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Abstract

The identification of structural variants using short-read data remains challenging. Most

approaches that use discordant paired-end sequences ignore non-trivial signatures pre-

sented by variants containing 3 breakpoints, such as those generated by various copy-paste

and cut-paste mechanisms. This can result in lower precision and sensitivity in the identifica-

tion of the more common structural variants such as deletions and duplications. We present

SVXplorer, which uses a graph-based clustering approach streamlined by the integration of

non-trivial signatures from discordant paired-end alignments, split-reads and read depth

information to improve upon existing methods. We show that SVXplorer is more sensitive

and precise compared to several existing approaches on multiple real and simulated data-

sets. SVXplorer is available for download at https://github.com/kunalkathuria/SVXplorer.

Author summary

Structural variants (SVs) that include duplications, deletions and inversions of large blocks

of DNA sequence account for the greatest share of total nucleotide differences between

individuals. Most methods to identify SVs focus on deletions, duplications, and inversions

which can be identified by the integration of information from coverage and insert length

of aligned reads around the breakpoints. These methods either ignore signatures from

other non-trivial rearrangements or represent them as a set of novel adjacencies (break-

ends) in the output to be processed separately. Here, we show that precise accounting of

such signatures and using improved methods for clustering and variant filtering markedly

enhance the precision and sensitivity of SV calls such as deletions and duplications, and

allow for detection of several other categories of SVs.
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Introduction

Structural variants (SVs), which include regions of genomic imbalances called copy number

variants (CNVs) and balanced rearrangements such as inversions, account for the majority of

varying bases in the human genome [1]. SVs are more common in regions with segmental

duplications and have been associated with phenotypes ranging from sensory perception [2]

to genomic disorders such as the velocardiofacial [3] and Smith-Margenis syndromes [4].

The discovery and genotyping of these variants remain challenging due to their proximity to

repeats, limitations of the alignment algorithms, large non-Gaussian spread in insert size, and

the short read lengths typically used in sequencing.

More than 40 short-read SV callers have been published since 2010 [5]. SV identification

from short-reads relies on detecting changes in read-depth (RD), clusters of discordantly

aligned paired-end (PE) reads or split reads (SR), or de novo genome assembly. Earlier meth-

ods were developed to harness evidence from one of these sources, but more recent methods

such as LUMPY [6], TIDDIT [7], and TARDIS [8] integrate multiple sources and typically out-

perform earlier methods [5]. Despite these developments, SV callers have varying accuracy for

different classes of SVs, and most of them employ specifically designed heuristics for the iden-

tification of specific SV types [9–11]. Most of them focus on the detection of signatures of indi-

vidual SV types, often ignoring 3-breakpoint SVs and their signatures. However, ignoring

those signatures often leads to incorrect identification or annotation of common SVs such as

deletions, duplications, and inversions. For example, in Fig 1, ignoring the overlap of signa-

tures from the copy-paste insertion leads to identification of incorrect breakpoints or the

wrong SV type in the region. Even if read-depth is used to discover the duplicated segment,

such calls will be filtered away by the caller if it considers discordant read-pairs, but does not

account for overlaps of the discordant pairs.

Transposable elements represent the majority of large insertions in the human genome,

and specialized methods have been developed to detect them [12, 13]. These methods are

required to handle the repetitive nature of these elements, which arise due to repeated copy-

and-paste operations through target-primed reverse transcription (TPRT) [14]. But even when

these transposable elements are not identified accurately, probabilistic models that do not

account for them end up with a large number of false-positive as well as false-negative SV calls

[15]. Analysis of the inversion calls from the 1000 genomes project [16] highlights the impor-

tance of joint identification of all calls in SV detection. As discussed in Soylev et al. [15], 54%

of the predicted inversions reported in the 1000 Genomes project are inverted duplications

that are incorrectly identified by callers which do not consider overlapping evidence from dis-

cordant pairs and do not call the SV events simultaneously.

Fig 1. Duplication breakpoints. The breakpoints of the duplicated segment might be incorrectly identified as shown

by the light orange segment at the bottom, if the overlap of signatures from an insertion via ‘copy-paste’ are ignored. If

read-depth filters do catch the false calls, the caller would miss the variant entirely as shown in the simulations.

https://doi.org/10.1371/journal.pcbi.1007737.g001
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We have developed SVXplorer, which uses an efficient, comprehensive 3-tier approach of

sequentially using discordant paired-end (PE) alignment, split-read (SR) alignment and read-

depth (RD) information to identify multiple SV types while progressively weeding out unlikely

candidates. Using a combination of probabilistic and combinatorial approaches, SVXplorer

shows marked improvement in comparison to several other popular SV callers on both simu-

lated and real human datasets. It uses Bayesian inference to calculate the probability that two

aligned fragments support the same variant based on a precise binning of sampled insert

length values. This posterior probability is scaled and used as an edge-weight in a maximal-cli-

que-enumeration framework that is similar to CLEVER [17]. Another unique feature of

SVXplorer is its exhaustive analysis of cluster signatures to group clusters into two-breakpoint

variants (e.g. inversions) and three-breakpoint variants (e.g. copy- and cut- paste insertions)

for both PE and SR. SVXplorer implements this progressive variant formation by first combin-

ing existing PE clusters appropriately into variants, updating these variants by incorporating

SR signatures as seen in each PE variant region, and grouping the remaining clusters of SR

alignments into new 2- and 3- breakpoint variants. The signatures considered by SVXplorer

include the ones for copy-paste and cut-paste insertion mechanisms (including inverted tran-

scriptions), inversions, tandem duplications and other variants for varying cluster sizes as

explained in the following sections.

SVXplorer dynamically calculates PE and SR alignment-support thresholds based on the

sequencing read-depth rather than requiring a fixed number of supporting reads for all data-

sets. It also corroborates SVs using local read-depth information from mappable and region-

ally reliable bases. SVXplorer’s general approach to SV-calling is to ensure a precise treatment

at all levels, as shown by its handling of PE and SR inversions (see Results), as an example. The

inclusion of these features in SVXplorer has demonstrated an improvement in the precision

and sensitivity of calls for the common SV types over several other SV-callers. First, it exhibits

superior performance for simulated data designed to compare various aspects of SV calling for

all the tools, and particularly in the assessment of SVs arising from three-breakpoint insertion

events. On data from two different libraries sequenced from the same cell line (NA12878) and

the CHM1 haploid cell line, SVXplorer outperforms other methods in comparison to calls

made using longer PacBio reads or using an ensemble caller. It also shows “highest” self-con-

sistency for the two NA12878 libraries (though the consistency numbers across callers are not

directly comparable as will be explained). With the same caveat, in sequences from a family

trio, SVXplorer exhibits the “highest” fraction of calls that are shared between the child and

the biological parents, while similarly identifying the “lowest” fraction of calls in the child that

are not found in either of the parents. Among the methods that are compared, it also shows

the highest agreement with an ensemble-based truth set for the child. Before moving onto fol-

lowing sections, the reader may find it helpful to read definitions/explanation of terminology

used in the manuscript given at the beginning of the Methods section.

Results

We compared SVXplorer (v0.0.4) to the following other structural variant callers: LUMPY

(v0.2.11) [6], DELLY2 (v0.7.7) [18], MANTA (v1.6.0) [19], TIDDIT (v2.8.1) [7] and TARDIS

(v1.0.6) [8]. These methods have been used in several large-scale studies including the 1000

Genomes Project, use more than one sources of evidence, and have been shown to be an

improvement over most existing tools. We compared their performance to that of SVXplorer

on both simulated and real human datasets.

LUMPY was run using the defaults in the ‘lumpy_express’ script with the exception of the

‘-x’ option which was used to supply a BED file of regions to be excluded from the analyses.
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These included regions with abnormally high coverage, the mitochondrial genome, the decoy

genome and the genome of the Epstein-Barr virus (EBV) [6]. The detected SVs were then

genotyped using SVTyper [20] and the calls were filtered to keep ones with at least one alter-

nate allele. This genotyping improved the precision of calls made by LUMPY substantially.

DELLY2 was run using the same parameters as used in Layer et al. (mapping quality threshold:

1, minimum support: 4) [6] and an additional BED file with known gaps in the human genome

was provided to avoid spurious calls in those regions. MANTA was run using with the default

mapping-quality (MQ) threshold and minimum support of 10 and 4 respectively, as in [19]. It

was provided the same BED file as LUMPY to exclude regions that generate unreliable calls.

TIDDIT was run using default specifications, and TARDIS was run with defaults in non-sensi-

tive mode without mrFast realignment with the appropriate SONIC file. SVXplorer was run

with its default parameter set using discordant paired-end (PE) alignments with mapping

quality� 1 and split-read (SR) alignments with mapping quality� 10. SVXplorer was pro-

vided the same exclusion file as LUMPY, along with a BED file of mappable regions. For all

tools, only the variants larger than 100 bps were kept for subsequent analyses and evaluation.

These specifications were chosen for best overall performance on the human genome for each

caller. None of the parameters were changed for any of the callers for any data set, except that

no exclude file (or mappable regions file for SVXplorer) was used in processing of simulated

datasets. Furthermore, TARDIS was run with ‘- -no-interdup’ option for simulated datasets to

avoid interspersed duplication clustering, as interspersed duplications were not simulated in

this study.

There are significant differences in how the various methods report their calls in the output

VCF file. LUMPY, DELLY, and MANTA do not identify 3-breakpoint events, and annotate

the SVTYPE tag for each of the detected SVs with one of DUP (duplication), DEL(deletion),

INV(inversion) and BND(breakend). TIDDIT annotates tandem-duplications as TDUP, and

other duplication events are annotated as DUP. For duplication events such as those arising

via copy-paste as shown in S3 Fig, TIDDIT records adjacencies between (a) x1 and x2, and (b)

between x1 and x3, as BND events. For events arising via cut-paste insertions as shown in S4

Fig, it records an additional breakend adjacency between x2 and x3. TARDIS annotates dupli-

cations with a DUP:TANDEM for tandem duplications and a DUP:ISP for an interspersed

duplication. TARDIS also annotates deletions as either DEL:ME for mobile-element deletions,

and DEL for other deletion events. TARDIS does not output any breakend events but it uses

the observed adjacencies to annotate the SVs as belonging to different variant classes. Our

method, SVXplorer, records the adjacencies of S3 Fig as BND events between x1 and x2, and

between x1 and x3 similar to TIDDIT. However, it records an additional DUP event in the

VCF file between x2 and x3, and reports all 3 events successively in the output VCF unified by

a common GROUPID tag. Cut-paste insertions are handled identically except that a DEL is

recorded in the VCF file between x2 and x3 instead of a DUP. SVXplorer is the only tool that

groups all detected events arising from 3-breakpoint insertions together, clearly identifying the

source and the destination. TARDIS is the only other tool besides SVXplorer that annotates

the source region of an insertion with the appropriate SV type.

Simulated data

We first ran a haploid simulation wherein RSVSim [21] was used to simulate 2,000 deletions,

1,000 tandem-duplications, 200 inversions, 200 copy-paste insertions and 100 cut-paste inser-

tions, each of sizes ranging uniformly at random from 100-10,000 bps in the human reference

genome (GRCh37+decoy), placing breakpoints with a bias towards repeat regions and regions

of high homology. We then simulated 100 bp Illumina paired-end sequences using wgsim
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(https://github.com/lh3/wgsim) with a specified mean insert length of 350 and standard devia-

tion of 50, to an average coverage of 50X, and aligned them against the reference genome

using BWA mem [22]. All the SV callers were then run on this dataset, and the results were

converted to the BEDPE format. The variants were compared to the true breakpoints using

BEDTools [23] ‘pairToPair’ allowing a tolerance of 200 bps.

With this simulation, we wanted to compare the methods in their ability to detect common

SV types: deletions, duplications and inversions. For SVXplorer, we included calls that were

tagged as DUP as duplications, and calls that were tagged as DEL as deletions. For TIDDIT,

variants tagged as DUP or TDUP were considered as duplications, and variants tagged as DEL

were considered in deletions. For TARDIS, variants tagged as DUP:TANDEM and DUP:ISP

were included as duplications, whereas variants tagged as DEL or DEL:ME were included as

deletions. For DELLY, MANTA, and LUMPY we considered all variants that were tagged as

DUP or DEL in these assessments. We would also like to point out that both SVXplorer and

TARDIS can detect and report on inverted duplications, but we did not include them in these

comparisons as they are not currently supported by RSVSim, and the other approaches do not

detect them.

We then computed the sensitivity and precision in each variant category. The same simula-

tion was repeated at coverages ranging from 2X to 48X in steps of 2X to assess how well the

callers perform with varying sequenced information. The relative performance for all callers

based on sensitivity of the calls is shown in Fig 2. SVXplorer has the highest sensitivity for

deletions and duplications at all depths of coverage that were investigated. TARDIS and TID-

DIT have the highest sensitivity for inversions closely followed by MANTA, SVXplorer and

DELLY. The default specifications for SVXplorer are conservatively aimed at real data and

they mandate that an inversion not be called unless evidence is seen at both ends of the variant

in a stringent assessment (see Methods/S1 File for more details). In fact, as we show with real

datasets, the number of inversion calls made by SVXplorer and LUMPY relative to other vari-

ants for real datasets are fewer, and much more in line with what is identified via long-read

Fig 2. Simulation sensitivity. SVXplorer is more sensitive overall compared to the other approaches even at relatively

low genome coverage, as assessed using this simulated dataset.

https://doi.org/10.1371/journal.pcbi.1007737.g002
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sequencing or ensembl calling. TARDIS was the only caller that called a high number of false-

positive duplications and inversions (S10 Fig) for this simulated dataset. This false-positive

rate for TARDIS can be significantly lowered by manual selection of parameters at each cover-

age. Two parameters, ‘- -rp’ which is used to select the minimum number of supporting read

pairs in initial clustering, and ‘- -read-cluster’, which is used to select the number of clusters

that a particular read can belong to, have a significant effect on the number of false-positive

calls for TARDIS.

Even though TIDDIT, TARDIS, and SVXplorer can detect 3-breakpoint variants including

translocations and interspersed duplications, they report these calls differently from each

other. Most importantly, TIDDIT and TARDIS do not group the 2-breakpoint calls arising

from 3-breakpoint insertions together like SVXplorer. TARDIS does not output all adjacen-

cies, which makes it difficult to evaluate in comparison with SVXplorer and TIDDIT. It identi-

fies the source location of the cut- or copy-paste insertion (and sometimes the corresponding

insertion location as an “INS:ME” event). It also has a “POS2” field to identify the paste loca-

tion for “DUP:ISP” calls, but it was always listed as being on the same chromosome (even for

inter-chromosomal events) and not observed to be correct for the simulated variants. The

reason for this is that TARDIS is designed to identify pre-annotated repeat elements in the

human genome whereas the simulation places variants randomly throughout the genome. So

we ran another simulation where we compared SVXplorer and TIDDIT for their ability to

correctly detect cut- and copy-paste insertions. Again, we used RSVSim to generate an altered

haploid target consisting of 1000 cut-paste and 1000 copy-paste insertions distributed

throughout the genome with a bias towards repeat regions. The source region size of the inser-

tion ranged uniformly from 100–100, 000 bps. The read simulation and alignment details as

well as the stepwise simulated coverage were identical to Simulation 1. All tools were run in

regular mode without any additional files or parameters. For this simulation, SVXplorer took

43 minutes and TIDDIT took 181 minutes to detect these variants at 50-fold coverage.

For evaluation, we considered that TIDDIT and SVXplorer recorded a true positive inser-

tion when all 3 breakpoints were identified via BND adjacencies. BND events identifying some

but not all of the 3 breakpoints were counted neither as true positive insertions nor false posi-

tives. Other SV types were also not counted as false positives if they correctly identified the 2

source region breakpoints (e.g. a deletion recorded for the source region of a cut-paste). All

other calls counted as false positives. A slop of 300 was used for breakpoint evaluation due to

the more complex nature of 3-breakpoint insertion calls. The plot of performance with respect

to varying coverage is given in S11 Fig, which shows that at all coverages SVXplorer exhibits a

higher sensitivity compared to TIDDIT for this dataset. SVXplorer also makes the advance

over other tools of effectively unifying all adjacencies arising from a 3-breakpoint variant into

a single SV call.

Real data

We next applied SVXplorer along with the other callers to several real human sequencing data-

sets to evaluate its relative effectiveness under different conditions. Build 37 of the human

genome (GRCh37+decoy) was used as the reference for all datasets. For predictive power, the

callers were either evaluated against calls made using PacBio long reads, or those made using

ensemble approaches such as Parliament [24]. Sensitivity, precision and F1 score were com-

puted for all callers after removing calls less than 100 bps from both the call set and the truth

set. A call in the “truth” set that overlaps a predicted call within a slop of 200 bps is defined as

a true positive. Deletions were evaluated using events labelled as “DEL” in the VCF file for

LUMPY, MANTA, DELLY, TIDDIT and SVXplorer. For TARDIS, we included the variants
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annotated as DEL or DEL:ME. Wherever possible, an assessment was made as to the self-con-

sistency of calls made by each caller for related samples (different libraries or related individu-

als). The VCF files of variant calls made for these data can be downloaded from Zenodo

(https://doi.org/10.5281/zenodo.3634028).

SVXplorer has high precision and sensitivity on CHM1 deletions. Performance was

first evaluated on the CHM1 cell line, derived from a human haploid hydatidiform mole. We

downloaded 40X coverage 2x100 bp Illumina WGS reads from the ENA short read archive

(ENA accessions ERR1341794) and realigned it to the b37+decoy genome using BWA mem.

We used the comprehensive set of structural variant calls released by Chaisson et al. [25] that

are publicly available at http://eichlerlab.gs.washington.edu/publications/chm1-structural-

variation as the truth set for this analysis. As we show in Table 1, SVXplorer outperforms the

other methods in precision and F1 score in the identification of deletions. TARDIS has the

highest sensitivity, followed by SVXplorer.

The truth set available for inversions had very few calls (33) to establish statistical signifi-

cance in comparison across the different callers. Additionally, insertions are difficult to com-

pare faithfully for sensitivity and precision because many callers classify them as generic

breakend (BND) events. An enrichment analysis of the false-positive deletion made by

SVXplorer using LOLA [26] against the UCSC genomic features database using a 1000 bps

genomic segments as the background shows enrichment of regions covered by segmental

duplications (OddsRatio: 1.47), CNVs in coriell cell line (OddsRatio: 1.4), LaminB1 Lads

(OddsRatio: 1.27), nested repeats (OddsRatio: 1.06), and repeat masked regions (OddsRatio:

1.17). However, we would like to point out that 478 of the false-positives identified by

SVXplorer are also called by LUMPY, 330 of them are also called by DELLY, and 431 of them

are also called identified by MANTA and these calls be indicative of the limitations of short-

read sequencing in determination of SV calls. Fig 3 shows the size distribution of deletions

detected by SVXplorer, and we compare the F1 score of the various callers for the various sizes

of deletions. Using the default parameters, DELLY does not identify small deletions less than

250 bps in this sample, and SVXplorer is consistently among the best callers for all strata in

this dataset. We also show the size of the duplications and inversions detected by SVXplorer

for this sample in S12 Fig.

SVXplorer achieves high self-consistency among multiple libraries. We next applied

SVXplorer to two separate libraries for the well studied NA12878 cell line (accession numbers:

ERR194147 and SRR505885) along with the other callers. The callers were evaluated for dele-

tion calls against calls made using PacBio long reads that passed quality filters. We downloaded

the calls made on the pacbio dataset from ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/

NA12878/NA12878_PacBio_MtSinai. The callset was made using 7 different SV callers, and

the calls made by at least 3 callers were considered to pass all quality filters. For both libraries

Table 1. Comparison of the various approaches based on CHM1 deletions.

SVXplorer LUMPY DELLY MANTA TIDDIT TARDIS

Calls 1759 1804 1116 1585 1386 3739

True-positives 1219 1174 397 958 852 1265

Sensitivity 27.3 26.3 8.9 21.5 19.1 28.3

Precision 69.9 65.0 35.5 60.4 61.5 33.8

F1-score 39.3 37.5 14.2 31.7 29.1 30.8

The “best” result for each metric is highlighted in bold.

https://doi.org/10.1371/journal.pcbi.1007737.t001
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SVXplorer exhibits better performance characteristics compared to other callers. The results

are shown in Table 2.

In addition, performance curves for sensitivity and precision with varying coverage were

generated for all callers for the ERR194147 library against the PacBio deletion truth set.

SVXplorer shows the highest sensitivity and precision even at lower coverage compared to the

other callers (Fig 4). The performance curves for SRR505885 are shown in S13 Fig. SVXplorer

has the highest F1 score compared to the other tools included in this study at all coverages that

were sampled. We again show the distribution of sizes of deletion detected by SVXplorer for

the ERR194147 library in S14 Fig.

Even though each library and subsequent short-read sequencing represents an independent

experiment, it was natural to assess the concordance of the callers for the two experiments,

considering that the data is from the same sample. We asked the question: “What percentage

of calls made by each caller for one library were found in the other library”? We acknowledge

that the results from such a comparison are fraught with caveats, and should not be considered

Fig 3. Size of detected deletions. (A) The size of deletions in CHM1 detected by SVXplorer. (B) Comparison of the SV callers based

on F1 score for various deletion size intervals.

https://doi.org/10.1371/journal.pcbi.1007737.g003

Table 2. Comparison of deletion calls made by the various methods for NA12878. The “best” result for each metric is highlighted in bold.

Library SVXplorer LUMPY DELLY MANTA TIDDIT TARDIS

ERR194147 Calls 2724 2607 2407 2935 2264 2611

True-positives 2401 2274 1867 2202 1874 2211

Sensitivity 64.9 61.5 50.5 59.6 50.7 59.8

Precision 88.6 87.2 77.5 75.1 82.8 84.7

F1-score 74.9 72.1 61.2 66.4 62.9 70.1

SRR505885 Calls 3141 3439 2253 2520 2628 4187

True-positives 2541 2624 1719 2037 2161 2712

Sensitivity 68.7 71.0 46.5 55.1 58.4 73.3

Precision 80.7 76.2 76.2 80.8 82.2 64.8

F1-score 74.2 73.4 57.7 65.5 68.3 68.8

https://doi.org/10.1371/journal.pcbi.1007737.t002
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in isolation. For example, a caller could repeat a systematic error and detect a variant in both

experiments resulting in higher concordance. Alternatively, it could call a variant resourcefully

by using sparse information in one experiment but miss it altogether in the other due to

sparser information, resulting in an unfair penalty. However, we believe that this assessment

provides an additional metric beyond sensitivity, precision and F1 scores that can be used to

understand the differences between the various methods. Many different approaches can be

used to evaluate this “reproducibility” between the experiments, and we have chosen a liberal

approach to assess it in this study.

We take the final call-set of one library (called the “base library”) and compute its overlap

with a call set including all unfiltered and ungenotyped SVs for the other library (termed the

“liberal library”), allowing a slop of 200 bps between the detected breakpoints. For all tools, the

final call set comprises of variants that passed all filters, and whose genotype was not homozy-

gous/unknown for the reference if genotyping was implemented. The liberal library for all

tools comprises calls either not labelled as “PASS” or with a genotype string of “0/0” or “./.”

This is because we are interested in knowing whether a variant called in one sample presents

reasonable evidence of being seen in the other sample, given various discrepancies and artifacts

in fragmentation, sequencing and alignment. We perform the test with the caveat that the dif-

ferent callers may not be directly compared with each other, as the cluster support thresholds,

mapping thresholds, the sheer volume of unfiltered calls, and clustering algorithms are all very

different across the various callers. LUMPY, MANTA and DELLY all identify 2-breakpoint

variants only, i.e., an “FR” cluster becomes a deletion candidate and an “RF” cluster becomes a

duplication candidate. This is true for simple deletions and tandem duplications, but not when

clusters with these signatures arrive from cut- or copy-paste insertions. To at least have the

same framework as the other callers, SVXplorer’s self-consistency comparison is done at the

cluster level (prior to integrated-variant formation). Essentially, all its PE and SR clusters that

pass filters in the base library are compared to all PE and SR clusters in the other library (with

“FR” clusters or equivalents termed “deletions” and “RF” clusters or equivalents termed

“duplications” for uniformity across tools).

In other words, the collection of all 2-breakpoint clusters of any read orientation arising

from PE reads, and all 2-breakpoint clusters arising from split reads are considered for

Fig 4. Sensitivity and precision vs coverage for ERR194147.

https://doi.org/10.1371/journal.pcbi.1007737.g004
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comparison in each library. Clusters in the base library must belong to variants that passed dis-

jointness and read-depth filters in subsequent stages. This collection of clusters is searched for

in the liberal collection of the other library containing all unfiltered clusters. A base cluster

must match read orientation and overlap within breakpoint slop with another cluster in the

liberal collection to be counted as concordant. SVXplorer uses an intermediate file in its work-

space called “variants.pe_sr.unfiltered.bedpe” to create the liberal cluster collection. BND

events were not assessed in this comparison due to the potential uncertainty in the nature of

such events, and hence in their reproducibility. Naturally, due to these differing frameworks,

TIDDIT and TARDIS (the other two callers capturing 3-breakpoint events) could not be

included in this self-consistency analysis. Since cluster-level information is not available for

these tools to the authors it is not possible to provide them a similar framework as the other

callers. For example, TIDDIT uses BND events to report adjacencies arising from its 3-break-

point-variant calls. No tag is provided to separate these BND events from BND events unre-

lated to 3-breakpoint variants, thus rendering the task of extracting a set of clusters for

TIDDIT similar to that of the other tools impossible.

Fig 5A shows the overall normalized self consistency for the four callers. We show plots for

each of the three common SV types along with calls by category for each caller in S15 Fig. All

callers perform reasonably, as expected. SVXplorer shows high overall consistency in all cate-

gories, though of course, the callers are not directly comparable. As alluded to before, the aver-

age number of inversions called for the two libraries was 50 for SVXplorer, 30 for LUMPY,

350 for MANTA and 599 for DELLY. SVXplorer and LUMPY are much more in line with

expectation compared to DELLY and MANTA for the called inversions [16].

We also evaluated the integrated-variant self-consistency for 3-breakpoint variants (cut-

and copy-paste insertions) for NA12878 using SVXplorer and we report it in Fig 5B. The

2-breakpoint source location of all insertion calls made by SVXplorer (cut-paste and copy-

paste) was extracted for one library and checked for simple overlap with an “FR” or “RF” clus-

ter, or an integrated-variant source location of the unfiltered call set of the other library (see

subsection on “NA12878 integrated-variant self-consistency” in the present section in S1 File

for details). This check simply supports the correctness of the observed breakpoints of the

3-breakpoint variant for a given library via evidence of similar breakpoints seen for the other

library. The overlap rate being very close to 100% in most cases substantiates that the variants

are not products of artefacts in data but real SVs.

SVXplorer exhibits high self-consistency in a trio setting. We next evaluated the perfor-

mance of SVXplorer on the data from the AJ trio sequenced as part of the Genome in a Bottle

(GIAB) effort. We downloaded the fastq files for samples HG002, HG003, HG004 from ftp://

ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio. The reads were aligned against the

Fig 5. Self-consistency for NA12878. (A) Normalized self-consistency comparison for the various approaches. This quantity

is obtained by weighing the SV-type self-consistency given in S15 Fig by number of each SV type. (B) Integrated-variant self-

consistency for SVXplorer.

https://doi.org/10.1371/journal.pcbi.1007737.g005
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b37+decoy human reference using BWA to a coverage of 25X coverage per sample. In general,

trio analysis is also useful in testing result reproducibility and accuracy, i.e., we expect that all

variants in the child should also be found in the parents and that there must be more variants

shared between the child and one of the parents as compared to those shared between both

parents. Noting that now we have different related individuals for assessing reproducibility

instead of different experiments on the same individual, self-consistency was evaluated identi-

cally to NA12878 with the same caveats for all tools. The child’s final calls are treated as anala-

gous to the final call-set of the base library and each unfiltered/ungenotyped call-set of the 2

parents is analogous to the call set of the liberal library. AJ trio self-consistency for the various

callers is shown in Table 3. SVXplorer again has clear, high consistency in every category in

this analysis—in terms of difference between calls shared between parents and those between

child and either parent, in terms of calls found in child but not in either parent, and in terms

of raw overlap of calls between child and parent. Please refer to the present section in S1 File

and S16 Fig for more details.

We also evaluated the deletion calls for HG002 against an available truth set generated

using an ensemble approach in Parliament [24], and show the results from that comparison in

Table 4. SVXplorer consistently outperforms the other callers in sensitivity, precision and F1

score. This certainly lends further credence to the substantiality of SVXplorer’s self-consis-

tency results above. As a note, the standard deviation in insert length distribution is greater

than 400 base pairs for all three data-sets.

Benchmarking of 3-breakpoint variants. We detected 185 cut- and copy-paste insertions

in the child that passed all filters. Of those, 174 were non-inverted copy-paste insertions, 9

were cut-paste insertions with confirmed breakpoint order, and 2 were inverted copy-paste

insertions. We used this dataset to evaluate SVXplorer’s performance on these insertion calls.

We compared the call made for the child to calls made for each parent, and to a callset that

contained the union of the calls from both parents. A true positive was registered when all

breakpoints and the exact SV type of the child’s insertion call overlapped and agreed with the

SV type of a call in the parent callset within a slop of 300 bps. A false negative was called if a

call in the parent callset did not meet the above criteria. All calls in the child’s callset that were

not true positives were recorded as false positives.

Table 3. AJ trio self-consistency.

SV type Approach Calls C-F C-M Not in M/F

Deletion SVXplorer 2483 0.76 0.79 0.036

LUMPY 2448 0.75 0.77 0.046

MANTA 2807 0.68 0.70 0.115

DELLY 1312 0.68 0.69 0.097

Duplication SVXplorer 320 0.69 0.7 0.103

LUMPY 315 0.64 0.66 0.146

MANTA 234 0.62 0.58 0.184

DELLY 495 0.62 0.59 0.186

Inversion SVXplorer 46 0.76 0.78 0.065

LUMPY 35 0.74 0.74 0.114

MANTA 292 0.62 0.66 0.151

DELLY 578 0.71 0.71 0.118

“C-F” refers to the overlap between calls of child and father for each SV category as a fraction of child’s total calls (first column), “C-M” to the same between child and

mother, and the last column shows the fraction of the child’s calls that were not seen in either parent. The “best” result for each metric is highlighted in bold.

https://doi.org/10.1371/journal.pcbi.1007737.t003
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The parents’ callsets consisted of all 3-breakpoint variant calls tagged as cut-paste insertions

with known breakpoint order or as copy-paste insertions that passed all filters. The results of

this assessment are shown in Table 5. SVXplorer achieves about 45% or greater precision in

comparisons against one parent, and close to 50% sensitivity in this evaluation. This is signifi-

cant, given the novelty of such an attempt to benchmark 3-breakpoint variants, the low cover-

age of the AJ Trio dataset and the large insert-length spread seen in these data. The precision

of the calls against the combined data further increases to 72% if we include BND calls from

the parents that are tagged as most likely being cut-paste or copy-paste insertions (a “PROB-

TYPE” field in the VCF is listed for BND events). Please see Supplementary Results in S1 File

for more details on this analysis.

Discussion

We have developed a structural variant caller that shows improvement over existing

approaches on simulated variants and real datasets (haploid and diploid samples). It produces

more consistent calls for related individuals as well as for different libraries for the same indi-

vidual, compared to several other callers. It outperforms compared callers in precision as well

as sensitivity, particularly when the coverage is lower or the insert length distribution is vari-

able. Unlike most other SV callers, SVXplorer registers deletions and duplications arising from

3-breakpoint variants like translocations and copy-paste insertions, improving the precision of

CNVs in the process.

Table 6 shows a comparison of the total user time and peak memory usage for the callers

used in this study for three representative datasets. Among the methods that are capable of

detection of 3-breakpoint events, SVXplorer uses memory comparable to TIDDIT and is

significantly faster compared to both TIDDIT and TARDIS. There are several reasons for

SVXplorer’s overall effectiveness and better performance. One significant reason is its probabi-

listic cluster formation algorithm that uses the insert length distribution via a precise, global

binning to characterize the likelihood of two fragments belonging to the same variant in the

Table 4. Performance of deletion calls for HG002.

SVXplorer LUMPY DELLY MANTA TIDDIT TARDIS

Calls 2478 2448 1312 2807 1958 1175

True-positives 2057 1969 795 2051 1605 940

Sensitivity 61.2 58.6 23.7 61.06 47.8 28.0

Precision 83.2 80.4 60.6 73.12 82.0 80.0

F1-score 70.6 67.8 34.0 66.54 60.4 41.5

The “best” result for each metric is highlighted in bold

https://doi.org/10.1371/journal.pcbi.1007737.t004

Table 5. SVXplorer’s performance of 3-breakpoint variant calls.

Total calls Child Calls Overlap Sensitivity Precision

Father 183 185 90 49.2 48.6

Mother 184 185 83 45.1 44.9

Combined 367 185 118 46.0 63.8

The child’s cut and copy insertion calls are evaluated against the parents’ in 3 different assessments. Overlap is defined as the number of calls in child where all 3

insertion breakpoints agree with a call in the parent call-set within a slop of 300 base pairs and share exactly the same SV type. Sensitivity and precision are evaluated for

the child with the parent call-set acting as ground truth.

https://doi.org/10.1371/journal.pcbi.1007737.t005
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sample, and is based on both the insert length difference and the alignment distance between

the fragments. Another significant reason for better performance is its progressive recombina-

tion of clusters with specified signatures to form two- and three-breakpoint integrated vari-

ants, which does not call individual clusters as variants until it has exhausted all predefined

possibilities of signature matches. Most callers that rely on paired-end signatures annotate

RF clusters as evidence for a duplication and FR clusters as evidence of deletion. This can be

tricky, just as one example, in the case of breakpoints generated by retrotransposons that can

‘copy and paste’ their genetic code around the genome. The signature of such calls from dis-

cordant reads is the overlap of 1 RF and 1 FR cluster. Without cluster consolidation, a putative

deletion and duplication in the region would be marked with incorrect breakpoints (Fig 1). If

read-depth filters are reliable, no variant would be called in the region. Although a robust

truth set for duplications and translocations for real data was not found, we showed that even

in simulations sensitivity was significantly compromised for other callers in such regions. And

if the read-depth filters were less reliable (as is the case in real data) and the putative deletion

or duplication were called with incorrect breakpoints, the sensitivity and precision of calls aris-

ing in these regions would both decrease.

For SVXplorer, if reads aligning to the “copy” (source) and “paste” locations have reason-

ably high mapping quality (a minimum of 20 is required for both sides of an RF alignment-

pair), the concern of these alignments coming from repeated genomic regions is much less.

Even if the source region of the insertion had low mappability, the question of “where” the

insertion came from is a moot one in the presence of such identical regions in the genome.

Further, of similar clusters, the largest one containing the most number of continuous align-

ments is typically picked by SVXplorer. The efficacy of such insertion calls by SVXplorer has

been demonstrated as best as possible using repeat bias in simulated insertions, self-consis-

tency of clusters comprising insertions assessed in two different sequencing libraries, and via

its integrated-variant self-consistency. SVXplorer’s comprehensive consolidation for insertions

arising through ‘cut and paste’ and ‘copy and paste’ mechanisms, inversions, and even tandem

Table 6. Total CPU time and peak memory usage for the various methods.

Dataset Method CPU time (minutes) Peak memory usage (GB)

Simulation (50X) SVXplorer 25.20 1.25

MANTA 91.58 0.10

LUMPY 9.91 1.07

DELLY 160.57 0.30

TIDDIT 106.60 3.57

TARDIS 108.59 8.72

ERR1341794 (40X) SVXplorer 63.12 3.36

MANTA 425.63 0.26

LUMPY 159.55 3.10

DELLY 839.45 1.34

TIDDIT 123.34 3.59

TARDIS 157.16 9.45

CHM1 (40X) SVXplorer 80.98 4.43

MANTA 833.26 0.21

LUMPY 193.59 5.28

DELLY 766.44 0.99

TIDDIT 142.12 3.59

TARDIS 891.72 12.07

https://doi.org/10.1371/journal.pcbi.1007737.t006
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duplications enhance its putative call set by reducing false positives among deletions and tan-

dem duplications while identifying accurate, complete insertion sites. Both PE and SR align-

ments are used individually and collectively to exhaustively form all putative integrated

variants with specific signatures. For example, a cut-paste insertion requires at least 3 support-

ing clusters of specified signature (S4 Fig), which may be read in any order, containing either

inverted or non-inverted alignments, and which therefore need to be carefully handled to

finally form the 3-breakpoint cut-paste variant. All support thresholds (which are dynamic

and coverage-based) and filtering are applied not to individual clusters but to integrated vari-

ant blocks. Read-depth filtering is applied to streamline these calls further with enhanced fea-

tures, such as the use of only mappable regions to calculate local coverage and ignoring

regions deemed otherwise unreliable in the variant. Zero-mapping-quality alignments are

also systematically ignored in read-depth analysis.

SVXplorer exhibits an increase in sensitivity and precision in comparison to the other

approaches for multiple datasets, even though the improvement can appear marginal in some

cases. But even if the improvement is marginal in terms of metrics such as sensitivity, the dif-

ferences between the methods based on breakpoints and their overlaps can be significant. For

example in the CHM1 dataset, only 1597 of the 1759 deletion calls made by SVXplorer over-

lapped calls made by LUMPY. Of the 162 calls (10%) unique to SVXplorer, 101 of them over-

lap the truth set within a slop of 200 bps. Similarly, for LUMPY, 41 of the 207 calls unique to it

are true-positives using a slop of 200 bps. Several enhancements to SVXplorer (and this line of

research) can be envisioned that would improve its utility and performance. First, SVXplorer

does not have an explicit mechanism to identify insertions and deletions smaller than both the

insert-length standard deviation and the lowest primary alignment length for the SV. Another

area of improvement for SVXplorer is in the handling of multi-allelic variants. For example, a

deletion and a duplication with similar reference breakpoints may not be called by SVXplorer

as it could be annotated as a copy-number invariant region in the final filter. Such variants,

however, can be identified in a family trio by post-processing the identified variants. The cur-

rent version of SVXplorer does not model biases in sequencing, relying on a careful examina-

tion of read-depth instead. However future versions should be able to incorporate better

models of read-depth using single-position models, speeding up the execution of the approach

further.

Future research can also build on SVXplorer’s methodology to precisely model 3-break-

point variant signatures stemming from copy-paste and cut-paste insertions, and inverted

transcriptions, in real data presenting complicated alignments and possibly confounding sig-

natures. Simulations of the human genome with such artificially inserted events can be done

to corroborate these models. Several callers could then come up with ensemble truth sets for

human non-tandem duplications, which are quite sparse at the moment. One could also char-

acterize more precisely the nature, frequency, size distribution etc. of these duplications and

translocations in a healthy genome, and progressively use these findings to aid in classification

of diseases associated with atypical genomic rearrangements.

Methods

SVXplorer requires a coordinate-sorted BAM file generated by aligning Illumina paired-end

reads belonging to a single read-group against a reference genome as input. It calculates the

coverage and insert length distributions from this BAM file, and groups the fragments that are

marked as discordant by the aligner into sets we refer to as clusters. All fragments in a cluster

are required to have the same relative orientation of their constituent reads after alignment,

and are selected so as to support the same putative variant. It then tests if the clusters can be
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further grouped into integrated variants such as inversions and translocations based on break-

point overlap and their combined signature. Split-read evidence from the BAM is then incor-

porated, both to support existing variants and to create variants that were not captured using

the discordant paired-end reads. SVXplorer then processes the variants to remove calls that

could be caused due to errors in sequencing or alignment. Finally, read-depth information is

added to all the variants and used to further filter the set of calls. In case of multiple read-

groups as observed in several datasets, SVXplorer should be run on each one of them sepa-

rately. We now describe each of these steps in detail.

For clarity, we first define a few terms that are used in the subsequent sections. We refer to

the DNA insert as used in Illumina sequencing as ‘fragment’ (S1 Fig). The “tip” or “head” of an

alignment refers to the largest genomic coordinate in case of an alignment to the forward (F)

strand, and the smallest genomic coordinate in case of an alignment to the reverse (R) strand

of the reference genome. The “tail” analogously refers to the smallest genomic coordinate of a

forward-oriented alignment and the largest coordinate for a reverse-stranded alignment. An

FR alignment thus would refer to an alignment whose left mate is forward-oriented and whose

right mate is reverse-oriented on the same chromosome. “Mappable” regions refer to regions

in the reference that are unlikely to contain reads with poor mapping quality and were identi-

fied by running GEM mappability [27] on the reference genome. A “small” cluster refers to a

discordant PE cluster that is composed of discordant alignments where the observed insert

length is smaller than the estimated mean insert length. A “variant map” refers to the set of all

relevant supporting fragments of a putative variant. An “integrated” variant is any variant

composed of more than one discordant alignment cluster or one giving rise to more than one

discordant alignment cluster. SVXplorer integrates clusters arising from cut- and copy- paste

insertions, inversions and in some cases tandem duplications into these respective variants. A

“3-breakpoint variant (event)” refers to a cut-paste or a copy-paste insertion event, which has

2 breakpoints spanning the source of the insertion and 1 identifying the target location where

it is pasted in the genome. A “breakpoint region” is the combination of all locations in the ref-

erence where the true breakpoint is estimated to possibly exist. A variant whose support tag is

“mixed” has support from both PE and SR alignments.

Preprocessing

In this step, we subsample alignments from the input position-sorted BAM file to calculate the

insert length and coverage distributions in the dataset. We filter the BAM file to keep discor-

dant reads that pass preset thresholds relative to the mean of the insert lengths and respective

mapping quality thresholds. These are then used as input to the next step (see section “Prepro-

cessing” in Supplementary Methods in S1 File for details).

Formation of paired-end clusters

We group fragments aligning discordantly into “clusters” that have the same relative orientation

of the reads, and putatively support the same structural variant. Briefly, each fragment with a

discordant primary alignment is taken as a node in a graph G, and an edge is created between

two nodes i and j if and only if a calculated score Wij for the pair exceeds a predefined threshold.

After all the node pairs in a genomic region have been investigated, connected components

from the graph are identified and the nodes in each connected component are separated into

maximal cliques using a greedy set-cover approach. S2 Fig shows the size-distribution of con-

nected components in one such dataset. Each clique is treated as a set, and the maximum clique

(or largest maximal clique) in the collection of cliques, is processed into a cluster, i.e., its mem-

ber fragments are used to determine the cluster’s breakpoints and error margins. Once a clique
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is processed, all its member fragments are removed from all other sets, and are not used as part

of any other cluster. The clique set itself is now removed from the collection of cliques in the

connected component and the steps are repeated. All cliques that have members fewer than a

predefined threshold are ignored. All fragments that are part of the same clique are mutually

proximal (per the weight criteria) and purportedly support the same variant. The idea of using

cliques to group alignments into clusters is not new, and has been used by CLEVER [17], Varia-

tionHunter [28] and others. SVXplorer, however, calculates the edge-weights starting with a

first-principles probabilistic approach and uses the insert length distribution in two significant

ways with precision which leads to improvement in performance compared to other tools that

use similar approaches. Please refer to the present section in Supplementary Methods in S1 File

for further details.

In order to motivate how the score Wij is calculated, we now present a heuristic argument.

Let us define Cij as the event that two aligned fragments i and j drawn at random from the

genome support the same variant. The connection weight Wij is a calculated score for the proba-
bility of the event Cij. The distance profile of a pair of fragments i and j, Dij, is a function of the

difference of the insert length of the two fragments accounting for the orientation of the reads

in the alignment and the distance between the respective left reads of the fragments. We

denote the observed difference in the insert length between the two aligned fragments as Δij

and the observed “tip-to-tip” distance between respective left alignments as Lij. Using Bayes’

rule, Xij = P(Cij|Dij = dij) is given by:

Xij ¼ PðDij ¼ dijjCijÞ �
PðCijÞ

PðDij ¼ dijÞ
ð1Þ

¼ PðDij ¼ dijjCijÞ �
PðCijÞ

PðDij ¼ dijjCijÞ � PðCijÞ þ PðDij ¼ dijjCc
ijÞ � PðCc

ijÞ
ð2Þ

where Cc
ij denotes the complement of the event Cij. We take note here that the overall probabil-

ity P(Cij) does not depend on the distance profile, whereas the other terms in (2) do. We would

also like to point out that P(Dij = dij|Cij) is typically a monotonically decreasing function of Δij

and Lij, and PðDij ¼ dijjCc
ijÞ is typically a monotonically increasing function of the same two

quantities. The event Cc
ij, among other things, includes the possibilities that the fragments

belong to different variants or are sampled from systematic misalignments that resemble true

variants. Assuming an unimodal insert length distribution and given that alignments cluster-

ing together in the reference arising from true variants far outnumber systematic misalign-

ments that cluster together, the monotonic behavior cited above should be obvious. In other

words, as the difference in insert length between two different fragments with discordant align-

ments rises, the likelihood of their being sampled from the same genomic region decreases.

Further, as the distance between the respective read alignments on either side (e.g., left reads)

rises, the likelihood of their belonging to the same variant cluster decreases. It may be more

apparent now from (2) that Xij is a monotonically decreasing function of Δij and Lij, as the

term multiplying P(Cij) is always less than 1. Also, the only term in (1) that is grossly depen-

dent on the distance profile is P(Dij = dij|Cij). The denominator in (1) is also dependent but,

given the spread/smattering of discordant alignments in the genome, it has opposite monoto-

nicity to the numerator and only supports the same monotonic behavior. Thus, it need not be

further treated or considered for this heuristic motivation of the connection weight. Since the

algorithmic objective is to define a fragment-connection weight that is monotonically and

structurally similar to Xij, the following function, a practical reproduction of P(Dij = dij|Cij), is
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chosen to define the score between two nodes i and j:

Wij ¼ yij � PðD ¼ DijjCijÞ � TðLijÞ;

where P(Δ = Δij|Cij) is directly obtained from the subsampled insert length distribution by bin-

ning the insert length difference values, and taking the ratio of the number of entries in the bin

in which Δ (the observed insert length difference) resides to the total number of entries. T(Lij)
is a function that penalizes distance between the respective left alignment reads after the dis-

tance crosses a certain threshold. The penalty threshold for T(Lij) is chosen to be the “general-

ized 3 sigma” (σ3) mark, which is the insert length value at the 99.85 percentile mark (which is

equivalent to the 3-sigma mark for Gaussian distributions) of the insert length distribution.

The penalty is a simple linear cost that takes Tðd0ij
Þ to 0 at pmi, the insert length at the 99.9999

percentile mark of the insert length distribution. Thus

TðLijÞ ¼

1 if Lij <¼ s3

0 if Lij > pmi

1 �
Lij � s3

pmi � s3

otherwise

8
>>>>><

>>>>>:

θij is an indicator variable that is 1 if the two fragments (a) have the same relative orienta-

tion of reads, and (b) align to the same set of chromosomes. If the relative orientation of the

reads is “FR” then they are also required to agree on whether the insert length of the fragments

is significantly higher or lower when compared to the average insert length. Currently, a suit-

able connection weight threshold is applied to the graph: Wij> 0, i.e., all fragments that have

a positive probability of being pairwise connected are connected to each other. However, the

overall structure of Wij is important, as in future work connection weights are envisioned to be

edge weights in the graph G, and are to be used in generation of maximal weighted cliques. It

is also an important consideration in the regime of low P(Cij), as the structure of Wij includes

hard cutoffs to 0 from discrete sampling of the insert length distribution. After all edges are

formed, we find all the maximal cliques of each connected component [29] using an imple-

mentation from the NetworkX package [30]. The cliques are processed into clusters with

breakpoints appropriately calculated according to the orientation of the reads. The breakpoint

region size or breakpoint margin for each breakpoint of the cluster is given by:

s3 � ðXR � XLÞ;

where XR is the location of the “tip” of the rightmost read supporting the breakpoint, and XL

the location of the “tip” of the leftmost read. Though SVXplorer lists precise variant break-

points when split reads are present, using σ3 provides a conservative estimate of the breakpoint

margin for calls supported only by PE alignments. Statistically, at most 2 variant calls out 1000,

for any insert-length distribution, will have breakpoints lying outside the listed breakpoint

region (for example when the observed alignments happen to begin at the edge of the true vari-

ant region and have the largest possible insert size per the insert-length distribution). Thus,

the breakpoint margin is a conservative estimate even for insert length distribution of anoma-

lous shapes such as those generated when enzyme-based fragmentation methods are used. Of

course, for typically Gaussian distributions, σ3 happens to lie about 3 standard deviations from

the mean. As SVXplorer’s edge-weight calculation depends on statistics from a given insert

length probability distribution, its efficacy is independent of/takes into account the variance

of the distribution.
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So, simplistically, fragments are likely candidates for belonging to the same cluster if their

mutual insert length difference and their mutual distance are both low. The mutual distance of

aligned fragments being low is not implied by a mere overlap of the alignment regions if the

left and right alignments are distant. The insert length distribution (ILD) in reference was the

most natural candidate for efficient computation of this likelihood. SVXplorer strives to repre-

sent the likelihood of Cij with as much useful precision as the available information allows and

uses the ILD via a global binning approach to extract such data-based precision in fragment

discrimination.

Consolidation of paired-end clusters into variants

The clusters that are formed at the end of the previous step are tested for overlap with each

other. Cluster “overlap” is defined by overlap of the breakpoint regions in a manner that the

composite signature agrees with a specific type of integrated variant. Clusters that overlap are

grouped and tagged as part of a putative integrated variant. In fact, each cluster is first com-

pared to all such existing variants for possible matches and then to all clusters that are not yet

integrated. This allows a variant to be composed of more than two clusters (e.g., as in translo-

cations). Variant sets are then formed for all variants by union of respective member cluster

sets, recording all the alignments that support a given variant.

Cluster consolidation is detail-intensive (for example, S5 Fig), and carefully performed for

all basic structural variant (SV) categories that we currently consider. The well-known SV cate-

gories used are: deletion, tandem duplication, inversion, de novo (or non-reference) insertion,

and other insertions that occur using a copy- or cut-and-paste mechanisms.

• Deletion (DEL): An “FR” cluster that has not been paired with any other cluster and where

the included fragments have an insert length that is significantly larger than the average

insert length.

• Tandem duplication (TD): An “RF” cluster that has not been paired with any other cluster.

• Inversion (INV): A pairing of 1 “FF” and 1 “RR” cluster due to the overlap of both left and

right alignments respectively.

• Insertion resulting from a copy-paste mechanism (INS): A pairing of 1 “FR” and 1 “RF” clus-

ter. An exact signature match as shown in the S3 Fig is required.

• Insertion resulting from a cut-paste mechanism (INS_C): A pairing of 1 “FR” and 1 “RF”

cluster as above, but another “FR” deletion cluster flanking 2 adjacent breakpoints (S4 Fig).

If all 3 breakpoints lie on the same chromosome (indicating an intrachromosomal transloca-

tion), this is a symmetric situation in the 3 breakpoints and it is not possible to distinguish

the source of the translocation from the location where it is pasted without using read-depth

information. If identified, the paste location breakpoint is defined as “1” and the source loca-

tions are defined as “2” and “3”, and the variant is labelled INS_C_P.

• De novo insertion (DN_INS): A pairing of clusters that are composed of alignments with

only one mapped mate and whose alignments have mutually opposite orientation, or an

unmatched small “FR” cluster indicating a (novel) inserted segment between its left and

right breakpoints.

SVXplorer allows for a detailed treatment of SV types and categories not typically identified

using other approaches. Please refer to the present section in the Supplementary Methods in

S1 File for a more detailed explanation of these signatures.

PLOS COMPUTATIONAL BIOLOGY SVXplorer: identification of structural variants from discordant cluster signatures

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007737 March 17, 2020 18 / 23

https://doi.org/10.1371/journal.pcbi.1007737


Incorporation of split-reads

In this stage, split reads are both used to add support to existing variants and form new vari-

ants. Split read alignments (extracted using extractSplitReads_BwaMem script included with

LUMPY [6]) are compared to all existing putative variants they could support. If an SR align-

ment supports a given PE variant call with the correct signature, the variant support tag will

now include “SR” and the supporting fragment will be added to the variant map of said variant

(see S7 Fig and “Incorporation of split-reads” in Supplementary Methods in S1 File). If the

split alignment does not match any existing (PE or SR) variant, then it is stored as a new possi-

ble SR variant. As with PE calls, this new SR variant can be composed of/consolidated by dif-

ferent read signatures, and can be a 2-breakpoint or 3-breakpoint variant.

Variant categories that are created based on SR evidence with no evidence from PE reads

are: deletion/insertion, tandem duplication/insertion, insertion and inversion. A brief descrip-

tion of these signatures is provided now, and we include a detailed explanation in the Supple-

mentary Methods in S1 File in the cited section.

• Deletion/insertion (DEL_INS): A split read yielding unswapped (please refer to Supplemen-

tary Methods in S1 File for detailed explanation of swapping) “FF” or “RR” alignments on the

same chromosome is marked as a deletion/insertion candidate. Such a cluster can be sup-

ported by both “FF” and “RR” split reads. If this cluster later matches with another cluster, giv-

ing rise to a third breakpoint, then it is promoted to an insertion (see S6 Fig). Insertions can be

inverted or non-inverted. Depth of coverage is used to disambiguate these calls at a later stage.

• Tandem duplication/insertion (TD_I): A split read with the same orientation on the same

chromosome that is a swapped read is marked as a tandem duplication/insertion candidate

(S8 Fig). Again, it can be promoted to purely an insertion as in the case above. Depth of cov-

erage is later used to disambiguate these cases where possible.

• Insertion (INS): Any split read whose segments map to different chromosomes is an inser-

tion candidate. To be counted as a complete insertion, it must match with split reads that

create a third breakpoint via the mechanism described above (S6 Fig).

• Inversion (INV): A split read yielding alignments with opposite orientation on the same

chromosome is an inversion candidate. To be counted as a complete inversion, an inversion

candidate cluster must match with another containing alignments which join the other side

of the inversion to the reference. Merely oppositely oriented clusters are not sufficient. See

present section in Supplementary Methods in S1 File for more details.

Variant filtering

The following was conceived as an improvement on most SV-calling methods using fixed

support thresholds to filter variants. SVXplorer dynamically calculates its support threshold,

which is determined empirically by using a linear model based on the coverage of the dataset.

The model assigns a support threshold for any given coverage in question based on linear

interpolation of a plot of F1 score against coverage for simply simulated data containing com-

mon SV types (please see Methods in S1 File for more details). The support threshold set (PE,

SR, mixed) for coverage = 25X, for example, was (4,4,4). This empirical threshold is now

required to pass another filter.

All the variant sets formed thus far can either be completely disjoint or overlap with other

variant sets, i.e., share clusters. We require that the disjointness of a variant set be the deciding

factor in its inclusion in the final stage of processing. For any given data set, if a variant has at
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least as many supporting alignments (above the mapping quality threshold) as determined by

the dynamic coverage model above, and if these are not shared by any other set, then the variant

passes the disjointness filter and is processed further (please see S9 Fig for additional details). For

robustness, the statistical procedure used to call variants here is applied to the complete variant

set, not to individual clusters. This procedure was initially conceived for secondary alignments,

but works just as effectively if only primary alignments are used. It was motivated by a set-cover

algorithm based on disjointness which we present in Supplementary Algorithms in S1 File.

Incorporation of depth of coverage

This stage carefully evaluates all the variant calls using local coverage and filters. Local coverage

values in regions between reported variant breakpoints are investigated and if the average cover-

age in the region seems to contradict the variant in question, then the variant is written as a break-

end (BND) event. A BED file listing all mappable regions is recommended as input from the

command line and is used to identify regions whose local coverage values can be used in filtering.

In order to calculate variant-region coverage, sampling of bases is done from the middle

and edges of the variant region, and only if absolutely necessary, with caveats, from the break-

point margins. This coverage is assessed relative to the coverage for the chromosome and used

to promote potential SR calls to putative variants, or reject PE calls as putative variants. The

preset thresholds for deletion and duplication are chosen to be.8 and 1.2 respectively, which is

the general standard for typical coverage distributions (due to the presence of other checks

and balances they stand even if seemingly liberal for other cases like enzymatic fragmentation).

If the ratio of average local coverage in the deletion/duplication variant to the chromosomal

median coverage (variant coverage ratio, or VCR) exceeds/drops below its respective thresh-

old, then in special cases such variants are not recorded.

This stage uses only mappable bases for assessing contig coverage as well as to assess local

variant-region coverage as far as possible. Variant calls from all types of clusters (PE, SR,

mixed) are rejected if sufficient number of bases (mappable or otherwise) did not exist to cal-

culate coverage in the variant region. Further, coverage is also used break the symmetry of the

3 breakpoints for intrachromosomal translocations and corroborate the source (“cut”) and

destination (“paste”) breakpoints. Please refer to the present section in Supplementary Meth-

ods in S1 File for more details.

Supporting information

S1 File. Supplementary methods, results and algorithms.

(PDF)

S1 Fig. Fragment and read as defined for this study.

(PDF)

S2 Fig. Distribution of size of connected components in ERR194147.

(PDF)

S3 Fig. A simple copy-paste insertion. The segment in orange is duplicated downstream in

the sample. The figure shows 2 distinct clusters in red and blue matching up in the reference to

form a copy-paste insertion. Breakpoint 1 (x1) is defined to be the overlap of adjacent oppo-

sitely-oriented alignments from the 2 clusters, and breakpoints 2 and 3 (x2 and x3) are defined

by their respective mate alignments, with x2 < x3 by convention, whether upstream or down-

stream from x1.

(PDF)
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S4 Fig. A simple cut-paste insertion (translocation). The segment in orange is deleted and

pasted downstream in the sample. The figure shows 3 distinct clusters, shown in red, blue and

light orange. The cluster shown in light orange is the extra “FR” cluster resulting from the dele-

tion of the translocated segment.

(PDF)

S5 Fig. A “crossover” TD cluster. The segment in yellow is adjacently duplicated downstream

in the sample. The figure thus shows sequenced fragments from a tandem duplication that

align as “FR.” In such a case, the left breakpoint is defined by reverse alignments and the right

breakpoint is defined by forward alignments.

(PDF)

S6 Fig. A copy-paste insertion call from split reads. The segment in yellow is duplicated

downstream in the sample. The orange read by itself would lead to a TD_I call and the blue by

itself to a DEL_INS call. But together they define a copy-paste insertion consisting of 3 distinct

breakpoints.

(PDF)

S7 Fig. Example of a PE deletion call supported by a split read. The read shown in yellow

(size exaggerated in target) is split into 2 alignments in the reference close to the PE break-

points. The segment in green is the putative PE deletion call and the segment in yellow shows

revised precise breakpoints.

(PDF)

S8 Fig. A TD_I call from split reads. The segment in orange is tandem-duplicated down-

stream in the sample. The read shown in orange splits in alignment at the point shown in blue.

The split partners are swapped in alignment, i.e., the head portion of the original forward-ori-

ented read aligns in the reference to the left of the tail portion of that read. Such cases give rise

to a TD_I cluster.

(PDF)

S9 Fig. A special case. A case where 2 PE clusters each separately match up with a third cluster.

The clusters in red and green match up with each other and so do the ones in red and blue,

each matching pair indicating a copy-paste insertion. It is quite unlikely that both are true.

This is addressed in the filtering stage.

(PDF)

S10 Fig. Precision vs coverage for simulated data.

(PDF)

S11 Fig. Performance of SVXplorer compared to TIDDIT in detection of 3-breakpoint

events. (A) Sensitivity with varying coverage (B) Precision with varying coverage.

(PDF)

S12 Fig. Size distribution of deletions, duplications and inversions detected by SVXplorer

for CHM1.

(PDF)

S13 Fig. Sensitivity and precision vs coverage for SRR505885.

(PDF)

S14 Fig. Size of deletions detected by SVXplorer and comparison with other methods for

the ERR1341794 library.

(PDF)
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S15 Fig. Self-consistency in NA12878 data when various approaches are used. “Consis-

tency” refers to the fraction of calls in the listed base library that were found in the other

library.

(PDF)

S16 Fig. AJ trio self-consistency for the various SV types. “A-B” refers to fraction of total

calls made for A that were found in B. Here A or B is a placeholder for either child, father or

mother. “Difference” refers to the difference between fraction of calls in common between the

parents and that between child and a parent (normalized). We expect this to be large. The “not

found” column shows the fraction of total calls that were made in the child that were not

found in either parent.

(PDF)
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