I +RiRs(1− λs)M[ϕ, φ]M[φ, ϕ])−1 , (59)

Dd = (I +RiRs(1− λs)M[φ, ϕ]M[ϕ, φ])−1 . (60)

That provides the input-output relations for the signal extraction cavity

b̂ = −Rbâ + Tbĉ + Lb1n̂1 + Lb2n̂2 , (61)

d̂ = Rdĉ + Tdâ + Ld1n̂1 + Ld2n̂2 , (62)

where we introduced the transfer matrices for the fields

Rb = Rs +RiT
2
s (1− λs)M[φ, ϕ]DbM[ϕ, φ] , (63)

Rd = Ri +RsT
2
i (1− λs)M[ϕ, φ]DdM[φ, ϕ] , (64)

Tb = TiTs
√

1− λsM[φ, ϕ]Db , (65)

Td = TiTs
√

1− λsM[ϕ, φ]Dd , (66)

Lb1 = −TsRi

√
1− λsλsM[ϕ, φ]DbM[φ, ϕ] , (67)

Lb2 = TsRiRs

√
λs(1− λs)M[ϕ, φ]DbM[φ, ϕ]−

√
λs , (68)

Ld1 = −TiRiRs

√
λs(1− λs)M[φ, ϕ]DdM[ϕ, φ] +

√
λs , (69)

Ld2 = TiRs

√
λs(1− λs)M[φ, ϕ]Dd . (70)
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Now we can derive the fields for the arm cavity yielding

ĉ = ReDcO(δarmτarm)2Tdâe2iΩτarm + TeDcO(δarmτarm)v̂eiΩτarm +

+ ReDcO(δarmτarm)2 (Ld1n̂1 + Ld2n̂2) e2iΩτarm +

+ 2kReDcO(δarmτarm)YEx̂−(Ω)eiΩτarm (71)

ê = DeO(δarmτarm)TdâeiΩτarm + TeDeO(δarmτarm)RdO(δarmτarm)v̂e2iΩτarm +

+ DeO(δarmτarm) (Ld1n̂1 + Ld2n̂2) eiΩτarm +

+ 2kReDeO(δarmτarm)RdO(δarmτarm)YEx̂−(Ω)e2iΩτarm , (72)

where

Dc =
(
I −ReO(δarmτarm)2Rde

2iΩτarm
)−1

, (73)

De =
(
I −ReO(δarmτarm)RdO(δarmτarm)e2iΩτarm

)−1
. (74)

Finally, we find the outgoing field to be

b̂ = −Râ + T v̂ + Zx̂−(Ω) + L1n̂1 + L2n̂2 , (75)

where we defined the transfer matrices:

R = Rb −ReTbDcO(δarmτarm)2Tde2iΩτarm , (76)

T = TeTbDcO(δarmτarm)eiΩτarm , (77)

Z = 2kReTbDcO(δarmτarm)YEeiΩτarm , (78)

L1 = ReTbDcO(δarmτarm)O(δarmτarm)Ld1e
2iΩτarm + Lb1 , (79)

L2 = ReTbDcO(δarmτarm)O(δarmτarm)Ld2e
2iΩτarm + Lb2 . (80)

(81)

19



S5.2 Radiation pressure

The radiation pressure force acting on the mirrors has three contributions. First, there is a con-

stant force due to the classical high-power optical field. It induces a constant shift of the mirror,

which can be compensated with classical feedback. Second, there is a dynamical classical part,

which is amplified by opto-mechanical parametric amplification and which belongs to the op-

tical spring, and third a fluctuating force due to the uncertainty in the amplitude quadrature of

the light. The latter corresponds to the quantum back-action force of the carrier light. Follow-

ing (5), we assume the input test mass to be fixed, and twice the back action imposed on the

back mirror instead (which leads to introduction of effective light power). Such approximation

is valid when the transmission of front mirror is small, such that the amplitudes of the fields

acting on the front and back mirrors are almost equal (which is the case in our consideration).

F ba = h̄k(E†ê(Ω) + F†f̂(Ω)) = Ffl(Ω)−K(Ω)x−(Ω) , (82)

where we split the back-action into the noise part Ffl(Ω) and position-dependent optical spring

force with spring constant K(Ω). Taking into account that F = ReE, we find the equations for

these contributions:

F fl(Ω) = h̄k(1 +R2
e)E

†DeO(δarmτarm)eiΩτarm (Tdâ + Ld1n̂1 + Ld2n̂2) +

+ h̄kTeE
†Lvv̂ , (83)

Lv = (1 +R2
e)DeO(δarmτarm)RdO(δarmτarm)eiΩτarm +Re , (84)

K(Ω) = −2h̄k2(1 +R2
e)ReE

†DeO(δarmτarm)RdO(δarmτarm)YEe2iΩτarm −

− 2h̄k2R2
eE
†YE . (85)
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Without loss of generality we choose the phase of the classical amplitude such that:

E =
√

2E{1, 0}T , (86)

where the amplitudeE is connected to the power in the cavity as Pc = 2Parm = h̄ωp|E|2, where

Parm is a power in the corresponding Michelson interferometer (5).

The equation of motion for the test mass taking into account the radiation pressure force:

x̂−(Ω) = χ(Ω)
[
F fl(Ω)−K(Ω)x−(Ω)

]
, (87)

where χ(Ω) = (−mΩ2)−1 is the mechanical suspeptibility for the free mass m. This allows us

to introduce an effective susceptibility:

χeff(Ω) = (χ−1 +K(Ω))−1 , (88)

such that x−(Ω) = χeff(Ω)F fl(Ω).

S5.3 Detection

The presence of optical loss in the readout path, including the detection loss, leads to a loss of

quantum correlations due to mixing with vacuum. We model this loss with a beam splitter of

power transmissivity η = 1− λr and reflectivity (loss) 1− η = λr which mixes in vacuum n:

b̃(Ω) =
√
ηb(Ω) +

√
1− ηn . (89)

The balanced homodyne detection on the output b̃ at homodyne angle ζ provides the values

y(Ω) = {cos ζ, sin ζ}Tb̃(Ω) = HTb̃(Ω) =

√
ηHT (−Râ + T v̂ + Lb1n̂1 + Lb2n̂2) +

√
ηHTZx̂−(Ω) +

√
1− ηHTn(Ω), (90)

which we renormalize to the differential mirror displacement

ỹ =
HT (−Râ + T v̂ + Lb1n̂1 + Lb2n̂2)

HTZ
+

√
1− ηHTn
√
ηHTZ

+ x̂−(Ω) . (91)
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We implement the injection of the squeezing from the outside, by defining an action of the

squeezing operation on the input field â as:

â = Sext[φext]â
vac, (92)

where âvac is the vacuum field before squeezing, and the squeezing matrix with squeeze factor

qext and squeeze angle φext is defined as

Sext = O(φext)

[
eqext 0

0 e−qext

]
O(−φext). (93)

All other fields v̂, n̂, n̂1, n̂1 are in the vacuum state.

From this we get the spectral density for this output

Sx(Ω) = Sxx(Ω) + 2Re[χ∗eff(Ω)SxF (Ω)] + |χeff(Ω)|2SFF (Ω) , (94)

where

Sxx =
HT(RSextS†extR† + T T † + Lb1L†b1 + Lb2L†b2)H

|HTZ|2
+

1− η
η

1

|HTZ|2
, (95)

SFF = h̄2k2(1 +R2
e)

2E†DeO(δarmτarm)
(
TdSextS†extT

†
d + Ld1L†d1 + Ld2L†d2

)
O†(δarmτarm)D†eE +

+ h̄2k2T 2
e E†LvL†vE , (96)

SxF =
h̄k

HTZ

(
(1 +R2

e)HT(−RSextS†extT
†
d + Lb1L†d1 + Lb2L†d2)O†(δarmτarm)D†eEe−iΩτarm+

+ TeHTT L†vE
)
. (97)

Finally we normalize the spectral density to the gravitational-wave strain yielding (taking

into account the effects of high-frequency corrections (18))

Sh(Ω) = Sx(Ω)
4

m2L2Ω4|χeff(Ω)|2
Ω2τ 2

arm

sin2 Ωτarm

. (98)
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S5.4 Filter cavities

Filter cavities on the can be used to create a necessary frequency dependence of quantum corre-

lations, such that the QRPN is suppressed or evaded completely. There are two scenarios, input

filter cavity, where the injected squeezing becomes frequency dependent, and output filter cav-

ity, where the homodyne detection becomes frequency dependent. We follow (14) and consider

a lossless filter cavity, so that the only effect of the cavity is a frequency-dependent rotation of

the input squeezed state â→ O[θf (Ω)]â or output b(Ω)→ O[θf (Ω)]b(Ω), by the angle

θf (Ω) = arctan
2γfδf

γ2
f − δ2

f + Ω2
, (99)

where γf is the filter cavity bandwidth, and δf is it’s detuning from resonance. To obtain the

spectral corresponding spectral densities it’s sufficient to modify the squeeze angle φext →

φext +θf (Ω) or homodyne angle ζ → ζ−θf (Ω) in the equations for the spectral density Eq. 94.

The optimal detuning is on the slope of the cavity resonance δf = γf , and the exact choice

of cavity linewidth depends on the parameters of the detector, including the internal squeezing

strength and readout loss.
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