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1 Unité de Neurosciences, Information et Complexité. Centre National de la Recherche Scientifique. 1

avenue de la terrasse, Gif sur Yvette, France, 2 Center for Neuroscience and Cognitive Systems @UniTn,

Istituto Italiano di Tecnologia, Corso Bettini 31, Rovereto, Italy, 3 European Institute for Theoretical

Neuroscience. 74 Rue du Faubourg Saint-Antoine, Paris, France

* yann.zerlaut@gmail.com

Abstract

In this study, we present a theoretical framework combining experimental characterizations

and analytical calculus to capture the firing rate input-output properties of single neurons in

the fluctuation-driven regime. Our framework consists of a two-step procedure to treat inde-

pendently how the dendritic input translates into somatic fluctuation variables, and how the

latter determine action potential firing. We use this framework to investigate the functional

impact of the heterogeneity in firing responses found experimentally in young mice layer V

pyramidal cells. We first design and calibrate in vitro a simplified morphological model of

layer V pyramidal neurons with a dendritic tree following Rall’s branching rule. Then, we pro-

pose an analytical derivation for the membrane potential fluctuations at the soma as a func-

tion of the properties of the synaptic input in dendrites. This mathematical description allows

us to easily emulate various forms of synaptic input: either balanced, unbalanced, synchro-

nized, purely proximal or purely distal synaptic activity. We find that those different forms of

dendritic input activity lead to various impact on the somatic membrane potential fluctuations

properties, thus raising the possibility that individual neurons will differentially couple to spe-

cific forms of activity as a result of their different firing response. We indeed found such a

heterogeneous coupling between synaptic input and firing response for all types of presyn-

aptic activity. This heterogeneity can be explained by different levels of cellular excitability in

the case of the balanced, unbalanced, synchronized and purely distal activity. A notable

exception appears for proximal dendritic inputs: increasing the input level can either promote

firing response in some cells, or suppress it in some other cells whatever their individual

excitability. This behavior can be explained by different sensitivities to the speed of the fluc-

tuations, which was previously associated to different levels of sodium channel inactivation

and density. Because local network connectivity rather targets proximal dendrites, our

results suggest that this aspect of biophysical heterogeneity might be relevant to neocortical

processing by controlling how individual neurons couple to local network activity.
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Author summary

Neocortical processing of sensory input relies on the specific activation of subpopulations

within the cortical network. Though specific circuitry is thought to be the primary mecha-

nism underlying this functional principle, we explore here a putative complementary

mechanism: whether diverse biophysical features in single neurons contribute to such dif-

ferential activation. In a previous study, we reported that, in young mice visual cortex,

individual neurons differ not only in their excitability but also in their sensitivities to the

properties of the membrane potential fluctuations. In the present work, we analyze how

this heterogeneity is translated into diverse input-output properties in the context of low

synchrony population dynamics. As expected, we found that individual neurons couple

differentially to specific form of presynaptic activity (emulating afferent stimuli of various

properties) mostly because of their differences in excitability. However, we also found that

the response to proximal dendritic input was controlled by the sensitivity to the speed of

the fluctuations (which can be linked to various levels of density of sodium channels and

sodium inactivation). Our study thus proposes a novel quantitative insight into the func-

tional impact of biophysical heterogeneity: because of their various firing responses to

fluctuations, individual neurons will differentially couple to local network activity.

Introduction

The specific activation of subpopulations within neocortical networks appears to be the core

mechanism for the cortical representation of sensory features. The details of how such specific

activations happen are therefore key questions in systems neuroscience. As a primary source

for specific activation, the neocortex is characterized by some degree of specific circuitry: neu-

rons differ in their afferent connectivity. A classic example can be found in the primary visual

cortex, layer IV simple cells specifically sample their input from ON and OFF cells in the tha-

lamic nucleus [1,2]. Additionally, neocortical neurons also vary in their electrophysiological

properties: for example, heterogeneous levels in the action potential threshold are routinely

measured in vivo [3–5]. Thus, an emerging refinement is that the sensitivity of a neuron to a

given feature do not only results from its stimulus specificity (e.g. orientation selectivity as a

result of a specific afferent circuitry), but from the combination of its stimulus specificity and

its biophysical specificity. Two somato-sensory cortex studies illustrates this point precisely. In

Crochet et al. [3], during active touch, the spiking probability of a neuron (its sensitivity to

whisker touch) follows from the combination of the reached level of synaptically-driven mem-

brane potential deflection (its stimulus-specificity resulting from afferent circuitry, as quantified

by post-synaptic reversal potentials) and its threshold for action potential triggering (its bio-
physical specificity). A similar result was found in the study of Yang et al. [5] for texture recog-

nition, where the combination of those two quantities was shown to predict choice-related

spiking. Those results therefore suggest that heterogeneity in the biophysical properties of neo-

cortical neurons might have an impact on their functional role during sensory processing.

In the present work, we further investigate the interaction between stimulus specificity and

biophysical specificity in the light of the variability in the biophysical features reported in our

previous study [6], namely that single neurons in juvenile mice cortex not only vary in their

excitability (linked to the action potential threshold) but also in their sensitivity to the proper-

ties of the membrane potential fluctuations. Our previous communication introduced those

new dimensions in the biophysical specificity, we aim here at understanding their functional

impact. To this purpose, we implemented various stimuli onto layer V pyramidal cells (we
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varied the properties of presynaptic activity in the fluctuation-driven regime), and we investi-

gated whether individual neurons would differentially respond to those inputs as a result of

their various firing rate responses [6] (their various biophysical specificities).

Results

Single cell computation in the fluctuation-driven regime: Input variables

and output quantity

Our study investigates the properties of single cell computation in the regime of low synchrony

population dynamics [7,8] (the analogous, at the network level, of the fluctuation-driven

regime at the cellular level) and aims at describing effects mediated by slow population dynam-

ics (T�20-50ms). In this context, the cellular input-output function of a neocortical neuron

corresponds to the function that maps the presynaptic variables to the spiking probability of

the neuron, which is often called the transfer function of the neuron.

The framework of our approach to the transfer function is illustrated in Fig 1A. Our cellular

model has five presynaptic variables: four of them are presynaptic firing rates (stationary

release probabilities at the synapses) as those constitute the primary input variables in this

rate-based paradigm. To investigate their differential contribution, the proximal and distal

parts of the dendritic trees have been treated separately and each of them has two presynaptic

rates corresponding to the excitatory and inhibitory input (hence four rate variables: npe , n
p
i , nde

and ndi ). The main motivation for this separation is to distinguish between two types of projec-

tions onto neocortical pyramidal neurons: synaptic inputs from the local network are thought

to be more proximal while the distal apical tuft receives input from more distant cortical areas

and thalamic locations [9]. Additionally, a global synchrony variable has been introduced for

presynaptic events. This reproduces the effect of multi-innervation of a cell by its presynaptic

afferent and, more importantly, the effect of pairwise correlations associated to neocortical

dynamics [10]. The synchrony degree in the presynaptic activity has been suggested to vary

with stimulus statistics in the primary visual cortex [11,12] what motivates its introduction as a

separate variable in our model.

A two-step approach to determine the cellular input-output function

As illustrated on Fig 1A, we introduce a two-step procedure to determine the input-output

function of a single cell in the fluctuation-driven regime. The idea behind this two-step

approach relies on the fact that the action potentials are initiated at the axon initial segment

[13] (i.e. electrotonically close to the soma) so that the fluctuations at the soma could deter-

mine the firing probability uniquely (see Discussion for the approach’s limitations).

We thus split the relation from presynaptic quantities (the input) to the spiking probability

(the output) into the following successive steps. The first step consists in evaluating how den-

dritic integration will shape the membrane potential fluctuations at the soma for given values

of the presynaptic input variables. The fluctuations are quantified by their mean μV, their

amplitude σV (given by the standard deviation of the fluctuations) and the fluctuations speed

τV (given by the autocorrelation time of the fluctuations). This first step will be performed ana-

lytically as the passive properties and simplified morphology of the dendritic model enables a

mathematical treatment of this question. The second step consists in determining how the

somatic fluctuations (μV,σV,τV) are translated into action potential output. This last step is

computed thanks to a fitted function directly constrained by experiments. Indeed, by analyz-

ing the spiking response of pyramidal neurons recorded in vitro as a function of these somatic

fluctuations (μV,σV,τV), we previously found that a parametric function could reliably describe

Firing responses and couplings to synaptic activity
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Fig 1. A theoretical framework for single cell computation in the fluctuation-driven regime: Cellular

model and two-step approach for the input-output function. (A) Theoretical paradigm: to get the input-

output function of a single cell, we split the relation from presynaptic quantities (the input) to the spiking probability

(the output) into two steps. 1) passive dendritic integration shapes the membrane potential at the soma and 2)

how those fluctuations are translated into spikes is captured by a firing response function determined in vitro. (B)

Theoretical model for dendritic integration. A single cell is made of a lumped impedance somatic compartment

and a dendritic tree. The dendritic tree is composed of B branches (here B = 5), the branching is symmetric and

follow Rall’s 3/2 rule for the branch diameters. Synapses are then spread all over the membrane according to

physiological synaptic densities. We define 3 domains: a somatic and proximal domain as well as a distal

domain, excitatory and inhibitory synaptic input can vary independently in those domains. An additional variable:

Firing responses and couplings to synaptic activity
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the relation between the fluctuations properties and the firing rate output in individual neu-

rons [6]. Thus, because the experiments were performed as a function of these somatic vari-

ables (μV,σV,τV), the same experimental data obtained previously can be used in the present

framework.

Within this framework, one individual cell (indexed by k) is therefore described by two

functions: 1) a dendritic integration function ðmV ; sV ; tVÞ ¼ FD
k ðn

p
e ; n

p
i ; n

d
e ; n

d
i ; sÞ that accounts

for synaptic integration up to the somatic Vm fluctuations and 2) a parametric function nout ¼

F n

kðmV ; sV ; tVÞ that translates the somatic Vm fluctuations into a spiking output. The final

input-output function nout ¼ F kðn
p
e ; n

p
i ; n

d
e ; n

d
i ; sÞ of cell k is thus the result of the composition:

F k ¼ F n

k � FD
k (see Fig 1A).

From our previous study, we benefit from a set of firing response functions fF n

kgk2½1;n� of

n = 30 cells. To complete the framework, we now need to associate a dendritic morphology for

each of this cell to be able to calculate the associated set of dendritic integration functions

fFD
k gk2½1;n�. This is the focus of the next two sections. We first present our dendritic morphol-

ogy model and then derive an association rule from input resistance to dendritic morphology

based on in vitro recordings of somatic input impedance.

A simplified morphological model for dendritic integration

The morphology of our theoretical model is a lumped impedance somatic compartment in

parallel with a dendritic arborescence of symmetric branching following Rall’s 3/2 branching

rule (see Fig 1B and Methods). This morphology is of course a very reductive description of

pyramidal cells: it does not discriminate between the distinct apical trunk and the very dense

basal arborescence. Also, branching in pyramidal cell morphologies have been shown to devi-

ate from Rall’s 3/2 branching rule. Nonetheless this simplified model contains the important

ingredient for our study: the fact that the transfer impedance to the soma of a synaptic input

will strongly depend on its location on the dendritic tree. Indeed, as observed experimentally

[14], distal events will be more low-pass filtered than proximal events in this model.

We spread synapses onto this morphology according to physiological densities [15] and

describe synaptic events as transient permeability changes of ion-selective channels (see Meth-

ods). We arbitrarily separate the dendritic tree into two domains: a proximal and a distal

domain (delimited by their distance to the soma, see Fig 1B). The distal part was taken as the

last eighth of the dendritic tree to reproduce the large electronic distance to the soma charac-

terizing distal synapses [14]. Following experimental evidences [14], we set a higher synaptic

efficacy for distal synapses. The synaptic parameters take physiological values [16] and can be

found on Table 1. The passive parameters as well as the individual morphologies are estimated

in the next section.

Estimating the passive properties and individual morphologies of layer V

pyramidal cells

We will use the firing response functions of the cells of our previous study [6] (the “firing

response dataset”). For each of this cell, we therefore need an estimate of the parameters of the

dendritic model (described above, i.e. passive properties and morphology parameters). The

synaptic synchrony controls the degree of coincident synaptic inputs. (C) A given presynaptic stimulation (here

npe ¼ nde ¼ 0:2Hz, n
p
i ¼ ndi ¼ 1:2 Hz and s = 0.05) creates membrane potential fluctuations at the soma

characterized by their mean μV, their amplitude σV and their autocorrelation time τV.

https://doi.org/10.1371/journal.pcbi.1005452.g001
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purpose of this section is thus to derive an association rule from the input resistance (a quan-

tity that we have for all cells of the “firing response dataset”, see Fig 2C) to the parameters of

the dendritic model. We based this estimate on the comparison between the dendritic model

behavior and the properties of the somatic input impedance in layer V pyramidal neurons

(n = 13 cells, measured with intracellular recordings in vitro).

The key property on which this characterization relies is the fact that the input impedance

at the soma cannot be accounted for only by the isopotential somatic compartment (i.e. a RC

circuit). The input impedance shows the contribution of the dendritic tree in parallel to the

soma [17]. Indeed, both the modulus and the phase of the input impedance show deviations

from the RC circuit impedance (see the comparison in Fig 2B): see for example the exponent

of the power law scaling of the modulus (-1 exponent for the single compartment and *-0.7

for pyramidal cells) or the decreased phase shift around 100Hz. As this behavior is the conse-

quence of the electrotonic profile along the dendritic tree, we used it to estimate the parame-

ters of our simplified dendritic model.

We first average all data (shown on Fig 2A) to obtain a mean input impedance (shown on

Fig 2B) representative of a mean cellular behavior. We then performed a minimization proce-

dure to obtain both the passive properties and the morphology corresponding to this average

behavior (see Methods). The obtained passive properties were compatible with standard val-

ues, e.g. the resulting specific capacitance was 1.05 μF/cm2, close to the commonly accepted 1

μF/cm2 value, thus suggesting that the procedure could capture the physiological parameters

Table 1. Model parameters.

Parameters Name Symbol Value Unit

Passive

Leak conductance density GL 325 μS/cm2

Intracellular resistivity Ri 30 Ω.cm

Specific capacitance Cm 1.05 μF/cm2

Leak reversal potential EL -65 mV

Synaptic

Inhibitory reversal potential Ei -80 mV

Excitatory reversal potential Ee 0 mV

Somatic inhibitory density Dsoma
i 20 Synapses/(100μm2)

Somatic excitatory density Dsoma
e 0 Synapses/(100μm2)

Dendritic inhibitory density Dtree
i

6 Synapses/(100μm2)

Dendritic excitatory density Dtree
e

30 Synapses/(100μm2)

Proximal inhibitory weight Q0;p
i 1.0 nS

Proximal excitatory weight Q0;p
e 0.7 nS

Distal inhibitory weight Q0;d
i

1.5 nS

Distal excitatory weight Q0;d
e 1.05 nS

Inhibitory decay time τi 5 ms

Excitatory decay time τe 5 ms

Mean Morphology

Soma length lS 5.0 μm

Soma diameter dS 15.0 μm

Root branch diameter dt 2.25 μm

Tree length lt 550.0 μm

Branch number B 5

Proximal tree fraction fprox 7/8

https://doi.org/10.1371/journal.pcbi.1005452.t001
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Fig 2. Calibrating the model on in vitro measurements: The simplified model and its size variations

provides an approximation for the somatic input impedance of pyramidal cells and their heterogeneity

over the recorded population. (A) Input impedance (left: modulus and right: phase shift) measured at the

soma in intracellular recordings with sine-wave protocols in current-clamp (inset). The color code indicates the

Firing responses and couplings to synaptic activity
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of pyramidal cells, see Table 1 for the other parameters. Most importantly, the surface area was

physiologically realistic, so that when using synaptic densities, we obtain an accurate number

of synapses (see below). A representation of this mean morphology can be seen on Fig 2D.

Pyramidal cells show a great variability in input impedance, for example their input resis-

tance almost spans one order of magnitude (both in the present n = 13 cells, see the low fre-

quency modulus values in Fig 2A, as well as in the firing response dataset, see bottom in Fig

2C). We found that varying the size of the morphological model within a given range around

the mean morphological model could partially reproduce the observed variability in the input

impedance profiles (see Fig 2B). Size variations corresponds to a linear comodulation of the 1)

tree length Lt, 2) the diameter of the root branch Dt and 3) the length of the somatic compart-

ment LS (see Fig 2C for the range of their variations). On Fig 2A, the cells have been colored as

a function of their input resistance while on Fig 2B, we vary the size of the size of the morpho-

logical model. Large cells (blue, low input resistance) tend to have a lower input resistance and

phase shift than the small cells (red, high input resistance). Note that this simplistic account of

morphological variations only very partially describes the observed behavior in pyramidal

cells. In particular, 1) it strongly underestimates the variations of phase shifts at medium and

high frequencies (f>20Hz) and 2) the relationship between size and impedance modulus at

high frequencies (f>100Hz) is poorly captured. Those discrepancies are likely to be due to the

details of dendritic arborescence that are not captured by the strong constraints of our den-

dritic model (symmetric branching, diameter rules, number of branches, etc. . .). Despite those

discrepancies, size variations in our morphological model constitute a reasonable first approxi-

mation to account for cellular variety within the layer V pyramidal cell population.

This characterization, combined with the analytical tractability of the model (see Methods)

allowed us to construct a map between input resistance at the soma and size of the morpholog-

ical model (the passive properties are set as identical, the one fitted on the mean impedance

behavior). Thus, for each neuron in our previous "firing response dataset", because we have its

input resistance at the soma, we can associate a given morphology. The association rule is

shown in Fig 2C.

We now check what is the number of synapses obtained from the combination of our fitted

morphologies with the physiological synaptic densities. We found a number of synapses of

3953 ± 1748 (mean and standard deviation across the n = 30 cells) with a ratio of excitatory to

inhibitory numbers of synapses of 4.5 ± 0.1. The fact that those numbers fall within the physio-

logical range constitutes a validation of our approach (the morphology estimate through input

impedance profile characterization).

An analytical approximation for the properties of the membrane potential

fluctuations at the soma

We now want to translate the five variables of the model in terms of membrane potential fluc-

tuations properties at the soma (μV,σV,τV), i.e. determining the function FD
k for each cell k

input resistance and is likely to result from size variations of individual cells. (B) A medium size model accounts

for the average data and varying the size of the dendritic tree and soma (according to the sizing rule shown in

C) partially reproduces the variability in the individual measurements. Large cells (blue) have a lower modulus

and a lower phase shift while small cells (red) have both a higher modulus and phase shift. (C) We obtain a

map between input resistance and size of the morphological model. (D) Representation of the medium-size

model. (E) Additionally the synaptic weights are rescaled with respect to the cell’s somatic input resistance.

Because the mean transfer resistance to soma is linked to the input resistance, this rescaling insures that the

mean synaptic efficacy at soma is the same for all cells.

https://doi.org/10.1371/journal.pcbi.1005452.g002
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depending on its dendritic parameters. This constitutes the first step to obtain the final input-

output function of individual cells (see Fig 1A).

Investigating dendritic integration for detailed morphological structures is made difficult

by the fact that this has to be done numerically with a relatively high spatial and temporal dis-

cretization. In the fluctuation-driven regime, one also needs to sample over long times (T�

τV * 20ms) to obtain the statistical properties of the somatic Vm resulting from dendritic inte-

gration. In addition, this study relies on n = 30 different morphologies and we will explore a

five dimensional parameter space (the five variable of our model). Under those conditions, if

performed numerically, the computational cost of such a study is clearly prohibitive. We

briefly describe here, why, in our simplified model, an analytical treatment is possible and thus

renders this investigation feasible (see details in the Methods and in S1 Text). The key ingredi-

ent is the ability to reduce the dendritic tree to an equivalent cylinder [17], we only adapted

this reduction to the changes in membrane permeability associated to the high conductance

state [18]. Two approximations underlie our estimation: 1) the driving force during an individ-

ual synaptic event is fixed to the level resulting from the mean bombardment [19] and 2) the

effect at the soma of a synaptic event at a distance x in a branch of generation b, corresponds to

the 1

2b� 1 fraction of the post-synaptic response to the stimulation made of synchronous events

at distance x in all the 2b−1 branches of the generation b. Luckily, the combination of those

approximation is a favorable situation. Indeed, hypothesis 1) overestimates the size of post-

synaptic events (because the driving force is not fixed, it diminishes during the PSP time

course) while hypothesis 2) underestimates the size of post-synaptic events (because of the

2b−1 − 1 synchronous events in neighboring branches, the membrane conductance is higher

than in the case of a single event, consequently neighboring events have a shunting effect that

artificially decreases the response). In addition, both of those approximation are likely to hold

when single events are of low amplitude compared to the amplitude of the massive synaptic

bombardment (see e.g. Kuhn et al. [19] for the validity of the first hypothesis).

In Fig 3, we compare the analytical approximation to the output of numerical simulations

performed with the NEURON software [20]. We varied the five variables of the model around

a mean synaptic bombardment configuration (see next section). Some discrepancies between

the approximation and the simulations appeared, in particular one can see a *1mV shift in

the standard deviation σV of the fluctuation (meaning that single events are underestimated in

the analytical treatment, so that hypothesis 2 is the most problematic one). Because the syn-

chrony controls the amplitude of the fluctuations (Fig 3B and next section), the analytical esti-

mate could therefore be seen as an accurate estimate, modulo a shift in the synchrony (see Fig

3B, an increase of 0.18 in the synchrony corrects for the *1mV shift in σV). Importantly, the

trend in the variations of the fluctuations as a function of the model variables is globally kept

between the analytical estimate and the numerical simulations. This relatively good agreement

therefore shows that our analytical estimate is a valid tool to study dendritic integration in the

fluctuation-driven regime.

Properties of the fluctuations for different types of presynaptic activity

We now implement various types of presynaptic activity and investigate the properties of the

resulting membrane potential fluctuations at the soma. In addition, we represent the variations

of the somatic input conductance (relative to the leak input conductance) because, as it is rou-

tinely measured in intracellular studies in vivo, this quantity allows a comparison between the

model and experimentally observed activity levels. On Fig 4, we present those different proto-

cols, on the left (panel A), one can see how the five variables of the model are comodulated for

each protocol (color coded, see bottom legend) and on the right (panel B), one can see the

Firing responses and couplings to synaptic activity
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resulting properties of the membrane potential fluctuations. We present those results only for

the medium-size model, but it was calculated for the morphologies associated to all cells. The

variability introduced by the various morphologies is shown in S2 Fig and we found that the

qualitative behavior discussed in this section was preserved in all cells. We first introduced a

baseline of presynaptic input corresponding to a low level of network activity:
gsomatot
gL
� 1:7, com-

pared to *3–4 in activated states, reviewed in [18]. This baseline activity is a mix of proximal

and distal activity with a low degree of synchrony (s = 0.05). Similarly to Kuhn et al. [19], the

inhibitory activity is adjusted to obtain a balance of the Vm fluctuations at -55mV. The firing

values of this baseline level are very low (nde ¼ npe = 0.2Hz for the excitation and ndi ¼ n
p
i =

1.2Hz for the inhibition) in accordance with the sparse activity characterizing mammalian

neocortical dynamics [3,10]. On top of this non-specific background activity, we will now add

a specific stimulation. We consider four types of presynaptic stimulations:

• Unbalanced activity increase. We define unbalanced activity as a stimulation that brings the

mean membrane potential above -55mV corresponding to the previously defined balance.

Fig 3. Accuracy of the analytical estimate for the properties of the membrane potential fluctuations at

the soma: Comparison between numerical simulations and the analytical approximation. Shown for

the medium size model of Fig 2D. (A) In the numerical simulation, we explicitly simulate the whole dendritic

arborescence, we show the membrane potential variations for the three locations shown on the left. (B)

Properties of the membrane potential fluctuations (mean μV, standard deviation σV and autocorrelation time

τV) for different configuration of presynaptic activity: analytical predictions and output from numerical

simulations in NEURON. In each column, one variable is varied while the other variables are fixed to the mean

configuration value corresponding to npe ¼ nde = 0.2Hz, n
p
i ¼ ndi = 1.2Hz and s = 0.05. In the σV plots (middle

panels, dashed gray lines), we added the prediction of the analytical estimate after a +0.18 correction for the

synchrony (found with a Newton method).

https://doi.org/10.1371/journal.pcbi.1005452.g003
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Fig 4. Properties of the membrane potential fluctuations for various types of presynaptic activity:

Either unbalanced (red), purely proximal (blue), purely distal (green), synchronized (cyan). A common

baseline configuration of balanced proximal and distal activity at low rate gives rise to baseline

fluctuations properties, on top of this, the increase of a given type of presynaptic activity corresponds

to a given comodulations of the 5 model variables. (A) Comodulations of the model variables to achieve

varying levels of the different types of activity. (B) Membrane potential fluctuations properties (mean μV,

standard deviation σV and autocorrelation time τV) and somatic input conductance at the soma for the different

protocols. Shown for the medium-size model, see Supplementary Material for the variability introduced by

variations in cell morphologies.

https://doi.org/10.1371/journal.pcbi.1005452.g004
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The stimulation corresponds to an increase of the excitatory synaptic activity (still running

within a very sparse range of activity, nde ¼ npe 2 [0.05, 0.5]Hz) with an increasing inhibitory

activity adjusted to linearly disrupt the balance between -55mV and -52mV (see Fig 4). The

synchrony is kept constant and the activity indifferentially raises in the proximal and distal

part. This increase of total activity raises the input conductance ratio close to four. In this

moderate range, the variations of the amplitude of the fluctuations σV remain monotonic

(unlike the non-monotonic variations found in the single-compartment study of Kuhn et al.

[19] and the case of a proximal stimulation, see below), the fluctuations gets approximately

twice faster (the normalized autocorrelation time tV
t0
m

decays from 100% to 50%) and, of

course (by design), the mean depolarization has a linear increase of 3mV.

• Proximal activity increase. To emulate purely proximal activity, we fix the distal presynaptic

firing frequencies (nde and ndi ) as well as the synchrony to their baseline levels. To remain in a

sparse activity level, we increase the proximal excitatory activity from the baseline level to

1.7Hz and we adjust proximal and somatic inhibitory activity to keep the balance at the

soma. This would nonetheless correspond to large network activity level, as can be seen from

the input conductance ratio (that raises up to 8). This situation gives results comparable to

the single-compartment study of Kuhn et al. [19]. The amplitude of the fluctuations has a

non-monotonic profile and the autocorrelation time strongly decreases. A notable difference

is that, even if we investigated high activity levels, the autocorrelation time does not go to

zero and the amplitude of the fluctuations has only a moderate decrease. This discrepancy is

due to 1) the choice of non-negligible synaptic time constants compared to the membrane

time constants (here τsyn = 5ms and t0
m * 25ms, then tV=t0

m would saturate at tsyn=t0
m = 20%

and 2) the strong shunting effects observed in the single compartment case is here attenuated

because the synaptic input is distributed.

• Distal activity increase. For distal activity, we keep the proximal presynaptic frequencies (npe
and n

p
i ) as well as the synchrony to their baseline levels. We increase the distal excitatory

activity nde from the baseline level to a moderate level: 0.7Hz. The distal inhibitory frequency

ndi is again adjusted to keep the balance at the soma. Here, we get a different picture than in

the proximal case, the increase in activity leads to negligible increase of the somatic input

conductance as expected from electrotonically distant input [21]. Also, the decrease of the

speed of the fluctuations is much attenuated. The reason for this phenomenon is that only

the distal part has a high conductance, consequently post-synaptic events are strongly low-

pass filtered by the proximal part of the arborescence before reaching the soma. Here, the

amplitude of the fluctuations strongly increases as a function of the input and do not show

the non-monotonic relation found for proximal input. This is explained by the combination

of the fact that 1) distal events are of higher amplitude and 2) the shunting of post-synaptic

events is much reduced due to the distant and relatively narrow localization of the synaptic

conductances.

• Increase in synaptic synchrony. Finally, we emulate an increase in the presynaptic synchrony.

Here, all synaptic frequencies are kept constant with respect to the baseline level and we sim-

ply increase the probability of coincident events for each synaptic spike train. Because there

is no change in synaptic activity, this stimulation does not affect the input conductance ratio,

neither the mean membrane potential or the speed of the fluctuations. However, presynaptic

synchrony strongly affects the amplitude of the fluctuations in a near linear manner.

Note, that in addition to the sparse activity constraints or the balance constraints, the

criteria for the ranges of the model variables was chosen to have the fluctuations in the same
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domain. For example, we investigated a lower activity range for the distal part (variations of

νdist) than for the proximal part (variations of νprox) to avoid an explosion of σV, the range for

the synchrony increase followed the same criteria.

Heterogeneous firing responses induce diverse coupling to presynaptic

activity

For each one of the n = 30 cells of our previous study [6], we have 1) a morphological model

(see previous sections) and 2) a firing response function nout ¼ F n

kðmV ; sV ; tVÞ. Thanks to the

previous analytical approximation, we can translate the five model variables ðnpe ; n
p
i ; n

d
e ; n

d
i ; sÞ

into the stationary fluctuations properties (μV,σV,τV) that, in turn, the function F n

k translate

into a spiking probability. Thus, we finally get the full input-output function (within our theo-

retical framework) as illustrated on Fig 1A.

We show on Fig 5 the response of four cells to the different types of presynaptic activity

described in the previous section (those four cells were chosen as they were representative of

different firing response behaviors, see Figs 5 and 6B in [6]). The input-output relationships

show qualitative and quantitative differences, we briefly discuss them here and we perform a

more rigorous analysis on the full dataset in the next section.

First, we can see that individual cells have a very different level of response to the baseline

level of synaptic activity (initial response in Fig 5). Cell 1 has a baseline at * 10−2 Hz while

Cell2 or Cell3 have response above 1Hz, i.e. two orders of magnitude above.

Importantly, those cells have different preferences for particular types of stimulations. Cell

1 responds more to unbalanced activity whereas Cell 2 and Cell 4 respond more to an increase

in synchrony and Cell 3 responds preferentially to proximal activity (within this range). This is

what we mean by preferential coupling: individual neurons will respond preferentially to a par-

ticular type of synaptic activity. An even more pronounced discrepancy appears for proximal

activity: the response can be either increased (Cell 1 and Cell 3) or decreased (Cell 2 and Cell

4) with respect to the baseline level.

Given the relative invariance of the fluctuations properties for each cell (see previous sec-

tion and S2 Fig: despite the various morphologies, the same input creates the same fluctua-

tions), those differences can only be attributed to the various firing responses of individual

cells (the diversity in the F n

k functions found experimentally [6]). We conclude that heteroge-
neous firing responses induce diverse coupling to presynaptic activity.

Biophysical origin of the heterogeneous couplings to presynaptic

activities

We now make this analysis more quantitative by computing the responses for all n = 30 cells.

We get their response to the baseline level νbsl and their mean response change for each stimu-

lation type (the mean over the range of scanned presynaptic input): δνubl for the unbalanced

activity, δνprox for the proximal activity, δνdist for the distal activity and δνsynch for an increased

synchrony. We show the histogram of those values in the left column of Fig 6.

We now investigate how the response of an individual cell relates to its biophysical specific-
ity. It is defined here by four quantities [6] (see also Methods):

1. hVeffthreiD: a measure of the cellular excitability.

2. h@nout
@mV
iD: the sensitivity to the mean of the fluctuations, this quantifies how much a mean

depolarization is translated into a change in firing rate.
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3. h@nout
@sV
iD: the sensitivity to the amplitude of the fluctuations, this quantifies how much an

increase in the amplitude of the fluctuations is translated into a change in firing rate.

4. h@nout
@tNV
iD: the sensitivity to the speed of the fluctuations, this quantifies how much a change in

the speed of the fluctuations is translated into a change in firing rate.

We first analyze the response to baseline activity νbsl. When log-scaled (Fig 6A), the distri-

bution is approximately normal and spans 2–3 orders of magnitude. This log-normal distribu-

tion of pyramidal cell firing rates during spontaneous activity seems to be a hallmark of

mammalian neocortical dynamics (see e.g. [10] in human neocortex). We investigated what

properties of the firing responses could explain this behavior, we therefore looked for correla-

tions between our measures of the firing responses in the fluctuation-driven regime [6] and

the baseline responses. Not surprisingly, we found a very strong linear correlation between the

excitability h Veff
threiD and the baseline response level, the other characteristics do not have an

impact (Pearson correlations, see values in Fig 6A). It should be stressed that presynaptic con-

nections are homogeneous across cells in this model, those results therefore show that the typi-

cal log-normal distribution of firing rates could very naturally emerge as a result of the normal

distribution observed in pyramidal cell’s excitabilities [6], thus suggesting that no specific cir-

cuitry might be needed to explain this neocortical property.

Despite the important differences in the fluctuations they create (see Fig 6B), the responses

over cells to unbalanced activity, distal activity and an increased synchrony share a very similar

behavior. First, those stimuli produce systematically an increase in firing rate (n = 30/30 cells).

The firing increase again show a strong heterogeneity over cells, covering two orders of magni-

tude (see log y-axis on Fig 6B, 6D and 6E). Again, this variability in responses was highly

Fig 5. Examples of the firing response of 4 different cells for the various types of presynaptic activity

(color-coded) shown in Fig 4. The abscissa “increasing synaptic quantity” corresponds to the comodulations

of the model variables shown in Fig 4A (same color code). As an example, the response to a “proximal activity

increase” (blue curve) corresponds to a linear increase of nproxe and n
prox
i while keeping ndiste , ndisti and s to their

baseline level. See Fig 4A for the comodulations of the other types of increasing activity.

https://doi.org/10.1371/journal.pcbi.1005452.g005
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correlated with the excitability. Surprisingly, the response was not dependent on any other of

the characteristics of the firing response. For example, because synchrony controls the

Fig 6. Diverse cellular responses to the various types of presynaptic activity and their link to the characteristics of their firing

response function. Note the logarithmic scale for the firing responses in B,C,D. (A) Diverse response to baseline stimulation. (B) Diverse

response to unbalanced activity. (C) Diverse response to proximal activity. Note that because the response also shows negative changes of

firing rate, the data cannot be log-scaled. Instead, they have been rescaled by the baseline response (i.e. we show
dnprox

nbsl
). (D) Diverse response

to distal activity. (E) Diverse response to a synchrony increase.

https://doi.org/10.1371/journal.pcbi.1005452.g006
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standard deviation σV, the variability observed during an increase in synchrony could have

been linked to the to the sensitivity to the standard deviation h @n

@sV
iD, but this effect was not sig-

nificant (see Pearson correlation in Fig 6E). For those three protocols, none of the sensitivities

to the fluctuations properties had a strong impact on the individual cellular responses (c<0.4

and p>0.01, Pearson correlations, see Fig 6). This analysis therefore revealed that, for those

type of synaptic activities, those properties of the firing response have negligible impact com-

pared to the very strong effect of the variability in excitabilities (see Discussion).

The response to proximal activity also showed a great variability but with a qualitatively dif-

ferent behavior (Fig 6C). Notably, firing could be suppressed or increased. This variability was

independent of the excitability of the cells but was correlated with the sensitivity to the speed

of the fluctuations h @n

@tNV
iD. Indeed, the proximal stimulation implies a strong variations of the

fluctuations speed (i.e. decreasing τV, while keeping moderate variations of σV and, by design,

a constant μV) thus rendering the sensitivity to the fluctuation speed the critical quantity for

this stimulation type. Those results therefore show that the response to proximal activity of an

individual cell is controlled by its level of sensitivity to the speed of the fluctuations (see

Discussion).

Discussion

In the present work, we introduced an analytically tractable description of single cell computa-

tion in the fluctuation-driven regime for neurons with a dendritic structure. We introduced a

two-step framework consisting of considering independently (1) how dendritic synaptic input

translates into the properties of the somatic membrane potential fluctuations (μV,σV,τV); (2)

how these somatic variables translate into action potential output. We used this framework to

investigate how the heterogeneity found experimentally in firing responses to fluctuating input

shape the diverse input-output functions of neocortical pyramidal cells. Focusing on the

regime of near asynchronous population dynamics, we emulated various types of presynaptic

activity and found that those different types of synaptic stimulation correspond to various

comodulations of the fluctuations properties. This property is what motivated to fully scan the

three dimensional space (μV,σV,τV) in our previous study [6] instead of the response to a given

presynaptic input type that corresponds to an arbitrary comodulation of (μV,σV,τV). Impor-

tantly, we found that, because of their different response to the same fluctuations, individual

neurons would differentially couple to various types of synaptic inputs.

A versatile theoretical framework for cellular computation in the

fluctuation-driven regime

Despite the current weaknesses of our description (see next section), we believe that having an

analytical model for dendritic integration in the fluctuation-driven regime is a useful tool for

many problems in theoretical neuroscience. The main advantage of this model is that one can

very naturally plug in physiological parameters (because surface area as well as transfer resis-

tance to soma can take physiological values) while still allowing an analytical treatment

(though see deviations of the approximations in Fig 3). In the theoretical analysis of neural net-

work dynamics, the literature is almost exclusively based on the reduction to the single-com-

partment (reviewed in [22]). Though being approximate, our framework thus opens the path

toward a detailed mathematical analysis of recurrent network dynamics containing neurons

with extended dendritic structures.

Additionally, It must be stressed that formulating the cell response with the somatic fluctua-

tions properties (μV,σV,τV) as an intermediate variable is very powerful because it allows one to
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apply the same measurements to various models. For example, with a single-compartment

model it is easy to translate these variables into excitatory and inhibitory activities [19]. We

showed here that it is also possible to obtain relations with synaptic inputs occurring in den-

drites in a simplified morphological neuron model. The latter model uses the same measure-

ments, so no experiments need to be redone. We could in principle also apply the same

approach to more complex models and obtain more realistic transfer functions. This phenom-

enological two-step procedure thus offers a flexible complementary approach to the analytical

approaches tackling the problem of the spiking behavior in presence of an extended dendritic

structure [23–25].

Limitations of the framework

The proposed theoretical framework for single-cell computation nonetheless suffers from sev-

eral weaknesses. First, even if our description captures the various electrotonic distances asso-

ciated to various synaptic locations (the crucial ingredient here to discriminate between

proximal and distal inputs), the morphological model appears as a very poor description of

layer V pyramidal cell. Deviations from the symmetric branching hypothesis and Rall’s

branching rule will have a significant impact on dendritic integration in the fluctuation-driven
regime. To investigate those effects within the framework proposed in our study, one could

benefit from the large body of theoretical work on the derivation of Green’s function for arbi-

trary branched passive dendritic trees [26–29]. Another important limitation of our descrip-

tion lies in the absence active mechanisms in dendrites [30]. It is therefore a question how

much those mechanisms could affect the picture provided in our study. Preliminary numerical

analysis performed in presence of NMDA and Ca2+ currents [31] (see S4 Fig and S5 Fig),

showed that, provided excitation balances inhibition (a situation where NMDA channels keep

a relatively low level of stationary activation) and provided synchrony do not reach a too high

level (unlike for s�0.4, where excitatory events almost systematic lead to NMDA spikes), the

qualitative behavior of the cellular input-output function remains unaffected. Thus, even if the

lack of dendritic mechanisms underestimates the coupling values reported here (cells are less

excitable in the passive setting, leading to attenuated spiking), the absence of qualitative differ-

ences suggest that the cell-to-cell variability reported in this study would be poorly affected.

Finally, our description assumes a unique correspondence between average presynaptic quan-

tities, somatic fluctuations and output spiking. The compartmentalized nature of active den-

dritic integration is very likely to break this hypothesis: the same average input could lead to

very different output responses when targeting different functional subunits. We conclude

that, given the complexity of synaptic integration in neocortical cells, the proposed approach

only constitutes a very first approximation of the cellular input-output function. Quantifying

its weaknesses and improving this picture should be the focus of future investigation.

The key quantities of a single cell’s “biophysical specificity”: The

excitability and the sensitivity to the speed of fluctuations

Very naturally, a key quantity to explain the various levels of neuronal responses is the cellular

excitability. Indeed, the response to baseline activity, unbalanced activity, distal activity or an

increase in synchrony is strongly correlated with cellular excitability.

More surprisingly, the sensitivity to the speed of the fluctuations also have a crucial impact

on the response for one type of synaptic activity: proximally targeting synaptic input. In our

previous communication [6], theoretical modeling suggested that a high sensitivity to the

speed of the fluctuations was enable by a high level of sodium inactivation (as only fast fluctua-

tions allow to deinactivate sodium channels) and a high density of sodium channels (as it
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corresponds to a sharp spike initiation mechanism that enables to extract fast fluctuating

input, reviewed in [32]). The present analysis thus proposes an important functional role for

those biophysical properties: controlling the coupling to proximally targeting activity.

Additionally, the present analysis sheds light on the physiological relevance of the proper-

ties that we introduced in our previous study. In all four measures characterizing the cellular

firing rate response function in the fluctuation-driven regime (shown at the bottom of Fig 6),

only two of them seem to be physiologically relevant: the excitability h Veff
threiD and the sensitiv-

ity to the speed of the fluctuations h @n

@tNV
iD. The reason for the lack of functional impact of the

sensitivity to depolarizations h @n

@mV
iD and to the sensitivity to amplitude of the fluctuations

h @n

@sV
iD was that they were estimated independently of the excitability (after rescaling by the dif-

ferent excitability levels). While this separation was useful to isolate and evidence the contribu-

tions of different biophysical mechanisms to the firing rate response function [6], the firing

response to a change in depolarization or an increase in amplitude of the fluctuations will be

mainly led by the cell’s excitability level whereas the more subtle features of its firing response

function (the sensitivities to μV and σV) will have a negligible impact.

Biophysical specificity might contribute to the diverse couplings to local

network activity in neocortex

Finally, we speculate about a putative link between a recent observation and the present find-

ings. The in vivo study in mice visual cortex of Okun and colleagues [4] reported a strong het-

erogeneity in the coupling between individual cell’s responses and the locally recorded

population activity. The authors explained those observations by a variability in the local

recurrent connectivity and found that this diverse coupling did not seem to be explained by a

variability in biophysical features (e.g. the coupling was independent from the action potential

threshold, somehow a measure of the excitability). However, as local connectivity is thought to

target more proximal regions such as the basal dendrites, our study proposes a biophysical

mechanism that could also contribute to their observation. The diverse coupling to proximal

activity was here explained by the sensitivity to the speed of the fluctuations, and similarly to

their results, this coupling was found to be independent on the cellular excitability (see Fig 6B

in Zerlaut et al. [6]). Part of their results could therefore be explained by this mechanism. Also,

even if this electrophysiological heterogeneity disappears in mature phenotypes, the preferen-

tial coupling present in young animals could be amplified by long term plasticity to form this

strongly coupled local network. Future work could therefore address this hypothesis by com-

bining recordings of population activity with a subtle and functionally-relevant analysis of sin-

gle cell properties.

Methods

Ethics statement

Experiments were performed at Unité de Neurosciences, Information et Complexité, Gif sur

Yvette, France. Experimental procedures with animals were performed following the instruc-

tions of the European Council Directive 2010 86/609/EEC and its French transposition (Décret

2013/118).

Morphological model

The morphology of our theoretical model is the following (depicted in Fig 1B): it is made of an

isopotential somatic compartment (i.e. a leaky RC circuit) in parallel with a dendritic structure.
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The dendritic tree is an arborization of total length lt containing B generation of branches. For

simplicity all branches of a generation b 2 [1,B] have a length
lt
B. From one generation to the

other, a branch divides into two branches where the diameter of the daughter branches follows

Rall’s 3/2 branching rule [17] ðdbþ1Þ
3
2 ¼

ðdbÞ
3
2

2
, i.e. db ¼ 2�

2
3 dt where dt is the diameter of the root

branch of the dendritic tree. Excitatory and inhibitory inputs are then spread homogeneously

over the soma and dendritic tree according to the densities of synapses Dsoma
i ;Dsoma

e ;Dtree
e ;Dtree

i .

The parameters of the model are presented on Table 1.

Model equations: Synaptic input and passive properties

The cable equation describes the temporal evolution and spatial spread of the membrane

potential along the branches of the dendritic tree [17]:

1

ri

@2v
@x2
¼ imðv; x; tÞ ¼ cm

@v
@t
þ
v � EL
rm
� isynðv; x; tÞ ð1Þ

the membrane current im(v,x,t) is a linear density of current (the presented cable equation

already includes the radial symmetry, i.e rm ¼ 1

GLpD ; ri ¼
4 Ri
p D2 ; cm ¼ Cmp D, where GL, Ri, Cm

are the passive membrane parameters, see Table 1). Though the modeled system has several

branches, the equation can be written as a single spatial dependency x because the symmetry

of the model across branches imply that the properties of the input are identical at a given dis-

tance to the soma.

Synaptic input is modeled by local (infinitely small) and transient changes of membrane

permeability to selective ionic channels. Both excitatory (accounting for AMPA synapses) and

inhibitory synapses (accounting for GABAa synapses) are considered, their reversal potential

is Ee = 0mV and Ei = -80mV respectively. Each synaptic event is generated by a point process

and its effect on the conductance is an increase of a quantity Qs2{e,i} followed by an exponential

decay τs2{e,i}. The form of the synaptic current is therefore:

isynðv; x; tÞ ¼ geðx; tÞðEe � vÞ þ giðx; tÞðEi � vÞ

geðx; tÞ ¼
X

fxe;ftegg

dðx � xeÞ
X

fteg

Hðt � teÞ QeðxÞ e
�

t � te
te

giðx; tÞ ¼
X

fxi;ftigg

dðx � xiÞ
X

ftig

Hðt � tiÞ QiðxÞ e
�

t � ti
ti

ð2Þ

8
>>>>>>>>>><

>>>>>>>>>>:

where ge and gi are linear densities of conductances. Each synapse, indexed by s, has a position

xs and a set of presynaptic events {ts}, hence the iteration over {xs, {ts}} for the sum over synap-

ses for each synaptic type. H is the Heaviside step function. The presynaptic events {ts} are gen-

erated by point processes at fixed frequencies {νs} with a given degree of synchrony, see details

in the next section.

The model distinguishes two domains: a proximal domain (x 2 [0,lp]) with the upper index

p and a distal domain (x 2 [lp,l]) with the upper index d (see Fig 1), where lp is the length of the

somatic compartment and l is the total length of the dendritic tree. The space-dependent quan-

tities (presynaptic frequencies, synaptic quantal and synaptic decay time constant) can be
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written as:

neðxÞ ¼ nP
e þ ðn

d
e � np

eÞHðx � lpÞ

niðxÞ ¼ nP
i þ ðn

d
i � n

p
i ÞHðx � lpÞ

QeðxÞ ¼ QP
e þ ðQ

d
e � Qp

eÞHðx � lpÞ

QiðxÞ ¼ QP
i þ ðQ

d
i � Qp

i ÞHðx � lpÞ

ð3Þ

8
>>>>><

>>>>>:

The continuity of the membrane potential and of the current at the boundaries between the

proximal and distal part imply:

vðl�p ; tÞ ¼ vðlþp ; tÞ

1

ri

@v
@x

� �

l�p

¼
1

ri

@v
@x

� �

lþp

ð4Þ

8
><

>:

where the limit with upper index ± indicate the limit taken from the left or the right

respectively.

At the soma, x = 0, we have a lumped impedance compartment. It has leaky RC circuit

properties and also receives synaptic inhibition, the somatic membrane potential therefore fol-

lows:

CM
dV
dt
þ

V � EL

RM
þ GIðtÞðV � EiÞ þ IðtÞ ¼ 0

GiðtÞ ¼
X

Ni

X

ftig

Qp
i e
�

ðt � tiÞ

t
p
i Hðt � tiÞ

8
>>>>><

>>>>>:

where I(t) is the time-dependent input current from the soma into the dendrite. RM and CM
are the RC properties of the lumped compartment (capital letters will indicate the somatic

properties throughout the calculus). Ni is the number of somatic synapses, each of them gener-

ates a point process {ti} of inhibitory synaptic events. The properties of the somatic synapses

nSi ;Q
S
i are equivalent to the proximal ones.

This equation with the membrane potential continuity will determine the boundary condi-

tion at the soma (x = 0). We identify V(t) = v(0,t), then I(t) is the current input into the den-

dritic tree at x = 0 so it verifies:

@v
@x

� �

x¼0

¼ � ri I tð Þ

So:

@v
@x

� �

x¼0

¼ ri CM
@v
@t

� �

x¼0

þ
vð0; tÞ � EL

Rm
þ GIðtÞðvð0; tÞ � EiÞ

� �

ð5Þ

Finally, the last boundary condition is that all branches terminate with an infinite resistance

that impede current flow (sealed-end boundary conditions):

@v
@x

� �

x¼l

¼ 0 ð6Þ
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Together with the biased Poisson process for event generation (see the next section), the

final set of equations that describes the model, is therefore the combination of Eqs 1, 2, 3, 4, 5

and 6.

Model of presynaptic activity

Presynaptic activity is modelled as a discrete set of presynaptic events. Because of the apparent

random spiking activity in the fluctuation-driven regime, the basis for the generation of those

discrete events is the Poisson process. Nonetheless, we want to reproduce the additional degree

of presynaptic synchrony found in neocortical assemblies that result mainly for two phenom-

ena: 1) pairwise correlation between neurons and 2) multi-innervation of a cell by a presynap-

tic neuron. We therefore introduce a variable s that biases the event generation of the Poisson

process (s 2 [0,1]) by introducing coincident spikes. For simplicity in the analytical treatment,

synchrony in presynaptic activity is not shared across different synapses. The relatively low

range of synchrony values investigated here (s 2 [0,0.4]) also allows us to limit the number of

coincident events to four events (quadruple events have a probability p’ 0.06 for s = 0.4,

hence, even for the highest synchrony value, synchrony is dominated by pairs and triples of

presynaptic spikes). Therefore, for a degree of synchrony s: single events have a probability 1 –

s, double events have a probability s – s2, triple events have a probability s2 – s3 and quadruple

events have a probability s3. To generate a biased Poisson process of frequency ν with a degree

of synchrony s, we generate a Poisson process of frequency:

nsynch ¼
n

1þ sþ s2 þ s3
ð7Þ

and we duplicate (from up to four events) each event according to their probabilities of

occurrence.

This is a very simplistic and limited model of presynaptic synchrony but it is sufficient to

reproduce the impact of synchrony on the quantities investigated in this paper (only the vari-

ance of the membrane potential fluctuations).

Numerical implementation

The full model has been implemented numerically using the NEURON software [20]. The

branched morphology was created and passive cable properties were introduced (see Table 1).

The spatial discretization was nseg = 30 segments per branch. On each segment, one excitatory

and one inhibitory synapse were created, the shotnoise frequency was then scaled according to

the segment area and the synaptic density to account for the number of synapses on this seg-

ment (using the properties of the Poisson process, N synapses at frequency ν is a synapse at fre-

quency Nν). Custom event generation was implemented to introduce correlations (instead of

classical NetStim) and fed NetCon objects attached to each synapses (ExpSyn synapses). Each

simulation had a time step dt = 0.01ms and a length of 10s, the simulation was repeated over 4

seeds to yield a mean and a standard deviation in the estimate of the membrane potential fluc-

tuations at the soma (see Fig 3B).

Analytical derivation of the fluctuation properties: Strategy

We present here a derivation that provides an analytical approximation for the properties of

the fluctuations of the membrane potential at the soma for our model. Summing up its proper-

ties, we get: 1) a morphology with a lumped somatic compartment and a dendritic tree of sym-

metric branching following Rall’s rule 2) conductance-based synapses 3) independent

excitatory and inhibitory shotnoise input spread all over the morphology 4) asymmetric

Firing responses and couplings to synaptic activity
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properties between a proximal part and a distal part and 5) a certain degree of synchrony in

the pre-synaptic spikes.

The properties of the membrane potential fluctuations at the soma correspond to three sta-

tionary statistical properties of the fluctuations: their mean μV, their standard deviation σV and

their global autocorrelation time τV. Following [6], we emphasize that the global autocorrela-

tion time is a partial description of the autocorrelation function (as the autocorrelation func-

tion is not exponential) but it constitutes the first order description of the temporal dynamics

of the fluctuations.

A commonly adopted strategy in the fluctuation-driven regime to obtain statistical proper-

ties is to use stochastic calculus after having performed the diffusion approximation, i.e.

approximating the synaptic conductance time course by a stochastic process [33]. This

approach is nonetheless not easily generalizable to conductance input in an extended structure

and render the inclusion of asymmetric properties (proximal vs distal) complicated. We rather

propose here an approach that combines simplifying assumptions and analytical results from

point process theory, it extends the approach proposed in Kuhn et al. [19] to dendritic struc-

tures following Rall’s branching rule.

For each set of synaptic stimulation fnep; n
p
i ; n

d
e ; n

d
i ; sg, the derivation corresponds to the fol-

lowing steps:

1. We transform the dendritic structure to its equivalent cylinder. The reduction to the equiv-

alent cylinder is "activity-dependent" and captures the changes in membrane properties

that results from the mean synaptic conductance levels.

2. We derive a mean membrane potential μV(x) corresponding to the stationary response to

constant densities of conductances given by the means of the synaptic stimulation. We use

this space-dependent membrane potential μV(x) to fix the driving force all along the mem-

brane for all synapses. The relation between synaptic events and the membrane potential

now becomes linear.

3. We derive a new cable equation that describes the variations of the membrane potential

around this μV(x) solution.

4. We calculate the effect of one synaptic event on a branch b,b 2 [1,B] at a distance x. We cal-

culate the post-synaptic membrane potential event PSPb(x,t) at the soma resulting from b
synchronous synaptic events occurring at the distance x from the soma. We approximate

the effect of only one event by rescaling the response by the number of input
PSPbðx;tÞ

b .

5. We use shotnoise theory to compute the power spectrum density of the membrane poten-

tial fluctuations resulting from all excitatory and inhibitory synaptic events (including the

synchrony between events).

The full derivation has been conducted with the help of the python modulus for symbolic

computation: sympy. The resulting expression were then exported to numpy functions for

numerical evaluation. Details are provided in S1 Text

From fluctuation properties to spiking probability

How layer V pyramidal neurons translate membrane potential fluctuations into a firing rate

response was the focus of our previous communication [6]. We re-use here the same dataset,

i.e. the individual characterizations over n = 30 single neurons of the firing responses

nout ¼ FðmV ; sV ; tVÞ.
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Importantly, our study introduced four quantities to describe the mean properties of a sin-

gle neuron response in the fluctuation-driven regime: (i) a measure of the excitability given by

the mean phenomenological threshold hVeff
threiD of the firing response function, (ii) a sensitivity

to the mean of the fluctuations h
@nout
@mV
iD, quantifying how much a mean depolarization is trans-

lated into a change in firing rate, (iii) a sensitivity to the amplitude of the fluctuations h
@nout
@sV
iD,

quantifying how much an increase of the standard deviation of the fluctuations is translated

into a change in firing rate, and (iv) a sensitivity to the speed of the fluctuations h
@nout
@tNV
iD, quanti-

fying how much a change in the autocorrelation time of the fluctuations is translated into a

change in firing rate.

Note that in the main text, we removed the n = 3/30 cells that had too low excitabilities, as it

is hard to conduct an analysis on 6 orders of magnitudes, ν 2 [10−5,101] Hz (for data visualiza-

tion). This reduction limited the output variations to ν 2 [10−2,101] Hz. In the supplementary

S3 Fig, we reintroduce the discarded cells and we show that they do not affect the results pre-

sented in the main text.

Experimental preparation and electrophysiological recordings

Experimental methods were identical to those presented in [6]. Briefly, we performed intracel-

lular recordings in the current-clamp mode using the perforated patch technique on layer V

pyramidal neurons of coronal slices of juvenile mice primary visual cortex. For the n = 13 cells

presented in this study, the access resistance RS was 13.3MO ±5.4, the leak current at -75mV

was -25.7pA±17.3, cells had an input resistance Rm of 387.3MO ±197.2 and a membrane time

constant at rest of 32.4ms±23.1.

Input impedance characterization

To determine the input impedance at the soma, we injected sinusoidal currents in the current-

clamp mode of the amplifier (Multiclamp 700B, Molecular Devices), we recorded the mem-

brane potential response to a current input of the form (t) = I sin (2πft), we varied the frequen-

cies f and amplitudes I over 40 episodes per cell. The frequency range scanned was [0.1, 500]

Hz. For each cell, we determined manually the current amplitude I0 that gave a *5mV ampli-

tude in a current step protocol, from this value, the value of I was scaled exponentially between

I0 at 0.1 Hz and 50 I0 at 500Hz. The reason for varying the current amplitude (and not only the

oscillation frequency) in those input impedance protocols is to anticipate for the low pass fil-

tering of the membrane and insure that the membrane potential response at high frequencies

is far above the electronic noise level * 0.1 mV.

After removing the first 3 periods of the oscillations (to avoid transient effects), we fitted

the membrane potential response to the form: V(t) = EL + R I sin(2πft − ϕ), where EL,R,ϕ were

fitted with a least-square minimization procedure. The frequency dependent values of R and ϕ
give the modulus and phase shift of the input impedance presented in Fig 2A.

Fitting passive properties and a mean morphology

Because the variables combined discrete (the branch number) and continuous variables, the

minimization consisted in taking the minimum over a grid of parameters. The parameter

space had 7 dimensions: the branch number (B 2 ⟦2,7⟧), the somatic length (lS 2 [5,20]μm),

the total length of the tree (lt 2 [300,800]μm), the diameter of the root branch (dt 2 [0.5,4]μm),

the leak specific resistance (rm 2 [100, 1000]μS/cm2), the intracellular resistivity (ri 2 [10,90]

O.cm), the specific capacitance (cm 2 [0.8,1.8] μF/cm2). Each dimension was discretized in 5
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points, the scan of the 7 dimensional space then consisted in finding the least square residual

of the product of the modulus and phase of the impedance over this 57 points. The resulting

parameters are shown on Table 1.

Supporting information

S1 Text. Supplementary material contains the detailed mathematical derivation of the

membrane potential fluctuations at the soma as a function of the model variables (PDF).

(PDF)

S1 Fig. Heterogeneity in morphologies. Graphical representation of the estimated morpholo-

gies of the largest (the lowest input resistance) and the smallest (the highest input resistance)

cells present in the dataset.

(TIFF)

S2 Fig. Variability in the fluctuations properties introduced by different morphologies.

(A) Variability in the model variables across protocols introduced by the different morpholo-

gies (sizes). We show only the quantities that vary across cells, all other variables (npe; n
d
e ; s) are

fixed across cells. The balance μV is adjusted for each cells and the cells have different surfaces,

so different number of synapses (and especially different ratio of excitatory to inhibitory num-

bers) hence the need to adjust inhibitory activity slightly differently for each cell. (B) Variabil-

ity in the properties of the membrane potential fluctuations (standard deviation σV and

autocorrelation time τV) across protocols introduced by the different morphologies (sizes). We

show only the quantities that vary across cells, μV is fixed across cells by design. (C) Depen-

dency of the fluctuations properties as a function of the morphology parameters (all parame-

ters are varied of -70% and +70% around those of the mean model, one parameter is varied

while all others are fixed to those of the mean model, see Table 1). We fixed the presynaptic

stimulation to a level of npe ¼ nde ¼ 0:3Hz, n
p
i ¼ ndi ¼ 1:7 Hz and s = 0.05. Globally, the mean

polarization μV is poorly affected by the morphology, given the balanced nature of the input

and the homogenous spread of synapses on the membrane. On the other hand, the morphol-

ogy parameters strongly affect the properties of the amplitude and speed of the fluctuations. (i)

Dependency on the branching number. Because the branching number has an impact on the

area, the number of synapses increases with the number of branches, then the amplitude σV of

the fluctuations strongly decreases with the number of branches because of the law of large

numbers. (ii) Dependency on the tree length. The same argument as in (i) holds. The length of

the tree increases the number of synapses so that it reduces the amplitude of the fluctuations.

(iii) Dependency on the tree diameter. The same argument as in (i) holds again. The diameter

of the tree increases the number of synapses so that it reduces the amplitude of the fluctuations.

(iv) Dependency on the size of the soma. Here, this increases only the number of inhibitory

synapses at the soma. Within this range this has very weak effects on the fluctuations. (v)

Dependency on the leak conductance. The leak conductance sets the amplitude and low pass

filtering of individual post-synaptic events (because τm * Cm/GL, see correction introduced by

the ongoing activity in the main text). An increasing leak conductance will “shunt” post-synap-

tic events. This lowers the amplitude of the fluctuations σV and lowers the autocorrelation time

of the fluctuations τV. (vi) Dependency on the specific capacitance. Again because τm * Cm/

GL, an increasing capacitance renders the fluctuations much slower (increasing τV). Also

because PSP events have a much lower frequency content, they lead to a reduced amplitude of

the fluctuations σV. (vii) Dependency on the intracellular resistivity. This has a moderate effect

within this range.

(TIFF)

Firing responses and couplings to synaptic activity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005452 April 14, 2017 24 / 27

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005452.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005452.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005452.s003
https://doi.org/10.1371/journal.pcbi.1005452


S3 Fig. Re-including all cells in the study of the correlation between the firing rate

responses and the firing response function characteristics. We re-introduce here the

recorded cells of very low excitability that produce very low firing rate responses (νout< 10−3)

and partially impede data visualization (because they shift extend the axis limits far from the

majority of the data). Note that the strong correlations discussed in the result are not affected.

(TIFF)

S4 Fig. Including dendritic non-linearities (numerically) within our framework for single cell

computation. Active mechanisms are taken from Larkum et al. [31]. On top of each panel,

we present the recording of the membrane potential in the far distal dendrite (depicted with

the upper electrode on the drawing) in the Control and Control+NMDA case. On the bot-

tom, we present the membrane potential recorded at the soma (depicted with the lower elec-

trode on the drawing) in four cases, the Control, the Control+NMDA case, the Control case

with a HH model inserted in the soma and the Control+NMDA+Ca2+spikes+HH(soma). (A)

Response to baseline activity. npe ¼ nde = 0.2Hz, n
p
i ¼ ndi = 1.2Hz and s = 0.05. (B) Response to

baseline activity with the synchronous activation of 20 synapses every 500ms (marked by a trian-

gle), note the impact of the NMDA mechanism under this stimulation type. (C) Response to an

increase of proximal activity with respect to the baseline level (npe = 1.6Hz, n
p
i = 10Hz). (D)

Response to an increase in distally targeting presynaptic activity (nde = 0.6Hz, ndi = 3Hz). (E)

Response to an increase in unbalanced activity (npe = 0.4Hz, n
p
i = 2Hz, npe = 0.5Hz, n

p
i = 1.7Hz).

(F) Response to an increase in presynaptic synchrony (s = 0.4).

(TIFF)

S5 Fig. Active dendritic mechanisms do not qualitatively affect the relationship between

presynaptic activity and firing rate provided that excitation does not unbalance inhibition

(μV≲ −50mV), and provided that synchrony remains in a relatively low range (s≲ 0.4).

Because our framework for single cell computation consists in (i) evaluating analytically the

somatic subthreshold membrane potential fluctuations at the soma as a function of the presyn-

aptic quantities and (ii) convert those fluctuations into a spiking probability thanks to a firing
response function determined in vitro in individual neuron, it needs to be tested against two

phenomena: (I) whether active dendritic mechanisms qualitatively affect the relationship

between presynaptic quantities and somatic membrane potential fluctuations, i.e. checking the

validity of step (i), and (II) whether dendritic non-linearities introduce a coupling between

presynaptic activity and spike emission that renders the decomposition into the successive

steps i & ii problematic. Those phenomena will naturally appear to some extent and will pro-

duce quantitative deviations with respect to our predictions (that do not include dendritic

non-linearities, e.g. trivially, all cells should be more excitable). As our results do not rely on

the absolute values of the input-output functions but rather on the relative behaviors from cell

to cell (that emerge from differences across individual firing response functions), we only look

for putative "qualitative deviations". (A) We first investigate whether active dendritic mecha-

nisms qualitatively affect the relationship between presynaptic quantities and somatic mem-

brane potential fluctuations. We observe that NMDA channels exert an additional small

depolarization (increased μV), they also increase the standard deviation of the fluctuations

because they increase the amplitude of depolarizing events (increased σV) and they slow down

the fluctuations because they increase the low frequency content of post- synaptic depolariza-

tion (increased τV). We also observe, that, despite this small shift in all quantities, the qualita-

tive trend of all curves remains identical. Only for high excitation, a qualitative difference can

be seen (see bottom left plot): increasing excitation makes Vm fluctuations faster in the passive

case, whereas increasing excitation makes fluctuations slower in the presence of NMDA
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currents (decreasing vs increasing τV curve respectively). (B) We then investigate whether den-

dritic non-linearities introduce a coupling between presynaptic activity and spike emission

that would complicate our picture. This was tested by including both NMDA and Ca2+ cur-

rents. We first included numerically a spike emission model at the soma (Hodgkin-Huxley

like, Na+ and K+ currents) in the morphological model, to allow the model to produce the full

input-output function (from presynaptic quantities to spiking probability). Trivially, we

observe an increased spiking probability because cells are more excitable (NMDA and Ca2+

currents are depolarizing currents). Notably, when excitation does not balance inhibition (npe =

0.4Hz or n
p
i = 0Hz), the spiking probability is greatly enhanced (almost doubled). For the other

variables, those effects are much more moderate.

(TIFF)
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