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Abstract: Programmed death ligand 1 (PD-L1) expression is a predictive biomarker of the success of
PD-1/PD-L1 inhibitor therapy for patients with advanced non-small cell lung cancer (NSCLC) but
its role as a prognostic marker for early-stage resectable NSCLC remains unclear. We studied gene
expression levels of immune-related genes PD-1, PD-L1, PD-L2, IDO-1, IDO-2 and INFγ in tumor
tissue of surgically resected NSCLC and correlated the finding with clinicopathological features and
patient outcomes. A total of 191 consecutive early-stage NSCLC patients who underwent curative
pulmonary resection were studied. The mRNA expression levels of immune-related genes were
evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) using RT2

Profiler PCR Arrays (Qiagen). PD-1, PD-L2 and IDO-2 gene expression levels were significantly
higher in patients with squamous histology (p = 0.001, p = 0.021 and p < 0.001; respectively). PD-1, PD-
L1 and IDO-2 gene expression levels were significantly higher in patients with higher stage (p = 0.005,
p = 0.048 and p = 0.002, respectively). The univariate analysis for recurrence-free survival (RFS) and
overall survival (OS) showed that patients with higher levels of three-genes (PD-L1/PD-L2/INFγ)
(hazard ratio (HR)) 1.90 (95% confidence interval (CI), 1.13–3.21), p = 0.015) were associated with a
worse RFS, while patients with higher levels of both genes (PD-L1/IDO-2) or (PD-L2/IDO-1) were
associated with a worse OS (HR 1.63 95% CI, 1.06–2.51, p = 0.024; HR 1.54 95% CI, 1.02–2.33, p = 0.04;
respectively). The multivariate interaction model adjusted for histology and stage confirmed that
higher levels of three genes (PD-L1/PD-L2/INFγ) were significantly associated with worse RFS (HR
1.98, p = 0.031) and higher levels of both genes (PD-L1/IDO-2) and (PD-L2/IDO-1) with worse OS
(HR 1.98, p = 0.042, HR 1.92, p = 0.022). PD-L1/IDO-2 and PD-L2/IDO-1 co-expression high levels
are independent negative prognostic factors for survival in early NSCLC. These features may have
important implications for future immune-checkpoint therapeutic approaches.
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1. Introduction

Lung cancer is the leading cause of cancer-related mortality worldwide, with an
estimated 1.3 million new cases each year [1,2]. Non-small-cell lung cancer (NSCLC)
constitutes approximately 80% of all lung cancer cases and has a 5-year survival rate
of only 15–20% [3]. Immune checkpoint inhibitors have begun to revolutionize the sur-
vival prospects of cancer patients [4–6], particularly those blocking the PD-1/PD-L1 (pro-
grammed cell death 1/programmed cell death 1 ligand 1) axis, which have yielded objective
response rates of about 20% and are currently approved by the Food and Drug Admin-
istration (FDA) for a subset of patients with advanced disease [7–10]. Importantly, in
patients with advanced NSCLC and PD-L1 expression on at least 50% of tumor cells,
PD-1 inhibition was associated with longer progression-free and overall survival than
platinum-based chemotherapy [11]. However, large cohorts of patients do not display a
clinical response to PD-1/PD-L1 axis inhibition at late stages in disease progression. This
has been attributed to several potential mechanisms, including low PD-L1 expression,
T cell exclusion from tumor islets (cold tumors), and T cell dysfunction that emerges in
the context of chronic antigen exposure [12–16]. Early-stage disease presents with a more
intact immune system and a lower tumor burden, possibly affording immune checkpoint
blockade the potential to confer a more favorable outcome. However, there are limited
data on the prevalence and the prognostic role of PD-L1 expression in early-stage NSCLC.
Data from small previously published studies is mixed with some showing poor prognosis
and others with no prognostic significance [17–20]. PD-1 has two binding ligands, PD-L1
(B7-H1, CD274) and PD-L2 (B7-DC, CD273), both of which belong to the B7 family. PD-L2 is
mainly expressed on activated dendritic cells and macrophages. PD-L1 is not only broadly
expressed on non-immune cells, such as T cells, B cells, macrophages, and dendritic cells,
but is also upregulated after their activation. Evaluation of PD-L1 positivity by conven-
tional immunohistochemistry (IHC) is not well defined and subject to antibody and assay
variability and interpretative subjectivity. In addition, the specificity and reproducibility
of commercially available antibodies has not been thoroughly assessed. The expression
and biological role of additional potentially actionable immune targets beyond PD-L1 in
lung cancer are not well understood. A mechanism to escape the immunosurveillance
could be played by indoleamine 2,3-dioxygenase 1 (IDO-1) that has been described in
several human cancers. IDO-1 is a 42-45KD enzyme which catalyzes the rate limiting
steps of tryptophan (Trp) degradation along the kynurenine pathway [21]. IDO-1 exerts a
potent immunosuppressive effect through inhibiting T-lymphocytes and other immune
cells; additionally, IDO-1 has been shown to induce favorable tumor progression in animal
models of lung cancer [22,23]. Variable levels of IDO-1 have been found in human solid
tumors including melanomas, gliomas, and carcinomas from different locations. Blockade
of IDO-1 using small molecule inhibitors in combination with immune checkpoint blockade
induces prominent antitumor responses in mouse models and reversal of tumor-associated
immunosuppression by 1methyl-D-tryptophan appears to be dependent on host IDO-1
expression [24]. Furthermore, a cytokine such as interferon-γ (INFγ) is critical for innate
and adaptive immunity. Once antigen-specific immunity develops, INFγ is secreted by
activated effector T cells [25]. INFγ upregulates Major Histocompatibility Complex (MHC)
class I and class II molecules and promotes antigen presentation on tumor cells [26]. With
these functions, INFγ was expected to work as an antitumor agent. INFγ is also known
to upregulate PD-L1 expression on tumor cells [26]. In mouse melanoma models, INFγ
secreted from CD8-positive T cells was reported to upregulate PD-L1 [27]. In addition,
INFγ can upregulate expression of other key immune suppressive molecules such as IDO-1
within the tumor microenvironment. Tumor adaptation takes advantage of this delicate
balance of positive and negative immune signaling factors, allowing the cancer to sur-
vive and progress. Although the assessment of PD-L1 expression on tumor and immune
cells can be useful to predict clinical response to PD-1 checkpoint blockade, it offers only
limited insight into the biology of the tumor-immune interface. In particular, PD-L1 ex-
pression might represent only a component of T cell–related biology that is relevant to
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a favorable tumor immune microenvironment (TIM). Newer genomic technologies can
be used to evaluate complexities of tumor and host immune cell interactions within the
tumor microenvironment, going beyond the measurement of single analytes such as PD-L1.
Zheng et al. [28] recently demonstrated a signature based on the B7-CD28 family that can
predict lung adenocarcinoma patient prognosis. Nevertheless, their investigations were
limited to B7-CD28 family members, which may not represent the status of the entire TIM.
Therefore, it is essential to develop an immune signature on the basis of a comprehensive
list of immune-related genes that can stand for the immune status of TIM and have prog-
nostic ability in lung cancer. Our efforts concentrated on developing an immune signature
with prognostic ability based on the comprehensive list of immune-related genes (PD-1,
PD-L1, PD-L2, IDO-1, IDO-2 and INFγ) and then examining gene expression in the tumor
microenvironment. To this end, we used RNA isolated from fresh tumor tissue samples
of resected NSCLC patients and evaluated the correlation of gene expression levels with
clinicopathological parameters and their impact on recurrence-free survival (RFS) and
overall survival (OS).

2. Materials and Methods
2.1. Patient Selection

This study included consecutive patients with a histological diagnosis of stage I–III
NSCLC who underwent pulmonary resection of the primary tumor in the period from
2009 to 2015 and who were then followed on a regular basis in a specific follow-up pro-
gram. Human lung cancers and their corresponding non-tumor tissue (normal lung) were
collected after surgery and were instantly put in a solution containing RNAlater (Qiagen
S.p.A., Milan, Italy), then were frozen in liquid nitrogen and stored at −80 ◦C refrigeration.
Samples had to contain at least 50% tumor cells to be eligible for array quantitative reverse
transcription polymerase chain reaction (qRT-PCR) analysis as determined by one reference
pathologist (G.B.) on adjacent separate sections. The pathological stage [29] was reassigned
according to the 8th TNM staging and lung tumor histology was reclassified according to
the 2015 World Health Organization (WHO) classification for lung tumors [30]. Follow-up
including annual computed tomography (CT) scans of the chest and abdomen and chest
X-rays in the 3 to 6 months intervals between the annual CT was planned for all patients in
the first 3 years. None of the patients had prior anti-PD-1/PD-L1 therapies, neoadjuvant
chemotherapy or EGFR/ALK-targeted therapy. Patients with stage II/III disease may
have been offered adjuvant chemotherapy and patients with recurrent disease received
chemotherapy and/or EGFR-targeted therapy. The study was approved by the local Ethics
Committee (Number 2216/13 of Comitato Etico Aziende Sanitarie (CEAS) Umbria) and
was conducted in accordance with ethical principles of the latest version of the Declaration
of Helsinki. Written informed consent for gene expression analyses was obtained from
each patient entering the study.

2.2. RNA Extraction and Array Quantitative Reverse Transcription Polymerase Chain Reaction
(qRT-PCR)

Total RNA was extracted from frozen tumor tissues and normal lung after thawing
and homogenizing by IKA Ultra-Turrax and QIAzol Lysis Reagent. RNA was extracted
with the phenol chloroform method. From the aqueous phase, RNA was automatically
purified by QiaCube instrument using miRNeasy Mini Kit according to the manufacturer’s
instructions (Qiagen, Milan, Italy). RNA was eluted in 50 µL of RNase-free water and
stored at −80 ◦C until use. The quality, integrity and quantity of the total RNA was
evaluated on Experion™ Bioanalyzer (Biorad Technologies, Italy). Quantification of mRNA
expression levels of PD-1, PD-L1, PD-L2, IDO-1, IDO-2 and INFγ were performed in
triplicates by qRT-PCR using RT2 Profiler PCR Arrays (Qiagen, Milan, Italy). For each
array, 1µg of RNA was reverse transcribed using Super Array’s first strand cDNA synthesis
kit. Each real-time PCR reaction was performed with cDNA synthesized from 9 ng of
RNA using Super Array’s RT2 Real-Time™ SYBR Green/ROX PCR Master Mix (PA-012)
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in a 25 µL reaction volume on the ABI 7300 Real-Time PCR System. Each PCR array also
included stringent controls to monitor RNA quality by assessing reverse transcription
efficiency, genomic DNA contamination to ensure the reliability of the PCR Array data
and three housekeeping genes: glyceraldehyde 3-phosphate dehydrogenase (GAPDH),
hypoxanthine phosphoribosyltransferase 1 (HPRT) e la β-actin, (ACTB). Nuclease-free
water was used as template control. All reagents were dispensed automatically on the
Hamilton Starlet platform. The gene expression results were calculated using the 2−∆∆Ct

method [31] considering as calibrator the normal lung tissues of each patient and as internal
reference gene the housekeeping HPRT as it has shown a lower variability (mean Ct value
of 26.7 (range 25.7–27.6), standard deviation (SD = 0.51) with respect to GAPDH (mean Ct
value of 21.1 (range 18.8–22.1, SD = 0.82) and ACTB (mean Ct value of 18.8 (range 16.6–20.1,
SD = 1.02).

2.3. Statistical Analysis

In order to assess the discriminatory accuracy of the mRNA gene expressions for
predicting OS endpoint, we performed a bootstrap procedure to select the optimal cut-off
point (COP). We used the regular Leaveone-out and 2000 repeats of the bootstrap [32].
The COP indicates which value of decreased or increased expression is relevant for the
discrimination for overall survival. Based on these COPs, the two groups were divided
into two subgroups which showed an expression rate over or under the COP. Continuous
genes expression fold changes were correlated with the Kendall rank method and the
significative test was adjusted using Bonferroni. Fisher’s exact test and Pearson х2 test were
used to assess the association between immune-related gene expression groups based on
COPs and clinical features. OS was calculated from the date of surgery to the date of death,
and RFS was calculated from the date of surgery to the date of progression/recurrence or
date of last follow-up. Survival analyses were performed according to the Kaplan–Meier
method. Comparison of survival between groups was performed with the log-rank test.
Cox’s proportional-hazard analysis was used for univariate and multivariate analysis to
explore the effect of variables on survival. Statistical analyses were performed with R (3.6.2)
was used for all statistical analyses, and a p-value of 0.05 was considered significant.

3. Results
3.1. Patient Characteristics

From April 2008 to February 2015, 191 patients with radically resected NSCLC, referred
to the Department of Thoracic Surgery, Perugia University Hospital, Italy, were recruited.
Histological diagnosis was confirmed independently by three pathologists (G.B., M.M.
and A.S.) at the Section of Anatomic Pathology and Histology, Department of Medicine
and Surgery, University of Perugia, Italy. Patient characteristics are reported in Table 1.
Median age at diagnosis was 67.6 years (range, 38.7–84.3), the majority of patients were
male (n.137/191, 71.7%), former or current smokers (n.175/191, 91.6%), with good ECOG-
PS (0: n.188/191, 98.4%), poorly differentiated histology (n.81/191, 42.4%) and stage
I disease (n.101/191, 52.9%). Histological types included 120 (62.8%) adenocarcinoma
(ADC), 69 (36.1%) squamous cell carcinoma (SCC), and 2 (1.1%) adenosquamous carcinoma.
The following resections were carried out: 183 lobectomies (95.8%), 4 pneumonectomies
(2.1%) and four wedge resections (2.1%) with hilar and mediastinal lymph node dissection.
Following surgery, 49 patients (25.6%) were treated with chemotherapy, 12 (6.3%) with
radiotherapy, 4 (3.1%) with chemoradiotherapy and the remaining 130 (68.1%) received
no adjuvant treatment. Eighty-six (45%) patients relapsed after surgery, 105 (55%) had no
relapse. Ninety-six (50.3%) patients died between 1 and 133 months from initial diagnosis;
among them 62 (64.6%) died from lung carcinoma.
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Table 1. Patient characteristics.

Characteristics
Patients

N = 191 %

Median Age, years (range) 67.6 (38.7–84.3)

Gender
Female 54 28.3
Male 137 71.7

Smoking History
Never smokers 16 8.4

Former smokers 76 39.8
Current smokers 99 51.8

Histology
Invasive Adenocarcinomas 120 62.8
Squamous cell carcinomas 69 36.1

Adenosquamous carcinomas 2 1.1

Grading
1 11 5.8
2 99 51.8
3 81 42.4

pStage
I 101 52.9
II 56 29.3
III 34 17.8

Type of Resection
Lobectomy 183 95.8

Pneumonectomy 4 2.1
Other 4 2.1

Relapse
No 105 55.0
Yes 86 45.0

Exitus
Live 95 49.7
Dead 96 50.3

3.2. PD-1, PD-L1, PD-L2, IDO-1, IDO-2 and INFγ Gene Expression and Association with
Clinic-Pathological Characteristics

PD-1, PD-L1, PD-L2, IDO-1, IDO-2 and INFγ gene expression was evaluated in 191
patients. The mean value of PD-1 gene expression was 3.72 (range 0.16 to 68.55), of PL-L1
was 7.82 (range 0.24 to 88.10), of PD-L2 was 6.28 (range 0.65 to 59.22), of IDO-1 was 6.25
(range 0.11 to 149.20), of IDO-2 was 6.11 (range 0.06 to 92.21), of INFγ was 3.04 (range 0.10
to 66.70). When adopting the optimal overall cut-off point (COP) that was four times the
value of calibrator Fold-change, 40 patients (20.9%) had higher levels of PD-1, 114 (59.7%)
had higher levels of PD-L1, 88 (46.3%) had higher levels of PD-L2, 81 (42.4%) had higher
levels of IDO-1, 61 (31.9%) had higher levels of IDO-2 and 34 (17.8%) had higher levels of
INFγ. The frequency of expression levels of all immune-related genes and their associations
with the clinic-pathological variables of patients are shown in Table 2. PD-1, PD-L1 and
IDO-2 gene expression levels were significantly higher in patients with higher TNM stage
(p = 0.005, p = 0.048 and p = 0.002, respectively). PD-1, PD-L2 and IDO-2 gene expression
levels were significantly higher in those with squamous histology (p = 0.001, p = 0.021
and p < 0.001; respectively). PD-L2 gene expression was significantly higher in patients
aged <60 years (p = 0.016). We also assessed the correlations among the expression levels
of immune-related genes. As a continuous variable all the immune-related genes PD-1,
PD-L1, PD-L2, IDO-1, IDO-2 and INFγ were significantly correlated with each other with
p value < 0.001 (Figure 1). The same using the categorized variable according to COPs,
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there was a significant association between PD-L1 high expression and IDO-1 and IDO-
2 (x2 = 38.0 p < 0.001, x2 = 17.3 p < 0.001, respectively), as well as between PD-L2 high
expression and IDO-2 and IDO-1 (x2 = 24.5 p < 0.001, x2 = 45.4 p < 0.001, respectively).
Both PD-L1 and PD-L2 high expression were significantly associated with INFγ (x2 = 17.04
p < 0.001; x2 = 38.4 p < 0.001, respectively). The same association was found between IDO-1,
IDO-2 high expression and INFγ (x2 = 35.5 p < 0.0001; x2 = 8.4 p < 0.0001, respectively).

Table 2. Clinicopathological variables of patients according to PD-1, PD-L1, PD-L2, IDO-1, IDO-2, INFγ gene expression levels.

Variables
PD-1, N. (%) PD-L1, N. (%) PD-L2, N. (%) IDO-1, N. (%) IDO-2, N. (%) INFγ, N. (%)

Low High Low High Low High Low High Low High Low High

N 151 (79.1) 40 (20.9) 77 (40.3) 114 (59.7) 103 (53.4) 88 (46.1) 110 (57.6) 81 (42.4) 130 (68.1) 61 (31.9) 157 (82.2) 34 (17.8)

Age (years)
<60 24 (12.6) 10 (5.2) 11 (5.8) 23 (12.0) 12 (6.3) 22 (11.5) 16 (8.4) 18 (9.4) 22 (11.5) 12 (6.3) 25 (13.1) 9 (4.7)
≥60 127 (66.5) 30 (15.7) 66 (34.6) 91 (47.6) 91 (47.6) 66 (34.6) 94 (49.2) 63 (33.0) 108 (56.5) 49 (25.7) 132 (69.1) 25 (13.1)

p = 0.181 p = 0.297 p = 0.016 p = 0.170 p = 0.643 p = 0.145

Sex
Female 45 (23.6) 9 (4.7) 18 (9.4) 36 (18.9) 32 (16.8) 22 (11.5) 31 (16.2) 23 (12.0) 42 (22.0) 12 (6.3) 46 (24.1) 8 (4.2)
Male 106 (55.5) 31 (16.2) 59 (30.9) 78 (40.8) 71 (37.2) 66 (34.5) 79 (41.4) 58 (30.4) 88 (46.1) 49 (25.6) 111 (58.1) 26 (13.6)

p = 0.362 p = 0.217 p = 0.353 p = 0.974 p = 0.071 p = 0.675

Smoking
Never 15 (7.9) 1 (0.5) 6 (3.1) 10 (5.2) 8 (4.2) 8 (4.2) 7 (3.7) 9 (4.7) 14 (7.3) 2 (1.1) 14 (7.3) 2 (1.1)

Current 59 (30.9) 17 (8.9) 30 (15.7) 46 (24.1) 40 (20.9) 36 (18.9) 44 (23.0) 31 (16.8) 48 (25.1) 28 (14.7) 62 (32.5) 14 (7.3)
Former 77 (40.3) 22 (11.5) 41 (21.5) 58 (30.4) 55 (28.8) 44 (23.0) 59 (30.9) 40 (20.9) 68 (35.6) 31 (16.2) 81 (42.4) 18 (9.4)

p = 0.388 p = 0.975 p = 0.882 p = 0.502 p = 0.162 p = 0.920

Histology
Invasive

Adenocarcinomas 104 (54.4) 16 (8.4) 54 (28.3) 66 (34.6) 73 (38.2) 47 (24.6) 73 (38.2) 47 (24.6) 95 (49.7) 25 (13.1) 100 (52.4) 20 (10.5)

Squamous 45 (23.6) 24 (12.6) 23 (12.0) 46 (24.1) 29 (15.2) 40 (21.0) 36 (18.9) 33 (17.3) 33 (17.3) 36 (18.9) 55 (28.8) 14 (7.3)
Adenosquamous 2 (1.0) 0 (0.0) 0 (0.0) 2 (1.0) 1 (0.5) 1 (0.5) 1 (0.5) 1 (0.5) 2 (1.0) 0 (0.0) 2 (1.0) 0 (0.0)

p = 0.001 p = 0.146 p = 0.021 p = 0.498 p < 0.001 p = 0.702

Grading
1 8 (4.2) 3 (1.6) 2 (1.0) 9 (4.7) 5 (2.6) 6 (3.2) 3 (1.6) 8 (4.2) 7 (3.7) 4 (2.1) 7 (3.7) 4 (2.1)
2 81 (42.4) 18 (9.4) 43 (22.5) 56 (29.3) 55 (28.8) 44 (23.0) 61 (31.9) 38 (19.9) 74 (38.7) 25 (13.1) 82 (43) 17 (8.9)
3 62 (32.5) 19 (9.9) 32 (16.8) 49 (25.7) 43 (22.5) 38 (19.9) 46 (24.1) 35 (18.3) 49 (25.7) 32 (16.7) 68 (35.6) 13 (6.8)

p = 0.540 p = 0.299 p = 0.818 p = 0.094 p = 0.107 p = 0.261

p-Stage
I 89 (46.6) 12 (6.3) 49 (25.7) 52 (27.2) 59 (30.9) 42 (22.0) 65 (34.0) 36 (18.9) 80 (41.9) 21 (11.0) 87 (45,5) 14 (7.3)
II 39 (20.4) 17 (8.9) 18 (9.4) 38 (19.9) 28 (14.7) 28 (14.7) 31 (16.2) 25 (13.1) 31 (16.2) 25 (13.1) 45 (23.6) 11 (5.8)
III 23 (12.0) 11 (5.8) 10 (5.2) 24 (12.6) 16 (8.3) 18 (9.4) 14 (7.3) 20 (10.5) 19 (9.9) 15 (7.9) 25 (13.1) 9 (4.7)

p = 0.005 p = 0.048 p = 0.404 p = 0.059 p = 0.002 p = 0.208

Abbreviations: PD-1, programmed cell death 1; PD-L1, programmed cell death 1 ligand 1; PD-L2, programmed cell death 1 ligand 2; IDO-1,
indoleamine 2,3-dioxygenase 1; IDO-2, indoleamine 2,3-dioxygenase 2; INFγ, Interferon-γ; significant p value ≤ 0.05 in bold.Genes 2021, 12, x FOR PEER REVIEW 7 of 16 
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3.3. Prognostic Value of PD-1, PD-L1, PD-L2, IDO-1, IDO-2 and INFγ Gene Expression

Survival data in this study were taken on 30 November 2019. The median follow-up
time was 66 months (m) (range: 1.67 to 133 m) while 60 (34.5%) patients had cancer related
deaths. Eighteen (18.9%) of the 95 patients still on follow-up experienced recurrence: local
recurrence was observed in 7 patients (7.37%), lung recurrence and other sites in 11 patients
(11.6%). No statistically significant difference in RFS was observed among patients with
higher or lower levels for PD1 (p = 0.52) or PD-L1 (p = 0.35), or PD-L2 (p = 0.11), or IDO-1
(p = 0.27), or IDO-2 (p = 0.20), or INFγ (p = 0.08). Interestingly, the patients with higher
levels of three-genes (PD-L1/PD-L2/INFγ) showed a shorter RFS than patients with lower
levels (hazard ratio (HR) 1.90 (95% confidence interval (CI),1.13–3.21), p = 0.01 (Table 3,
Figure 2). There was no relevant difference in OS among patients with higher or lower
levels for PD1 (p = 0.29) or PD-L1 (p = 0.08), or PD-L2 (p = 0.12), or IDO-1 (p = 0.17), or
IDO-2 (p = 0.06), or INFγ (p = 0.26); whereas patients with higher levels of both genes
(PD-L1/IDO-2) or (PD-L2/IDO-1) showed a shorter OS than patients with lower levels
(HR 1.63 95%CI, 1.06–2.51, p = 0.02; HR 1.54 95%CI, 1.02–2.33, p = 0.04; respectively)
(Table 4, Figure 3). At univariate analysis, stage III and adenocarcinoma histology were
significantly associated with worse RFS (p = 0.01 and p = 0.03, respectively), whereas
male and stage II-III were significantly associated with worse OS (p = 0.04 and p = 0.02,
respectively). A multivariate Cox regression model for OS and RFS was built using the
variables that were found significant at univariate analysis. Higher levels of both genes
(PD-L1/IDO-2) (HR 1.98; 95% CI 1.02–3.83, p = 0.04), and both genes (PD-L2/IDO-1) (HR
1.92; 95% CI 1.10–3.35, p = 0.02), adjusting for stage (HR 1.65; 95% CI 1.03–2.63, p = 0.03)
were significantly associated with worse OS (Table 4). Higher levels of three genes (PD-
L1/PD-L2/INFγ) (HR 1.98; 95% CI 1.06–3.71, p = 0.03), adjusting for histology (HR 2.16;
95% CI 1.30–3.6, p = 0.003) and stage (HR 2.13; 95% CI 1.2–3.8, p = 0.01) were significantly
associated with worse RFS.

We have also performed the univariate and multivariate survival analyses for RFS
and OS of immune-related genes expression with respect to histological types.
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Table 3. Univariate and multivariate analyses for recurrence-free survival (RFS).

RFS

Univariate Analysis Multivariate Analysis

Variables N. Pts at risck HR 95% CI * p HR 95% CI * p

Age <60 (Ref) 34
≥60 157 0.84 0.49–1.44 0.54

Sex
F (Ref) 54

M 137 1.03 0.65–1.65 0.88

Smoking
Never (Ref) 16

Current 76 2.09 0.82–5.30 0.12
Former 99 1.58 0.62–4.00 0.33

Histology
Squamous (Ref) 69

Adenocarcinoma 120 1.62 1.02–2.58 0.03 2.16 1.30–3.60 0.003
Adenosquamous 2 1.39 0.18–10.25 0.32 1.36 0.17–10.46 0.76

p-Stage
I (Ref) 101

II 56 1.71 1.05–2.79 0.03 2.13 1.26–3.62 0.005
III 34 2.01 1.17–3.41 0.01 2.13 1.20–3.80 0.01

PD-1
Low < 4fc (Ref) 151

High ≥ 4fc 40 1.17 0.70–21.96 0.52

PD-L1
Low < 4fc (Ref) 77

High ≥ 4fc 114 1.22 0.79–1.90 0.35

PD-L2
Low < 4fc (Ref) 103

High ≥ 4fc 88 1.41 0.92–2.15 0.11

IDO-1
Low < 4fc (Ref) 110

High ≥ 4fc 81 1.26 0.832–1.93 0.27

IDO-2
Low < 4fc (Ref) 130

High ≥ 4fc 61 1.33 0.85–2.08 0.20

INFγ
Low < 4fc (Ref) 157

High ≥ 4fc 34 1.55 0.93–2.59 0.08

PDL1/PDL2/INFγ
Low < 4fc (Ref) 161

High ≥ 4fc 30 1.90 1.13–3.21 0.01 1.98 1.06–3.71 0.03

Abbreviations: RFS, Recurrence-free Survival; HR, Hazard Ratio; CI, Confidence Interval; PD-1, programmed cell death 1; PD-L1,
programmed cell death 1 ligand 1; PD-L2, programmed cell death 1 ligand 2; IDO-1, indoleamine 2,3-dioxygenase 1; IDO-2, indoleamine
2,3-dioxygenase 2; IFNγ, Interferon-γ; * p value ≤ 0.05 in bold.
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Table 4. Univariate and multivariate analyses for overall survival (OS) (Cox’s proportional hazard regression model).

OS

Univariate Analysis Multivariate Analysis

Variables N. Pts at risk HR 95% CI * p HR 95% CI * p

Age
<60 34
≥60 157 1.04 0.60–178 0.88

Sex
F (Ref) 54

M 137 1.62 1.00–1.64 0.04 1.53 0.94 0.08

Smoking
Never (Ref) 16 1

Current 76 1.81 0.77–4.28 0.17
Former 99 1.62 0.69–3.78 0.26

Histology
Squamous (Ref) 69

Adenocarcinoma 120 1.14 0.75–173 0.53
Adenosquamous 2 0.93 0.12–6.85 0.94

p-Stage
I (Ref) 101 1

II 56 1.68 1.07–2.64 0.02 1.65 1.03–2.63 0.03
III 34 1.55 0.90–2.66 0.10 1.46 0.83–2.57 0.18

PD-1
Low < 4fc (Ref) 151

High ≥ 4fc 40 1.26 0.78–2.04 0.29

PD-L1
Low < 4fc (Ref) 77

High ≥ 4fc 114 1.45 0.95–2.21 0.08

PD-L2
Low < 4fc (Ref) 103

High ≥ 4fc 88 1.37 0.91–2.04 0.12

IDO-1
Low < 4fc (Ref) 110

High ≥ 4fc 81 1.31 0.88–1.96 0.17

IDO-2
Low < 4fc (Ref) 130

High ≥ 4fc 61 1.47 0.97–2.22 0.06

INFγ
Low < 4fc (Ref) 157

High ≥ 4fc 34 1.33 0.80–2.20 0.26

PD-L1/IDO-2
Low < 4fc (Ref) 141

High ≥ 4fc 50 1.63 1.06–2.51 0.02 1.98 1.02–3.83 0.04

PD-L2/IDO-1
Low < 4fc (Ref) 132

High ≥ 4fc 59 1.54 1.02–2.33 0.04 1.92 1.10–3.35 0.02

Abbreviations: OS, Overall Survival; HR, Hazard Ratio; CI, Confidence Interval; PD-1, programmed cell death 1; PD-L1, programmed cell
death 1 ligand 1; PD-L2, programmed cell death 1 ligand 2; IDO-1, indoleamine 2,3-dioxygenase 1; IDO-2, indoleamine 2,3-dioxygenase 2;
IFNγ, Interferon-γ; * p value ≤ 0.05 in bold.
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In the adenocarcinomas group, the univariate analysis showed that the patients with
higher levels of PD-L2 (p = 0.02), IDO-2 (p = 0.005) and INFγ (p = 0.01) had a shorter RFS
than patients with lower levels. Interestingly, the patients with higher levels of two-genes
(PD-L1/IDO-2; p < 0.001), (PD-L2/IDO-1; p = 0.04) and three-genes (PD-L1/PD-L2/INFγ;
p = 0.005) showed a shorter RFS than patients with lower levels (Table S1). Similarly, the
univariate analysis for OS showed that the patients with higher levels of PD-L1 (p = 0.04),
IDO-1 (p = 0.05), two-genes (PD-L1/IDO-2; p = 0.02), (PD-L2/IDO-1; p = 0.03) and three-
genes (PD-L1/PD-L2/INFγ; p = 0.04) had a worst OS than patients with lower levels
(Table S2). However, these statistically significant differences were not confirmed in the
multivariate analysis.

In the subgroup of patients with squamous carcinoma, the univariate analysis showed
no statistically significant difference in RFS and OS among patients with higher or lower
levels of immune-related genes expression.

4. Discussion

This study was carried out to explore the relationship between gene expression levels
of immune-related genes (i.e., PD-1, PD-L1, PD-L2, IDO-1, IDO-2 and INFγ) assessed by
quantitative-PCR arrays and their association with prognosis on a series of resected NSCLC
patients. Only a few reports have evaluated gene expression of immune-related genes
in lung cancer and no data exist in resected NSCLC [33]. In the last few years, PD-L1
expression in lung cancer has been mainly studied at the protein level using IHC as in our
previous study [34]; however, divergent results have been reported, notably regarding its
prognostic value [35]. Such divergence has often been related to the usual limitations of
IHC such as the absence of standardization for PD-L1, mainly in terms of specificity and
reproducibility of available antibodies, the definition of positivity cutoff, and interpretative
subjectivity. Our study at the mRNA level allowed us to avoid these limitations and we
also evaluated a fairly large series of NSCLC patients. To the best of our knowledge, with
191 patients analyzed who had a longer follow-up (>5 years), this is the first comprehensive
analysis of the expression levels of immune-related genes in early NSCLC to evaluate their
association with survival. From a biological point of view, our results show that PD-1, PD-
L2 and IDO-2 gene expression levels were significantly higher in patients with squamous
cell carcinoma and PD-1, PD-L1 and IDO-2 gene expression levels were significantly higher
in patients with higher TNM stage. A positive association between high levels of PD-L1 or
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PD-L2 and IDO-1 or IDO-2 was also observed. From a clinical point of view, the subset
of patients with the concomitant higher levels of genes (PD-L1/PD-L2/INFγ) showed a
relative risk of 1.98 for reduced RFS, suggesting that relapse to disease was more associated
with higher levels of concomitant genes rather than with expression levels of individual
genes. Our results also showed that the concomitant higher levels of both PD-L1/IDO-2
and PD-L2/IDO-1 gene expression were independent negative prognostic factors for OS
in resected NSCLC patients. As shown in Figure 4, IDO signaling pathways exert an
immune suppressive function by the activation of T-reg cells and the anergy of T effector
cells. PD-L1/PD-1 inhibits T effector cell proliferation and stimulate T-reg cell proliferation
while INFγ upregolates PD-L1, PD-L2 and IDO expression. An immune suppressive
micro-environment promotes tumor growth, an increasing risk of progression (poor RFS)
and an unfavorable prognosis (worse OS). Taken together, it is conceivable that patients
with higher levels of both PD-L1/IDO-2 and PD-L2/IDO-1 gene expression would benefit
more from immune checkpoint inhibitor therapy, while the key to a higher response rate
is to restore preexisting immunity. Based on this finding, a dual combination of NSCLC
therapy, such as inhibitors of both PD-1/PD-L1 immune checkpoint and IDO-2, or IDO-1,
might be hypothesized. Currently, the combination of immune checkpoint inhibitors and
IDO-1 hinders has already been tested in ongoing clinical trials, with encouraging results
in NSCLC patients [36,37]. Among the factors successfully used in immunotherapy are
PD-1, PD-L1 and PD-L2 which belong to the immunological checkpoint system. In several
studies these targets have shown to inhibit the functions of T cell receptor (TCR) and their
functional activity due to the PD-1/PD-L1/PD-L2 [38]. Moreover, from the literature data,
it emerges that the silencing of PD-L1 accelerates the antitumor immune responses and
enhances the anti-cancer capacity of dendritic cells [39]. Under neoplastic conditions, the
expression on PD-L1 tumor cells strongly correlates with the increased risk of progression
and with an unfavorable prognosis as reported in our study. Various components of the
immune system have been shown to be determining factors during cancer initiation and
progression. Evading immune destruction has been recognized as an emerging hallmark
of cancer. A meta-analysis by Ma G, et al. [40] conducted on a total of 25 articles with
5861 patients showed that the expression of PD-L1 is a prognostic factor related to poor
survival in NSCLC. A study by Zhou C, et al. [41], evaluating PD-L1 on 108 radically
resected NSCLC patients, showed the expression of PD-L1 was an independent prognostic
factor for reduced survival, particularly in those with non-squamous histotype. The study
of Wu S. et al. [42] evaluated the expression of PD-L1 by IHC and at mRNA level by in
situ hybridization, and showed that overexpression of PD-L1 is more common in male
patients and smokers with lung adenocarcinoma and that PD-L1 expression was a poorer
prognostic factor in patients with surgically resected lung adenocarcinoma. Also in our
study, we observed that only in the subgroup of patients with adenocarcinoma, higher
levels of immune-gene expression alone or in combination had a redution effect of RFS
and OS.

Regarding the cytokine INFγ, some studies show the determining role of this factor
for the expression of PD-L1 on tumor cells. Also, intra-tumoral infiltration of T cells can
improve the probability of response to anti-PD-1 therapies as reported in the study by
Ayers, M [43]. IFN-γ is confirmed to possess immune-activating properties and hence is
proven to have anti-cancer effects in vivo. In addition, some studies have also indicated
that IFN-γ has the ability to directly inhibit cancer cell growth. Inflammation-induced
PD-L1 expression by INFγ differs from oncogene-induced PD-L1 expression in that PD-L1
expression depends on the time and site of the immune response. Our result showed
that patients with concomitant higher levels of both genes (PD-L1/PD-L2/INFγ) showed
poor RFS. Therefore, we could speculate that in cases with poor outcomes, including those
with three genes PD-L1/PD-L2/INFγ expression, inflammation-induced PD-L1 expression
may be dominant, and an immunosuppressive state in relation to over-production of
neutrophils may have occurred. At the same time, PD-1-mediated tumor immune escape
by which cancer cells can become progressive may also have been activated. Preclinical and
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clinical studies have indicated that the production of INFγ by CD8+ T cells induces PD-L1
expression on tumor-resident cells [44,45] which is consistent with our findings. Interesting
considerations regarding other molecules involved in immunosuppression caused by the
tumor emerged from the literature data. Among these, IDO-1 was evaluated as a further
target for immunotherapeutic intervention by the evidence reported in some studies
showing its pro-tumorigenic effect [46]. Regarding the expression of IDO-1 and IDO-2,
several studies show that their role can influence tumor progression [47]. In particular,
the study by Lindström, V, et al. showed that increased IDO-1 activity in patients with
chronic lymphatic leukemia may affect disease progression [48]. Liu Y, et al. [49] conducted
an IDO-2 study to evaluate the impact of gene silencing as a way to inhibit B16-BL6
tumor cells in a mouse model. The authors show that the silencing of IDO-2, achieved
through a small interfering RNA (siRNA), inhibits the proliferation of tumor cells, stops
the cell cycle in G1, induces greater cell apoptosis and reduces cell migration in vitro. IDO
represents a potent important immunoregulatory enzyme capable of creating a suppressive
microenviroment in human tumor through several mechanisms which act synergistically to
promote tumor growth and survival of cancer cells. The concomitant higher levels of both
PD-L1/IDO-2 and PD-L2/IDO-1 gene expression associated to worse OS emerged from
our results is consistent with the suppressive immunoregulatory role of IDO signalling.
Limitations of our study include: first, its retrospective nature cannot avoid the potential
confounding biases despite the large sample size. Second, similar to other studies [50,51],
gene expression signatures are subject to sampling bias caused by intratumor genetic
heterogeneity. Third, patients in this cohort were not treated with immune checkpoint
inhibitors, thus the predictive value of the signature for immunotherapy could not be
directly evaluated. Further research will be carried out aiming to gain further knowledge
of the unknown molecular mechanisms involved in immune-escape and the development
of more standardized and reproducible molecular expression evaluation methods that
exceed the limits of the availability of fresh tissue, as in our case, and the known instability
of RNA.
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Figure 4. IDO-1, IDO-2, PD-L1, PD-L2 and INFγ interactions within the tumor microenviroment.
IDO signaling pathways exert immune suppressive function by the activation of T-reg cell and
the anergy of T effector cell. PD-L1/PD-1 inhibits T effector cell proliferation and stimulates T-reg
cell proliferation while INFγ upregolates PD-L1, PD-L2 and IDO expression. Immune suppressive
microenviroment promotes tumor growth increasing risk of progression (poor RFS) and unfavorable
prognosis (worse OS).

5. Conclusions

In conclusion, this study generates an immune-relate gene signature that can not
only predict NSCLC patient survival outcome but also reflects the immune status of lung
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cancer. It is probable that it is not a single parameter or a single marker that determines
the prognosis of NSCLC, as for other neoplasms, but it more likely depends on a dynamic
balance between immunosuppression and antitumor response. This signature can be
clinically used for the improvement of patient OS, individualized therapy methods based
on the risk score and possible response to immunotherapy. Prospective studies are needed
to further validate its analytical accuracy for estimating prognoses and to test its clinical
utility in individualized management of NSCLC.
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