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Abstract

Background: Somatic copy number alternations (SCNAs) can be utilized to infer tumor subclonal populations in
whole genome seuqncing studies, where usually their read count ratios between tumor-normal paired samples serve
as the inferring proxy. Existing SCNA based subclonal population inferring tools consider the GC bias of tumor and
normal sample is of the same fature, and could be fully offset by read count ratio. However, we found that, the read
count ratio on SCNA segments presents a Log linear biased pattern, which influence existing read count ratios based
subclonal inferring tools performance. Currently no correction tools take into account the read ratio bias.

Results: We present Pre-SCNAClonal, a tool that improving tumor subclonal population inferring by correcting
GC-bias at SCNAs level. Pre-SCNAClonal first corrects GC bias using Markov chain Monte Carlo probability model, then
accurately locates baseline DNA segments (not containing any SCNAs) with a hierarchy clustering model. We show
Pre-SCNAClonal’s superiority to exsiting GC-bias correction methods at any level of subclonal population.

Conclusions: Pre-SCNAClonal could be run independently as well as serving as pre-processing/gc-correction step in
conjuntion with exsiting SCNA-based subclonal inferring tools.
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Background
Tumor heterogeneity introduces challenges in cancer tis-
sue diagnosis and subsequent treatment [1]. Currently,
projects such as TCGA [2] screened thousands of tumor
samples using whole-genome sequencing(WGS) on tis-
sue (bulk) cells, provide more explicit molecular insights
on identifying cancer cell types and sub-types than other
bioinformatics methods [3–6]. To decipher cell composi-
tion in bulk cell WGS, somatic copy number alterations
(SCNAs), commonly found in tumor cells [7], are uti-
lized as the representative to determine tumor subclonal
populations in a tumor-normal tissue paired manner by
existing tools, e.g. MixClone [8], THetA [9]. The bene-
fits of using SCNAs is that the WGS data doesn’t have to
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be deeply sequenced [8]. However, existing tools lack the
ability to properly account for sequencing GC bias which
is widely observed in DNA-seq data [10].

Evidences have showed that GC-bias could affect SCNA
identification in tumor cells [11–13]. Existing tools con-
sider the SCNA segments have the same sequence proper-
ties between the normal and tumor samples, and consider
the bias could be offset to use the read count ratios
between tumor and normal paired samples [8, 9]. How-
ever, We found that, in a GC biased study, the GC con-
tents and read count ratios on SCNA segments present
a Log linear biased pattern. Though existing method
[14] suggests removing GC bias by modeling GC cotent
with tumor-normal coverage difference for small genomic
windows, however, we find that small window is not a
proper and robust resolution for SCNA.
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We present Pre-SCNAClonal, a tool that improving
tumor subclonal population inferring by correcting GC-
bias at SCNAs level. Pre-SCNAClonal first corrects GC
bias using Markov chain Monte Carlo probability model,
then accurately locates baseline DNA segments (not con-
taining any SCNAs) with a hierarchy clustering model. We
show Pre-SCNAClonal’s superiority to exsiting GC-bias
correction methods for SCNA-based tumor reconstruc-
tion tools at any level of subclonal population. We also
note that Pre-SCNAClonal could be run independently
as well as serving as pre-processing/gc-correction step in
conjuntion with exsiting SCNA-based subclonal inferring
tools.

Data
The WGS data of human breast cancer HCC2218 and
HCC1954 with different levels of normal contamination
(coverage 30x) are used to validate the method pro-
posed in this paper. Each of the HCC1954 samples,
HCC1954.mix1.n5t95, HCC1954.mix1.n20t80, HCC19-
54.mix1.n40t60, HCC1954.mix1.n60t40, HCC1954.mix1.-
n80t20 and HCC1954.mix1.n95t5, contains one tumor
subclone. The tumor subclonal frequencies (or tumor
purity) of these samples are 0.95, 0.80, 0.60, 0.40, 0.20 and
0.05, respectively. We also use the data of human ovary
cancer sample TCGA-13-0723 in Benjamini’s work [11] to
show the read count ratio’s GC bias between paired tumor
and normal sample.

The WGS sequence alignment data (.bam files) of
HCC2218 and its paired normal sample are publicly
available on Illumina BaseSpace Sequence Hub website
https://basespace.illumina.com. The WGS sequence
alignment data (.bam files) of HCC1954 and its paired
normal sample and the WGS data with different levels
of normal contamination are public available at National
Cancer Institute GDC Data Portal https://gdc.cancer.gov/
resources-tcga-users/tcga-mutation-calling-benchmark-
4-files. The WGS sequence alignment data (.bam files) of
TCGA-13-0723 is available at National Cancer Institute
GDC Data Portal https://portal.gdc.cancer.gov/ only for
authorized user.

Methods
GC bias of the tumor WGS data does not have the same
feature as its paired normal
Let coefficient θj denote the effect of mappability and
genomic length of segment j, C̄j denote the average copy
number of segment j, λj denote the expected read counts,
and let DN

j denote the read counts of segment j in matched
normal genome, then for segment i and segment j, existing
SCNA based tumor subclonal populations inferring tools
[8, 9] assume that λi/λj = C̄iθi/C̄jθj, and θi/θj = DN

i /DN
j ,

then
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Figure 1 shows the two normal libraries from the same
normal sample, and there is a crossover point of the two
loess lines. Here we suppose the normal Lib 2 is a tumor
sample has no variations, and normal Lib 1 is its paired
normal sample. According to Eq. 1,
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If j is the crossover point, we have DLib2
i = DLib1

i , which
means the two loess lines should overlap each other. This
demonstrates that the GC bias is different in the tumor
and its paired normal sample.

Modelling the difference of GC bias between paired tumor
and normal sample
We find that, the difference between the GC bias of tumor
and its paired normal could be modelled as following
equation,

DN
i = f (GCi)

exp(a1 ∗ GCi)/(d1 ∗ GCi)

DS
i = f (GCi)

exp(a2 ∗ GCi)/(d2 ∗ GCi)

, (3)

In this equation, f (GCi) is a function of GC content,
which represents the bias feature that shared by tumor
and its paired normal sample. a1, a2, d1 and d2 denote
the distinctions of bias feature between tumor and its

Fig. 1 GC curves (10 kb bins). Observed fragment counts and loess
lines plotted against GC of two libraries from the same normal sample
TCGA-13-0723.Bins were randomly sampled from chromosome 1.
This Figure is drawn by Benjamini et al. [11]
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paired normal sample. a1 and a2 represent the curvature
of tumor and its paired normal sample respectively; d1 and
d2 represent the distance of tumor and its paired normal
sample respectively; As shown in Fig. 2, the distinctions of
bias feature between the paired tumor sample HCC1954
and its paired normal HCC1954 BL could be well captured
by this model.

According to Eq. 3, Eq. 1 is transformed into

DS
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DS
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= C̄i
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∗ exp
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, (4)

then,
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Equation 5 reveals that the read count ratio presents a
Log linear biased pattern on SCNAs which we will prove
it later. Equation 5 also shows that the read count ratio’s
GC bias between paired tumor and normal sample exists
if the curvature of tumor and its paired normal sample are
not the same. We also find this phenomenon in HCC2218
(Additional file 1: Figure S1).

BAF in tumor WGS data presents symmetrical pattern in
[ 0, 1] at heterozygous SNP sites
Let μi denote the BAF of SCNA segment i of tumor
genome on germline heterozygous SNP site, and let Ci, Gi
respectively denote the absolute copy number and geno-
type of SCNA segment i. The B allele (non-reference
allele) could be either maternal or paternal allele, thus

the BAF of SCNA segments of tumor genome presents
symmetrical pattern in [0, 1] (please see Additional file 1:
Supplementary 3.3.2 for detail proof). Let ξi denote the
BAF of the tumor sample, φi denote the subclonal popula-
tion frequency, then,

ξi = φi ∗ Ci ∗ μi + (1 − φi) ∗ 2 ∗ 1
2

C̄i
, (6)

C̄i = φi ∗ Ci + (1 − φi) ∗ 2. (7)

In Eqs. 6 and 7, ‘2’ and ‘ 1
2 ’ are the copy number and het-

erozygous BAF of normal sample. Then, ξi is symmetrical
in [0, 1], because μi is symmetrical in [0, 1].

GC bias of read count ratio affects SCNA based subclonal
population analysis
By increasing the window size to 5000bp (Fig. 3c) or even
larger at SCNA level (Fig. 3b), the 2D plot between GC
content and tumor-normal coverage ratio clearly clustered
into multiple stripes. It is noted that the relationship is
pretty linear between GC content and log ratio of tumor-
normal coverage on SCNAs (Fig. 3a) and we show that
slopes of linear relation vary across tumors (Additional
file 1: Figure S1). We also show that the gaps between
the stripes in Fig. 3a are proportional to the subclonal
populations (as shown in the sub-figures in the first col-
umn of Fig. 4). The SCNA segments which are clustered
into the same stripe, present the symmetrical pattern of B
allele frequency (BAF) density on the heterozygous allele
loci of paired normal sample (Fig. 3e), which reveals that
these SCNA segments in the same stripe contain the same
copy number(see Additional file 1: Supplementary 3.3.2
for detail proof). While using the ratio of read counts of
SCNA segments to get the precise subclonal population

a b
Fig. 2 The relationship of GC bias between paired tumor and normal samples. a The GC bias distribution of read count observed in 500bp bins with
high mappability (top 10%). To account for uniqueness of sequences, a mappability measure is calculated for each position (base pair) in the bin. A
location is called ‘mappable’ if the k-mer of the reference genome starting at the location is not perfectly repeated at any other location in the
genome, where k is the read length. Both of the tumor and normal samples are processed by Illumina platform to produce the reads, and use
GATK’s table recalibration and use Burrows-Wheeler Aligner (bwa) to align the sequence data with the same parameters. b In this figure, the red and
blue solid lines are the mean functions of loess smooth in (a). The red and blue dashed lines are the mean functions of loess smooth in (a) multiplies
exp(1.3 ∗ GC)/(2.3 ∗ GC) and exp(2 ∗ GC)/(3 ∗ GC) respectively
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Fig. 3 GC bias of WGS data of tumor-normal paired sample HCC1954.mix1.n20t80 of TCGA mutation calling benchmark 4. Let DS and DN

respectively denote the read counts of the segment of tumor and normal samples. a The GC bias of the Log ratio of tumor and normal read counts
of the SCNA segments. The purple and blue lines are linear regression and loess regression lines respectively. b The GC bias of the ratio of tumor and
normal read counts of the SCNA segments. The red line are drawn by the loess regression model with a quadratic polynomial function, which is
used to rectify the distribution of the ratio DS/DN in the state-of-art GC correction method [14]. c The GC bias of the ratio of tumor and normal read
counts of the 5000 bp bin. Since the majority (81%) of CNV calls are between 1 kb and 100 kb [17], most of 5000 bp bins spans only one SCNA. This
sub-figure shows most SCNAs clustered clearly into multiple strips. d The GC bias of the ratio of tumor and normal read counts of the 500 bp bin.
e The distribution of B-allele frequency (BAF) of stripe 1–6 in Fig. 3a. The SCNA segments are obtained by BIC-seq [18]

of each SCNA, it needs to correct the GC bias of the gap
first.

Existing read count ratio’s GC bias correction methods are
not suitable for SCNA based subclonal population analysis
Existing GC correction methods for WGS data of tumor
normal paired sample, such as CNAnorm [14], rectifies
the distribution of the ratio of read counts of the small
window, aiming at finding the position of SCNA and abso-
lute copy number (Fig. 3d) by merging the adjoining small
window with similar ratio properties. This method uses
regression model to rectify the GC content distribution
of the ratio and hence removing the dependencies on GC
content. However, while using this GC correction method
to rectify the bias of read count ratio for SCNA based
subclonal population analysis, it additionally requires the
regression correctly capture the slope of the gaps between
the SCNA stripes. As shown in Fig. 3a and b, linear or
loess regression could be easily biased by outliers, regres-
sion lines in Fig. 3a and b do not parallel the stripes, hence
there would still exist GC content bias after removing the

dependencies on GC content based on these regression
lines (see Fig. 4).

Models of Pre-SCNAClonal for read count ratio’s GC bias
correction for SCNA based subclonal population analysis
MCMC model
Pre-SCNAClonal uses a Markov chain Monte Carlo
(MCMC) model to pick out the maximum posterior prob-
ability of stripe slope m listed in Eq. 8,

p(m|Y , X) ∼ p(m) ∗ p(Y , X|m)

m ∼ Uniform(a − δ, a + δ)

p(Y , X|m) = �(D, τ ∗ max(cn))

D = density(Y ′)
Y ′ = Y − (m ∗ X + c) + median(Y )

, (8)

here Y, X denotes log
(
DS/DN)

and GC content respec-
tively; a, c are slope and intercept pre-determined by two
points, coordinates of which are the median of Y and X
at high and low GC content areas; δ is the slope range
pre-specified; D denotes the density function, �(D, τ ∗
max(cn)) denotes the sum of top (largest) τ ∗ max(cn)
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Fig. 4 Read count ratio’s GC bias correction of HCC1954 with different levels of normal contamination. Here ‘n5t95’, ‘n20t80’, ‘n40t60’, ‘n60t40’ and
‘n95t5’ respectively denote the tumor sample ‘HCC1954.mix1.n5t95’, ‘HCC1954.mix1.n20t80’, ‘HCC1954.mix1.n40t60’, ‘HCC1954.mix1.n60t40’,
‘HCC1954.mix1.n80t20’ and ‘HCC1954.mix1.n95t5’. Subfigures in the ‘Origin’ column show the GC bias of read count ratio before correction, and
column ‘MCMC’ and ‘Regression’ show the GC bias of read count ratio after the correction by MCMC model of Pre-SCNAClonal and Regression
model respectively. The red lines are the linear regression lines. All the subfigures are plotted by Pre-SCNAClonal
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peaks of density curve of D; τ denotes the number of sub-
clonal populations, max(cn) denotes the maximum copy
number pre-defined. Y ′ represents the corrected Y.

Hierarchy clustering model
Note that, normally, the read counts of tumor segments
without SCNA (defined as baseline) are not equivalent
to those from paired normal samples due to coverage

difference. According to Eqs. 6 and 7, the C̄i and ξi of base-
line segment always equals to 2 and 1

2 respectively. If and
only if μi = 1

2 , ξi = 1
2 . Then according to Eqs. 5 and 7, the

baseline segments locate in the SCNA stripe with ξi = 1
2

and the smallest log DS
i

DS
i

, because only positive even Ci with

equal paternal and maternal copy could make μi = 1
2 .

Thus, after the GC correction, Pre-SCNAClonal picks out

a

b

Fig. 5 Distribution of log DS/DN and baseline segments. a The green and blue points together are the segments without LOH, the blue points are
the baseline segments selected by MixClone, The blue line in each sub-figure is the average value of DS

j /DN
j of baseline segments. b The green and

blue points together are the segments with no LOH and B allele frequencies around 0.5, the red points are the baseline segments selected by
Pre-SCNAClonal. The red line in each sub-figure is the average value of log DS/DN of baseline segments. All the points in this figure are plotted by
ggplot2 R package with opacity parameter α = 0.05
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all the segments with ξi = 1
2 , and imports a hierarchy clus-

tering model to group the segments into several clusters,
then Pre-SCNAClonal selects the cluster with smallest
log DS

i
DS

i
as baseline segments.

Results
We use WGS data of HCC1954 with different levels of
normal contamination (coverage 30x) to test the models
of Pre-SCNAClonal.

Result of MCMC model
As shown in Fig. 4, MCMC model of Pre-SCNAClonal
could better correct the read count ratio’s GC bias than
linear regression method [14]. The GC correction
results of linear regression are either over-corrected
(HCC1954.mix1.n5t95 and HCC1954.mix1.n20t80) or under-
corrected(HCC1954.mix1.n60t40, HCC1954.mix1.n80t20
and HCC1954.mix1.n95t5).

To further test MCMC model, we also develop a package
that could simulate data with extreme bias (please refer
to Additional file 1: Supplementary 2.1 for detail). Results
show that the MCMC model of Pre-SCNAClonal is robust
and noise tolerant, outperforms the regression method in
CNAnorm [14].

Result of hierarchy clustering model
The baseline selection method in MixClone [8] obtains
baseline by removing outliers of read count ratios of the
segments that do not lose heterzygosity(LOH). In the
WGS data, it is difficult to distinguish LOH from sequenc-
ing deviation or error. As shown in Fig. 5a, segments that
do not lose heterzygosity are randomly distributed every-
where. Baseline selection method of MixClone almost
picks out all the segments as baseline while the tumor
purity is low. In comparison, as shown in Fig. 5b, baseline
obtained by Pre-SCNAClonal is lower and more consis-
tent than the baseline obtained by MixClone.

We calculate the ploidy number based on baseline seg-
ments’ log DS

i
DN

i
to validate baseline selection model of Pre-

SCNAClonal, and the result shows that the tumor sample
HCC1954 is tetraploidy which is the same as results of
COSMIC [15] and ABSOLUTE [16](for detail procedure,

please see Additional file 1: Supplementary 3.3.1). Fur-
thermore, the BAF distribution on germline heterozygous
SNP site also shows the baseline segments obtained by
hierarchy clustering models are correct (for detail proce-
dure, please see Additional file 1: Supplementary 3.3.2).

Result of pipeline test
We respectively string Pre-SCNAClonal with two typi-
cal SCNAs based subclonal inferring tools, MixClone [8]
and THetA [9], to test the bias correction and baseline
selection models of Pre-SCNAClonal on HCC1954. As
shown in Table 1, Pre-SCNAClonal–MixClone pipeline
almost precisely estimated the subclonal frequency for
all HCC1954 tumor samples, which outperforms Mix-
Clone alone a lot. Pre-SCNAClonal–THetA pipeline also
provided better estimation than THetA alone (THetA
could not run on sample ‘n80t20’ and ‘n95t5’ for their
BIC-seq segments number lower than 1000). This result
shows that Pre-SCNAClonal could greatly improve the
performance of tumor subclonal population inferring
algorithms.

Discussion
Generally, SCNAs with larger subclonal frequency could
be more precisely located relatively. However, due to the
twice sequencing procedures of tumor and its paired
normal, the read information of the genomic regions
with the same copy number in tumor sample is not
exactly the same as its paired normal’s. Moreover, the
lower read overage of next generation sequencing (NGS)
makes the perturbation more likely to be mistaken for
a SCNA. As shown in Fig. 6, the number of SCNA
breakpoints obtained by SCNA detection tool is pro-
portional to the subclonal frequency. For the samples
with higher subclonal frequency, the “true” SCNA seg-
ments could be segmented into multiple segments, which
causes the Fig. 3c and b presents the same stripe
pattern.

For NGS based SCNA analysis, the read count ratio
stripes could serve as a good proxy for bias correction,
even if the break points are not correct, because the read
count ratio of the “true” SCNA segment is preserved as
the center of read count ratio stripe.

Table 1 Pipeline test of Pre-SCNAClonal on HCC1954

Sample name n5t95 n20t80 n40t60 n60t40 n80t20 n95t5

Pre-SCNAClonal–MixClone (%) 0.874 0.722 0.523 0.374 0.200 0.054

MixClone (%) 0.645 0.589 0.471 0.199 0.144 0.188

Pre-SCNAClonal–THetA (%) 0.572 0.461 0.281 0.163 - -

THetA (%) 0.463 0.374 0.269 0.148 - -

Here ‘n5t95’, ‘n20t80’, ‘n40t60’, ‘n60t40’ and ‘n95t5’ respectively denote the tumor sample ‘HCC1954.mix1.n5t95’, ‘HCC1954.mix1.n20t80’, ‘HCC1954.mix1.n40t60’,
‘HCC1954.mix1.n60t40’, ‘HCC1954.mix1.n80t20’ and ‘HCC1954.mix1.n95t5’. Each of these sample contains one tumor subclone. Numbers in the table are the tumor subclonal
frequencies predicted by the pipeline
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Fig. 6 Breakpoints distribution on chromosome 1 of mixed “HCC1954”
samples. Here ‘n5t95’, ‘n20t80’, ‘n40t60’, ‘n60t40’ and ‘n95t5’ respectively
denote the tumor sample ‘HCC1954.mix1.n5t95’, ‘HCC1954.mix1.n20t80’,
‘HCC1954.mix1.n40t60’, ‘HCC1954.mix1.n60t40’, ‘HCC1954.mix1.n80t20’
and ‘HCC1954.mix1.n95t5’. ‘n0t100’ denotes the tumor sample
‘HCC1954’ contains no normal contamination. Each of these sample
contains one tumor subclone. All the breakpoints are obtained by
BIC-seq [18]

Conclusion
Pre-SCNAClonal proposed in this paper is a robust GC
bias correction and baseline selection tool for SCNAs
based tumor subclonal inferring. Pre-SCNAClonal could
correct the read count ratio’s GC bias and improve the
performance of SCNA based subclonal inferring tools at
all levels of tumor subclonal frequency even the subclonal
frequency is very small. Furthermore, Pre-SCNAClonal
also provides an user-friendly interface for visualizing
and manually correcting the GC bias of read count
ratio.

Additional file

Additional file 1: Modeling and Correct the GC bias of tumor and normal
WGS data for SCNA based tumor subclonal population inferring. (PDF 2570 kb)
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