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Abstract

There has been increasing interest in the possibility that behavioral experience—in particu-
lar, exposure to stress—can be passed on to subsequent generations through heritable epi-
genetic modifications. The possibility remains highly controversial, however, reflecting the
lack of standardized definitions of epigenetics and the limited empirical support for potential
mechanisms of transgenerational epigenetic inheritance. Nonetheless, growing evidence
supports a role for epigenetic regulation as a key mechanism underlying lifelong regulation
of gene expression that mediates stress vulnerability. This Perspective provides an over-
view of the multiple meanings of the term epigenetic, discusses the challenges of studying
epigenetic contributions to stress susceptibility—and the experimental evidence for and
against the existence of such mechanisms—and outlines steps required for future
investigations.

Introduction

The term epigenetics is used in at least three different ways, each referring to a fundamentally
different mode of biological regulation, which has contributed to considerable confusion in the
field. Epigenetics, in its broadest meaning, is used by some to denote stable changes in gene
expression that are mediated via mechanisms that do not involve modification of DNA
sequence. In the field of stress responses, such epigenetically induced stable changes in gene
expression likely result from any number of environmental stresses that occur throughout a
lifetime. For example, chronic stress may induce epigenetic mechanisms that alter gene expres-
sion in the adult brain [1]. Likewise, it’s thought that environmental exposures to stress and
other behavioral experience early in life (i.e., in utero and during childhood and adolescence)
may produce epigenetic changes that determine how susceptible or resilient an individual is to
those or other stresses later in life. There is now robust and growing evidence supporting a role
for epigenetic modification as a key mechanism underlying lifelong regulation of gene expres-
sion and, consequently, of stress vulnerability [2-12].

The term epigenetic is also used to describe two additional phenomena for which the evi-
dence base is less solid. One concerns stochastic changes during development, whereby ran-
dom epigenetic modifications in the developing brain generate variations in an individual’s
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Fig 1. Chromatin structure and histone modifications at N-terminal histone tails. (A) The eukaryotic genome is organized by wrapping DNA around
histone octamers to form the basic units of chromatin, nucleosomes, which are then further organized and compacted into higher ordered structures. (B) The
histone octamer consists of two copies each of H2A, H2B, H3, and H4. In addition to globular domains, they each have N-termini tails that protrude from the
nucleosome, while H2A also has a C-terminal tail. These tails can be post-translationally modified, and major forms of mammalian acetylation and
methylation modifications on lysine residues on each tail are highlighted. The molecules are drawn roughly to proportion to the size of the protein, although
the number of residues shown is not meant to reflect the exact size of the N-terminal tails. In addition to histone modifications, DNA itself is modified by
methylation or hydroxymethylation (M), among other alterations. Adapted from [15].

doi:10.1371/journal.pbio.1002426.9001

traits, including differences in stress vulnerability, without changes in either genomic sequence
or environmental exposures. The other relates to epigenetic inheritance across multiple genera-
tions, whereby epigenetic modifications induced in an individual’s germ cells in response to
stress or other environmental exposures are transmitted to offspring to control their stress vul-
nerability. The degree to which these two forms of epigenetic regulation contribute to the last-
ing consequences of stress, including stress-related syndromes such as depression, remains
more controversial.

Brief Overview of Epigenetic Mechanisms

DNA is wrapped around histone octomers to form nucleosomes—the unit of chromatin (Fig
1). A gene’s activity is reflected in the surrounding structure of chromatin: genes within rela-
tively spaced nucleosomes are actively transcribed, whereas those in tightly packed nucleo-
somes are silenced. Such nucleosome spacing is determined by extremely complex processes,
which include the post-translational modification of histones (see Fig 1) and DNA as well as
the recruitment of large numbers of chromatin regulatory proteins that interact with these
modifications [13,14]. On the other hand, there continues to be disagreement, partly semantic,
about whether alterations in epigenetic states per se cause changes in gene expression or
whether they reflect changes mediated by other mechanisms.

Post-translational modifications of histones remain the best studied form of epigenetic reg-
ulation. Each of the four canonical histone subunits in mammals is modified at specific amino
acid residues in diverse ways, including acetylation, methylation, polyADP-ribosylation, and
ubiquitination, among many others. DNA is also modified, without affecting nucleotide
sequence, most prominently through its methylation, hydroxymethylation, or related changes
(Fig 1). Meanwhile, large numbers of regulatory proteins bind to each of these histone and
DNA modifications and mediate changes in chromatin structure and gene transcription. As
just one example, chromatin remodeling proteins possessing ATPase activity control

PLOS Biology | DOI:10.1371/journal.pbio.1002426 March 25, 2016 2/7



@’PLOS | BIOLOGY

nucleosome spacing and positioning during transcription. Work over recent years has also
demonstrated several forms of noncoding RNAs, including microRNAs (miRNAs) and long
noncoding RNAs (IncRNAs), as important mediators of epigenetic regulation. There is now
growing evidence, alluded to above, that each of these forms of epigenetic regulation are altered
in the brain by exposure to stress and that their experimental manipulation (e.g., by overex-
pression or knockout of a chromatin regulatory protein or delivery of small molecule inhibi-
tors) has dramatic effects on stress vulnerability [2-12].

Environmental stimuli, such as stress exposures over a lifetime, regulate these various epige-
netic processes in two main ways [16]. First, synaptic transmission and neural activity, through
intracellular signaling cascades, control the activity and levels of numerous transcription fac-
tors—e.g., CREB (cAMP response element binding protein) and Fos and Jun family proteins,
among many others—that bind to their specific response elements within regulatory regions of
genes and trigger downstream changes in chromatin structure. Second, the same intracellular
signaling pathways directly control the activity or expression of many chromatin regulatory
proteins (e.g., histone- or DNA-modifying enzymes, chromatin remodeling factors), which
then directly drive alterations in gene expression. Indeed, a recent study established that single
types of histone modifications at a single gene within neurons in an adult brain, induced
through the viral-mediated expression of synthetic transcription factors, is sufficient to induce
altered expression of that gene, thus establishing this second pathway of gene regulation [17].

Stochastic Epigenetic Contributions to Depression

As the human brain develops, generating ~100 billion neurons and ~100 trillion synapses, enu-
merable stochastic events occur that generate diversity even though genetics and environment
remain constant [18,19]. The highly divergent patterns of cerebral gyri exhibited by identical
twins is an example of such phenomena (identical twins also have different fingerprints,
another example of presumably random events during development). While epigenetic mecha-
nisms are likely contributors to such differences, it is difficult to obtain experimental proof. For
example, in the chronic social defeat stress model of depression, genetically identical animals
with virtually uniform environmental exposures diverge strikingly into susceptible versus resil-
ient outcomes after social stress [20]. However, it is not currently possible to define epigenetic
contributions to such phenotypic outcomes, because it is not possible at the present time to
determine—prior to stress exposure—which individuals will show susceptibility or resilience,
making it impossible to characterize the preexisting epigenetic state of genes within animals
prior to stress.

An alternative approach would be to compare stress-induced changes in epigenetic state in
a given brain region or cell type of a susceptible versus resilient adult mouse after social defeat
stress to the epigenetic states seen in the same brain region or cell type of mice with or without
exposure to stress or other challenges early in life. In fact, preliminary evidence suggests that a
form of early life stress, which renders a mouse more susceptible to social defeat stress later
in life, induces patterns of gene regulation in several brain regions—in the absence of adult stress
—that resemble patterns induced by adult stress in susceptible mice [21]. However, this is a fun-
damentally different question from the hypothesized role of stochastic events during develop-
ment. In the latter case, two mice from the same litter with identical environmental exposures
would develop different epigenetic states in the brain, due to no extrinsic factors—just random
events during development, which make one of the mice susceptible after social defeat and the
other resilient, even though we cannot distinguish the mice behaviorally before social defeat.

In any event, stochastic, epigenetic differences in brain function could be one reason why it
has been difficult to identify genes that confer risk for depression and other stress-related
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disorders. This use of the term epigenetics comes closest to Waddington’s original definition in
1942, which posited—before we knew that DNA carried genetic information—that the effect of
genetics in determining phenotype is subject to random variations during development, akin
to several marbles taking distinct paths rolling down a hill [22].

Epigenetic Inheritance of Depression Susceptibility

The term epigenetics is also used to refer to the transgenerational transmission of traits without
a change in DNA sequence [23,24]. It is clear that stressful life events can alter stress suscepti-
bility in subsequent generations. Male mouse pups subjected to maternal separation display
lifelong increases in stress susceptibility and generate offspring that display similarly enhanced
stress susceptibility over several generations [25]. Adult male mice subjected to chronic social
defeat stress generate offspring that are more vulnerable to a range of stressful stimuli than the
offspring of control mice [26]. Likewise, adolescent or adult male mice subjected to chronic
variable stress sire offspring that display aberrant stress regulation of the hypothalamic-pitui-
tary-adrenal axis as well as of gene expression in stress-sensitive brain regions [27].

However, the mechanisms underlying this clear transgenerational transmission of stress
vulnerability remain controversial. Stress produces DNA methylation changes at particular
genes in the sperm of stressed mice [25], yet it is far from certain whether such modifications
contribute to the differences seen in stress vulnerability (see below). Studies utilizing in vitro
fertilization—which has its own confounds (see below)—after chronic social defeat stress sug-
gest that, while epigenetic changes in sperm might be a small factor in transgenerational trans-
mission of stress vulnerability, a large portion of the observed transmission may be behavioral,
with females altering their maternal care based on their procreation with previously stressed
fathers [26].

Such skepticism for the transgenerational epigenetic inheritance of stress susceptibility is
based on current schemes whereby virtually all epigenetic modifications that occur throughout
life are “erased” during meiosis [28,29]. Even imprinted genomic loci—those displaying
increased DNA methylation selectively on maternal versus paternal alleles—are erased during
meiosis and then recapitulated later in development. Nevertheless, there appear to be a small
number of genomic regions that might not be subjected to demethylation, such that this possi-
ble mechanism of transgenerational epigenetic inheritance warrants future attention. Likewise,
evidence from nonvertebrate systems suggests that certain types of histone modifications may
play a role in mediating transgenerational epigenetic inheritance [23].

Additionally, increasing attention has been given to miRNAs as possible vehicles of transge-
neration epigenetic inheritance. In worms, for example, phenotypes as varied as viral immu-
nity, nutritional status, and aging can be influenced across several generations via induction of
specific miRNAs in parents [30-32]. Growing evidence implicates similar mechanisms in
transgenerational control of stress responses in mice. Both maternal separation early in life and
chronic variable stress later in adulthood alter levels of several miRNAs in sperm [27,33].
Moreover, injection of total sperm RNA [33] or injection of nine stress-regulated miRNAs [34]
into normal zygotes recapitulates the transgenerational transmission of behavioral, hormonal,
and gene expression deficits in offspring animals. Such recent studies are, thus, getting much
closer to providing definitive evidence for true epigenetic inheritance of stress susceptibility,
although it would be important to knockout or recapitulate changes in specific miRNAs in
sperm and show how they subsequently influence the brains of offspring animals to alter stress
responses.

The failure of in vitro fertilization to demonstrate robust epigenetic inheritance of social
defeat-induced susceptibility (stated above) [26] may not be surprising, since substantial
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epigenetic reprogramming occurs when sperm or egg cells are placed in vitro. In fact, a more
recent study, in which normal females have sex with normal (but vasectomized) males, fol-
lowed immediately by artificial insemination with sperm from defeated or control fathers, sup-
ports that sperm can indeed be an active vehicle in transmitting increased stress susceptibility
to the next generation [35]. It will be interesting in future studies to determine if this effect, too,
is mediated by miRNAs.

The final consideration in studying transgenerational epigenetic inheritance is the fact that
most groups have examined paternal transmission. This is due to two practical considerations.
First, studying paternal transmission is one generation easier, since the eggs of the F1 genera-
tion are present in mothers exposed to stress or any other stimulus, and the eggs of the F2 gen-
eration are present in those F1 pups. As a result, the first generation that could show true
transgenerational inheritance is F3. Second, it is well established that different amounts or
types of maternal care can have a profound, lasting effect on stress-related behavior in offspring
animals [8,36], which makes it that much harder to parse the effects of epigenetic mechanisms
versus maternal behavior when studying maternal transmission of traits. Despite these chal-
lenges, it is essential to evaluate epigenetic inheritance by maternal as well as paternal
transmission.

Conclusions

Further work is needed to understand whether and to what extent true epigenetic inheritance
of stress vulnerability adds to the well-established and powerful influence of genetics and envi-
ronmental exposures in determining an individual’s susceptibility versus resilience to stress
throughout life. Despite the two extremes of disbelief versus wild speculation, there is growing
evidence for at least some contribution of epigenetic regulation—perhaps achieved by miRNAs
—in mediating part of the ability of parental behavioral experience to influence stress vulnera-
bility in their offspring.
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