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Background and Purpose: Fecal microbiota transplantation (FMT) has emerged for the 
therapeutic treatment of recurrent Clostridioides difficile infection (rCDI) with concurrent 
inflammatory bowel disease (IBD). As the first Iranian population cohort, we examined how 
gut microbiota and their functional profiles change in Iranian rCDI patients with underlying 
IBD before and after FMT.
Patients and Methods: FMT was performed to eight IBD patients via colonoscopy. 
Profiles of gut microbiota from donors and recipients were investigated using 16S rRNA 
gene sequence analysis.
Results: Patients experienced no IBD flare-ups or other adverse effects, and all recovered to full 
health. Moreover, all rCDI patients lacked the Bacteroidetes present in donor samples. After FMT, 
the proportion of Bacteroidetes increased until a normal range was achieved. More specifically, the 
relative abundance of Prevotella was found to increase significantly following FMT. Prevotella was 
also found to correlate negatively with inflammation metrics, suggesting that Prevotella may be 
a key factor for resolving CDI and IBD. Gut microbiota diversity was found to increase following 
FMT, while dysbiosis decreased. However, the similarity of microbial communities of host and 
recipients did not increase, and wide variation in the extent of donor stool engraftment indicated that 
the gut bacterial communities of recipients do not shift towards those of donors.
Conclusion: FMT leads to significant alterations of the community structure of gut bacteria in 
rCDI patients with IBD. The change in relative abundance of Proteobacteria and bacterial 
diversity indicated that FMT promotes recovery from intestinal permeability and inflammation 
in rCDI patients. Moreover, strong negative correlation between Prevotella and inflammation 
index, and decreased dysbiosis index advocate that the improvement of CDI is possibly due to 
gut microbiome alteration. Collectively, our findings show that FMT would be a promising 
therapy to help reprogram the gut microbiome of Iranian rCDI patients with IBD.
Keywords: fecal microbiota transplantation, Clostridioides difficile infection, inflammatory 
bowel disease, gut microbiome, functional profiles, gut dysbiosis

Introduction
The gastrointestinal tract harbors a complex and dynamic microbial community that 
regulates host metabolic and immune functions.1 The gut microbes that inhabit the 
mammalian gut collectively provide myriad physiological and immunological 
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functions that are distinct from the host’s own constitutive 
resources.2 However, disturbances to the composition and 
function of gut microbial inhabitants induced by antibio-
tics administration, comorbidities and other environmental 
factors can lead to life-threatening diseases.3 Imbalance 
and undesirable changes in the gut microbiome, sometimes 
referred to as intestinal dysbiosis, have been linked to 
infections such as Clostridioides difficile (C. difficile) 
infection (CDI), inflammatory bowel disease (IBD), meta-
bolic syndrome, allergic diseases, and other systemic 
inflammatory disorders.4 A diversified gut microbiota can 
produce various beneficial products, aid in nutrient absorp-
tion, and maintain gut barrier integrity, which promotes 
colonization resistance through dynamic antagonistic 
interactions with pathogens like C. difficile.5

C. difficile is the leading cause of nosocomial diarrhea 
and remains a major healthcare concern contributing to 
high morbidity and mortality worldwide.6 Based on our 
previous 14-year-long cross-sectional study, there is an 
increasing prevalence of CDI (15.9%) in Tehran healthcare 
settings.7 Approximately 20–30% of patients experience 
recurrent CDI (rCDI) after cessation of antibiotic therapy 
for the initial infection, which can increase to 50–60% 
after a subsequent episode.8 Generally, CDI is associated 
with antibiotic use that disturbs the normal composition 
and structure of intestinal microbiota, thereby resulting in 
the colonization and overgrowth of C. difficile and con-
secutive toxin production.9 Patients with IBD are easily 
infected by C. difficile, and the incidence of CDI among 
the IBD population is reported to be higher than in patients 
without IBD.10 The imbalance of the gut microbiota in 
patients with IBD, characterized by a reduction in overall 
microbial biodiversity and perturbation of their regular 
functions, has been suggested to markedly impact the 
periodicity of disease progression and remission.11

Fecal microbiota transplantation (FMT), which restores 
the normal composition and functionality of the gut micro-
biota, has been proven as a potent therapeutic option for 
rCDI with success rates of >90%.12 In addition to CDI, 
some studies have demonstrated that FMT could emerge as 
a promising treatment approach to cure IBD by effectively 
correcting underlying dysbiosis, inducing clinical 
remission.13–15 Although the exact beneficial mechanisms 
of FMT remain poorly understood, FMT can reverse anti-
biotic-induced or disease-associated alterations in the dis-
rupted gut microbiome by replacing it with a normal 
intestinal microbiota resembling that of healthy donors.16

Recently, our previous study demonstrated that FMT 
could be an effective and safe therapeutic alternative for 
treatment of rCDI in patients with concurrent IBD.14 The 
objective of this study is to examine how gut microbiota 
and their related functional profiles change in Iranian rCDI 
patients with underlying IBD before and after FMT.

Patients and Methods
Patient Selection
Eight patients with IBD and rCDI aged over 18 years were 
participated in this one-year study from November 2018 to 
April 2019. They were offered options at two teaching 
hospitals in Tehran for an FMT procedure to cure their 
rCDI.14 The treatment protocol for FMT in patients with 
rCDI was approved by the Institutional Ethical Review 
Committee of Research Institute for Gastroenterology 
and Liver Diseases at Shahid Beheshti University of 
Medical Sciences (Project No. IR.SBMU.RIGLD. 
REC.1396.185), and the study was also conducted in 
accordance with the Declaration of Helsinki. Written 
informed consent was obtained from all eligible subjects 
prior to participation in the FMT procedure. Fecal samples 
were obtained from donors and patients one week (wk) 
prior to FMT and again from patients 2 and 8 wk follow-
ing FMT. Clinical follow-up of patients was performed 2 
and 8 wk after FMT to monitor for cure, failure and 
adverse events in accordance with the approved treatment 
protocol for FMT in patients with rCDI in Iran. This study 
in Tehran was part of a clinical project of our FMT 
research group that was conducted at the College of 
Agriculture and Life Sciences, Kyungpook National 
University in South Korea.

Clinical Diagnosis
The criteria for receiving FMT were 1) at least three or 
more documented episodes of mild-to-moderate CDI, or at 
least two episodes of severe CDI requiring hospitalization 
and 2) failure of a 6- to 8-week course of therapy with 
tapered vancomycin.14,17,18 Clinical, endoscopic, and his-
topathologic findings and disease activity pertaining to 
ulcerative colitis and Crohn’s disease were measured 
using the Mayo score and the Crohn’s disease activity 
index, respectively. Primary and secondary endpoints 
were defined on clinical grounds as the resolution of 
diarrhea while off antibiotics for CDI at 8 weeks after 
last FMT and resolution of clinical symptoms subsequent 
to repeat FMT after failure of the initial FMT.14
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Research Participants
Eligible participants were IBD patients with moderate to 
severe CDI despite treatment with anti-TNF alpha agents, 
corticosteroids, immunomodulators and high-dose vanco-
mycin for at least 10 days. Patients were excluded if they 
were pregnant, unable to provide informed consent, had 
a history of disease severity requiring hospitalization and 
had received invasive mechanical ventilation, or because 
of recent chemotherapy, advanced human immunodefi-
ciency virus (HIV) or other severe immunodeficiency.

Healthy family members or friends (adults ≥ 18 years) 
were screened based on stool and serology for possible 
risk factors for potentially transmittable diseases including 
bacterial, parasitic, and viral pathogens. A complete over-
view of the donor screening procedure is documented in 
our previous study.14

FMT Procedure
As we previously reported, the donors took a single dose 
of osmotic laxative (magnesium hydroxide) the night 
before the stool donation and were instructed to collect 
50 to 100 g of fresh feces and immediately transport it to 
the laboratory on the day of the scheduled FMT. 
Approximately 50 g of donor stool was dissolved in 
300 mL of sterile physiological saline (0.9% w/v of 
NaCl) and filtered through gauze to make a liquid slurry. 
A total of 300 mL of the fecal suspension was adminis-
tered into the recipient’s terminal ileum or cecum via the 
colonoscope working channel within 6 hours after collec-
tion via colonoscopy following bowel purge preparation 
(polyethylene glycol) the day before the procedure.

16S rRNA Gene Sequencing of Bacterial 
Community in Fecal Samples
Total bacterial genomic DNA was extracted from 35 stool 
samples using the QIAamp® DNA Mini Kit (QIAGEN, 
Hilden, Germany) following the manufacturer’s protocol. 
Extracted DNA was kept in 70% alcohol and shipped to 
Kyungpook National University in South Korea for 16S 
amplicon sequencing. The V4-V5 hypervariable regions in 
the 16S rRNA gene were amplified using the forward 
primer 515F (5′-individual barcode- 
GTGCCAGCMGCCGCGG-3′) and reverse primer 907R 
(5′-individual barcode-CCGTCAATTCMTTTRAGTTT 
-3′). PCR was implemented according to the conditions 
described previously.19 Briefly, the PCR mixture consisted 
of 25 μL Emerald AMP GT PCR 1× Master Mix (Takara 

Bio, Shiga, Japan), 1 μL (10 μM) of each barcoded PCR 
primer pair, 1 μL of DNA template (1–50 ng DNA) and 22 
μL of ultrapure water. The samples were incubated at 95°C 
for 5 min, followed by 35 cycles of 95°C for 30 s, 57°C 
for 30 s, and 72°C for 30 s, and finally 72°C for 5 min. 
PCR products were then held at 4°C until analysis. The 
concentration of PCR products was measured using a -
Qubit® 2.0 Fluorometer (Life Technologies, Carlsbad, CA, 
USA). The amplicon products were purified using an 
AMPure XP bead purification kit (Beckman Coulter, 
Brea, CA, USA) and pooled in equal concentrations. 
A 2100 Bioanalyzer (Agilent Technologies, Santa Clara, 
CA, USA) was used to verify the ideal concentration. The 
prepared libraries were sequenced on an Ion S5 (Thermo 
Fisher Scientific Korea Inc., Seoul, Korea).

Bioinformatic and Statistical Analyses
Analysis of the generated raw sequences was conducted 
using the software package Quantitative Insights Into 
Microbial Ecology 2 (QIIME2, v. 2020.8).20 Sequence 
reads were designated to samples according to their indi-
vidual barcodes. Samples with an average Phred quality 
score lower than Q30 (Phred ≥ Q30) were removed. To 
generate amplicon sequence variants (ASVs), a trimmed 
length of 250 bp was denoised and chimeric sequences 
were removed using DADA2.21 ASVs were selected using 
a naive Bayes QIIME2 classifier based on a distance of 
0.01 (≥99% identity) with the Greengenes database 
(v.13_8).22 The depth of the feature table was rarefied at 
1578 reads.

Overall fecal microbiomes were analyzed using 
RStudio 1.3.1093 (https://www.rstudio.com/), the 
Calypso web application (v. 8.84),23 and GraphPad Prism 
8 (GraphPad Software, Inc., San Diego, CA). Taxonomic 
classifications were assessed at phylum, order, and genus 
level. Using the R packages phyloseq,24 vegan,25 

microbiome,24 and picante,26 alpha diversity indices 
(Observed features, Chao1, and Simpson) with Faith’s 
phylogenetic diversity were evaluated. The Wilcoxon 
signed-rank test was conducted, and p values less than 
0.05 were regarded as statistically significant.

To track whether the microbial compositions of CDI 
patients and donors were more similar following FMT, 
beta diversities were calculated based on two distance 
matrices, weighted and unweighted UniFrac.27 The 
Wilcoxon signed-rank test was then carried out to calcu-
late the statistical significance of differences between the 
pre- and post-FMT distance values.
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In addition, since CDI and IBD are associated with 
dysbiosis,28 a microbial dysbiosis (MD) index was used 
to investigate the dominance of individual taxa associated 
with the disease condition to identify dysbiosis severity 
based on the changes in microbial community structure in 
the patient’s fecal microbiota. As defined by Gevers et al29 

a high value of the MD index indicates a positive correla-
tion with clinical disease seriousness. The Wilcoxon 
signed-rank test was performed to compare the MD 
index values between the communities.

The SourceTracker2 program was utilized to estimate 
the proportion of the donor’s original fecal bacterial com-
munity present in the patient’s intestinal environment after 
transplant.30 The gut microbiomes of all donors and pre- 
FMT patients were designated as sources and those of the 
post-FMT patients as sinks. For all samples at 2 weeks and 
8 weeks post-FMT, SourceTracker2 calculated the propor-
tion of the patients’ microbiome communities that were 
attributed to each source microbiome, first for the donor 
(described as Donor sample), second for the patient’s pre- 
FMT microbiome (described as Patient sample), and third 
for unknown community. To better understand the engraft-
ment results, we conducted microbial source tracking 
based on the ASV and genus levels as well.

Metagenomic functional prediction was carried out 
using Phylogenetic Investigation of Communities by 
Reconstruction of Unobserved States 2 (PICRUSt2 v. -
2.1.3).31 The prediction of abundances for each gene 
family group was generated from the ASV table file, and 
we followed the PICRUSt2 default scripts. The obtained 
prediction of metagenomic functional abundances was 
combined with descriptions from the KEGG 
ORTHOLOGY (KO) database, and the log2-transformed 
abundances of particular genes involved in oxidative phos-
phorylation were described in a Sankey diagram.

Pan-genome analysis was used to compare the taxo-
nomic and genetic differences in Prevotella genera 
between donor and patient samples. Using “seq” tool in 
seqkit software, the donor-specific Prevotella ASVs 
detectable only in donor samples and patient specific 
ones were extracted.32 We then acquired the deeper tax-
onomy of each ASVs in NCBI blast with default para-
meters. Subsequently the PICRUSt2 analysis was 
performed to investigate the gene components of 
Prevotella genera differentially detectable in donor and 
patient guts respectively and generate the functional gene 
lists. Core genes (detected in all strains), accessory genes 
(shared at least by two strains) and unique genes (strain- 

specific genes) were identified by the rules reported in the 
previous study.33 The core genes in donor-specific 
Prevotella group were extracted and those functional 
genes were annotated from KO database.

Results
FMT Has Shown Successful Resolution of 
rCDI Symptoms
Six male and two female rCDI patients with IBD (one with 
CD and seven with UC) participated in this study. The 
average age of the patients was 35 years (22–60 years). 
Patients’ BMIs ranged from 18.3 to 29.6 kg/m2; thus, none 
recorded a BMI over 30 kg/m2, which Boulange et al 
define as obese. One patient was hospitalized during 
FMT treatment, while the remaining seven patients 
received FMT as outpatients. Four patients suffered 
watery-bloody stools and the other four experienced 
watery stools. Transplant was completed via colonoscopy 
with fresh donor stools. Six related and two unrelated 
donors contributed stool for FMT. Six patients were diag-
nosed with healthy status after the first FMT procedure 
and the other two were diagnosed as healthy after 
a second. No correlation was found between the number 
of FMT procedures needed and the type of IBD. 
C-reactive protein (CRP) values, a marker of inflamma-
tion, decreased by a median value of 7.25 (range 15.4–1). 
Table S1 provides specific information about the charac-
teristics and clinical data of patients and donors as well as 
the antibody therapies applied before FMT.

FMT Induces Alteration of Gut 
Microbiome in Transplant Recipients: 
Transfer of Fecal Microbiota Achieves 
Healthier Intestinal Microbial Community 
in CDI Patients
Our previous study with clinical data demonstrated that all 
patients were diagnosed with healthy status after FMT 
procedures.14 In the present study, the effects of FMT on 
gut microbiota in patients were examined. To assess the 
changes in the gut microbiome following FMT, stool sam-
ples were collected prior to FMT and 2 and 8 weeks 
following FMT, described as “Pre”, “2 wk”, and “8 wk”, 
respectively. The taxonomic classifications of individual 
rCDI patients’ microbiomes showed varying proportions 
of Bacteroidetes, Firmicutes, and Proteobacteria at the 
phylum level (Figure S1A and Bacteroidales, 
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Clostridiales and Enterobacteriales at the order level 
(Figure S1B). While rCDI patients overall exhibited 
a deficiency of Bacteroidetes, accounting for only approxi-
mately 18% of the total fecal bacterial community pre- 
FMT, this was increased to 32% at 2 wk and 38% at 8 wk 
following transplant (Figure 1A). Simultaneously, at the 
order level, the relative abundance of Bacteroidales surged 
from 18.62% to 37.59% while that of Enterobacteriales 
dropped from 18.97% to 0.04% (Figure 1B).

To compare the alpha diversity of gut microbiomes 
among the groups, several indices were used, including 
observed features and Chao1 for richness, Simpson for 
evenness, and phylogenetic diversity (Figure 1C–F). 
Regarding Chao1 and observed features, although recipi-
ents’ diversity increased slightly, no significant change 
was detected. The rCDI patients prior to FMT exhibited 
the highest Simpson diversity index values, with 
a significant difference between the Pre and Donor groups. 
The phylogenetic diversity index also demonstrated 
a significant difference between the 2 wk and Donor 
groups, with the latter being higher. The various indices 
of fecal microbial diversity shifted toward the donors’ 
values following treatment, though the differences 

between pre- and post-FMT recipient values were not 
statistically significant.

After FMT, The Fecal Microbial Diversity 
of rCDI Patients Shifted to Be Nearly 
Equivalent to That of Donors, but the 
Bacterial Composition Changed 
Distinctively
Beta diversity analysis was performed to determine 
whether the patients’ gut microbial composition structure 
resembled that of the donors following FMT. Weighted 
and unweighted UniFrac matrices were used to monitor 
the distances between the microbial compositions of the 
recipient and Donor groups. After patients received FMT, 
the weighted UniFrac demonstrated that the microbial 
community distance was smaller at 2 wk but increased at 
8 wk (Wilcoxon signed-rank test, p > 0.05, Figure 2A). 
Conversely, the distance according to the unweighted 
UniFrac matrix increased at 2 wk and decreased at 8 wk 
(Wilcoxon signed-rank test, p > 0.05, Figure 2B). 
Consequently, the beta diversity between patients and 
donors did not change significantly. Source tracking was 
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Figure 1 (A and B) Changes in recipient fecal bacterial composition following FMT. Relative abundances of taxonomic groups were described in 4 groups (recipients a week 
prior to FMT and 2 and 8 weeks after FMT and donors). Bacteroidetes increased and Proteobacteria decreased at the phylum level after FMT, and the bacterial composition 
at the order level showed increasing Bacteroidales and diminishing Enterobacteriales. (C–F) Changes in alpha diversity according to various indices. Significant differences 
among groups were not found for observed features or Chao1 but were observed for Simpson diversity (*Wilcoxon signed-rank test p  <  0.05 for Pre and Donor) and 
phylogenetic diversity (*Wilcoxon signed-rank test p  <  0.05 for 2 wk and Donor).
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used to evaluate the proportion of donors’ microbiota that 
was engrafted in patients by revealing the extent to which 
patients’ fecal bacterial community came to resemble that 
of donors. Among the recipients, the extent of bacterial 
engraftment following FMT varied from 4% to 86% (at 2 
weeks) and 15 to 79% (at 8 weeks) based on ASV 
(Figure 2D), and 3% to 97% (at 2 weeks) and 1% to 
98% (at 8 weeks) based on the genus level per 
SourceTracker2 (Figure 2C).

Significant Changes in Taxa from FMT are 
Associated with Alleviation of 
Inflammation
A total of 79 genera were detected in the feces of rCDI 
patients and donors, and the relative abundances of the top 
30 genera are shown as a heatmap in Figure 3A. Among 
the genera, only Prevotella exhibited a significant differ-
ence at both 2 weeks and 8 weeks after transplantation. To 
examine how the significant changes in taxon relative 
abundance affected patients’ inflammation, correlations 

between Prevotella and the ratio of Bacilli over 
Clostridia, CRP, and erythrocyte sedimentation rate 
(ESR) were examined.34–36 Prevotella was observed to 
negatively correlate with the ratio of Bacilli/Clostridia 
(Spearman’s r = −0.426, p = 0.038, Figure 3B), but distinct 
correlations were not found with CRP (Spearman’s r =  
−0.034, p = 0.873, Figure 3C) or ESR (Spearman’s r =  
−0.202, p = 0.344, Figure 3D). The value of the MD index 
was highest in the Pre group and lowest in the Donor 
group and was found to decrease gradually in the recipi-
ents following FMT. Significant differences were found 
between the Pre and Donor groups as well as the 2 wk 
and Donor groups (Wilcoxon signed-rank test, p < 0.05, 
Figure 3E), suggesting that the CDI patients at 8 wk did 
not differ significantly from donors.

Moreover, via pan-genome analysis, total 33 ASVs 
assigned as Prevotella strains were monitored to under-
stand the difference of functional genes between donors 
and patients (Figure S2). With the subsequent analysis 
comparing the origin of those strains, our results 

B D

CA

Figure 2 (A and B) Tracking the distance in beta diversity between FMT recipients and donors. According to the weighted UniFrac matrix, 2 weeks after FMT, the distance 
between the bacterial community structures of patients and donors decreased, but at 8 weeks the distance increased. Conversely, the distance between patients and donors 
first increased and then decreased according to the Unweighted UniFrac matrix. The beta diversities in the weighted and unweighted UniFrac matrices did not reveal 
a consistent pattern (Wilcoxon signed-rank test p > 0.05). (C and D) Proportions of origin of the fecal bacterial communities of recipients and bacterial engraftment 
following FMT as determined using Sourcetracker2. The proportions were calculated for the ASV and genus levels, respectively.
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demonstrated that five of Prevotella strains specific at 
donor fecal samples (two Prevotella copri, Prevotella cor-
poris and two uncultured Prevotella), six at patient sam-
ples prior to the FMT (two Prevotella bivia, Prevotella 
dentalis, Prevotella timonensis and two uncultured 
Prevotella) and 22 Prevotella strains which were detect-
able both at donor and patient samples (Figure S2A and 
B). Beyond the taxonomic difference between Prevotella 
strains among donor and patient samples, we focused on 
the predictable gene components of strains specific at 
either donors or patients to manifest the contribution of 
donors’ Prevotella in the remission of symptoms. By gene 
prediction analysis on strains, we could observe 717 core 
genes and 117 accessory genes in donor specific Prevotella 
strains while 661 core genes and 331 accessory genes in 
patient specific ones (Figure S2C). Subsequently, we dee-
pened our sight into core gene components of donor spe-
cific Prevotella strains excluding the universally detectable 
Prevotella core gene components so that we could con-
centrate on the unique functional traits of donor specific 
Prevotella strains. Consequently, 66 donor-specific 
Prevotella core genes were detected while 10 in patient- 
specific Prevotella (Figure S2D). We also investigated the 
functions and contributions of 66 donor-specific Prevotella 

core genes acquired. Among the functions, ferritin coding 
gene (K02217) and pyridoxine kinase (K00868) were con-
firmed on sets of the donor-specific Prevotella core genes 
(Table S2).

Metagenomic Functional Prediction Shifts 
Following FMT
A total of 5566 predicted metagenomic functions were 
obtained using PICRUSt2 and annotated using KEGG 
Orthology (KO) groups. The described functions were 
classified according to the KEGG pathway. Of a total of 
254 KEGG pathways, 40 pathways (16 for metabolism, 7 
for genetic information processing, 3 for environmental 
information processing, and 8 for cellular processes) 
were selected for discrimination among the Pre, 2 wk, 8 
wk, and Donor groups using the LEfSe (linear discrimi-
nant analysis effect size, LDA > 2.5) algorithm through 
the Huttenhower galaxy server.37 Although significant hits 
were not confirmed in the pathways, the abundances of 
individual predicted metagenomes in the recipients shifted 
toward the compositions of the donors (Wilcoxon signed- 
rank test, p > 0.05, Figure 4A). Additionally, while the 
proportion of oxidative phosphorylation was found to be 
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low in the Pre group, the group was shown to contain 
a higher abundance of ntpG, ntpI, atpD, ntpB, ppaC and 
hydA genes (which belong to the oxidative phosphoryla-
tion pathway) than the other groups (Wilcoxon signed- 
rank test, p > 0.05, Figure 4B).

Discussion
Numerous successful responses to FMT treatment of CDI 
and IBD have been reported.38–41 A previous study postu-
lated that FMT’s mechanism of action against CDI is that 
the directly transplanted bacteria change the intestinal 
environment, rendering it inhospitable to C. difficile. In 
this study, we administered FMT to Iranian rCDI patients 
with underlying IBD and for the first time examined their 
gut microbiota alterations and functional profiles before 
and after the FMT procedure. All eight rCDI patients with 
underlying IBD who participated in the study exhibited 
resolution of CDI symptoms, thereby reaffirming the effi-
cacy of FMT. Additionally, we scrutinized the alterations 
of gut microbiota in the rCDI patients following FMT. 
Unlike previous studies in which FMT altered the gut 
microbiota of recipients to be similar to their donors,42–47 

our results showed that rCDI patients recovered their own 
healthy gut environment independently. All eight rCDI 
patients showed successful response of CDI status to 
transplantation regardless of patients’ age, sex, BMI, or 
relation to donors. The alpha diversity of the original gut 

microbial composition was increased after FMT; however, 
in terms of beta diversity, the distance between patients 
and donors did not change significantly. Furthermore, the 
extent of engraftment of the donor fecal microbiota after 
FMT varied widely, and more evidence is required to 
determine that FMT causes the recipients’ gut microbiota 
to resemble that of their donors. A previous study asserted 
that an association between the host’s genetic factors and 
their gut microbiome composition possibly advocates this 
phenomenon.48

Following treatment, the proportion of Bacteroidetes in 
patients’ gut microbiota increased and the proportion of 
Proteobacteria decreased, aligning it more closely with the 
composition of donors. In addition, while gut microbial 
diversity did not change significantly, fecal microbial 
diversity tended to align closely with that of donors; 
these results are consistent with previous studies.49–51 

Prevotella, the sole genus that increased significantly 
after FMT, showed a strong negative correlation with the 
Bacilli/Clostridia ratio, which is one of the metrics for 
inflammation. This association may indicate that 
Prevotella plays a key role in alleviating IBD severity. 
The substantial increment of Prevotella and the decreased 
dysbiosis index indicate that the changes in gut microbial 
composition following FMT influence the complete reso-
lution of CDI symptoms. Interestingly, there was no sta-
tistically notable change in Proteobacteria in the Pre group 
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compared to the 2 wk and 8 wk groups. Since 
Proteobacteria are gram-negative and include various 
pathogenic genera, the cell walls of which contain lipopo-
lysaccharides (LPS) that are a crucial source of 
inflammation,52 taxonomic groups belonging to 
Proteobacteria were expected to decrease after FMT as 
Prevotella increased. This occurrence is consistent with 
the lower MD index score in the Pre group (mean value 
<0) and the fact that the rCDI severities of patients were 
recorded as mild in the metadata. Therefore, both the 
clinical diagnosis and fecal microbiome analysis suggest 
equivalent results regarding the changes in patients’ health 
status before vs after FMT. Using the pan-genome analysis 
to compare the difference in functionality of core genes 
between donors and rCDI patients, the results demon-
strated that donors deriving Prevotella strains with ferritin 
gene may contribute to the clearance of pathogens in 
patients’ gut by overwhelming them in the competence 
of iron intakes.53 Moreover, regarding to pyridoxine 
kinase, it is reported that pyridoxal-5-phosphate catabo-
lized by donor-specific Prevotella strains’ enzyme might 
contribute to the remission of inflammatory symptoms of 
recipients by Selhub et al.54 These findings with the inter-
pretation of the ASV level of Prevotella strains suggest the 
potentially beneficial roles of donor-specific Prevotella 
strains compared to the strains originally residing in 
patients’ gut. Furthermore, advocating our hypothesis 
that Prevotella is the key factor for successful FMT, it 
suggests the predictable mode of actions which Prevotella 
can do in patients’ gut by enlisting the potentially bene-
ficial genes.

In addition to effecting changes in bacterial abun-
dances, FMT can also influence abundant genes and alter 
the features of the host metabolism, genetic information 
processing, environmental information processing, and 
cellular processes. Aside from the changes in genus rela-
tive abundance following FMT, there was no significant 
increase or decrease in the 40 KEGG pathways. However, 
we focused on oxidative phosphorylation with related 
genes and found that the abundances of ntpG, ntpI, atpD, 
ntpB, ppaC and hydA genes were highest in the Pre group, 
although donors exhibited the largest proportion of entire 
genes involving oxidative phosphorylation. Similar to 
Kulecka et al55 the tendency of those 5 genes to decrease 
after FMT suggests a possible association with the resolu-
tion of rCDI.

The major limitation of this study is that sample size was 
not sufficient to represent various aspects, such as IBD, age, 

BMI, and relationship with donors, it is cautious about repre-
sentativeness. The small sample size might influence the 
absence of statistically significant results regarding microbial 
diversities, donor’s bacterial engraftment, and MD index. 
Nevertheless, our previous study revealed that all rCDI 
patients received successful transplant treatment.14 This 
study wants to focused on effects of FMT on rCDI patients 
from Iran. The highlight of this study is that the wide range of 
deviations in rCDI patients in various microbiome analyses 
was narrowed and the steady changes in fecal bacterial 
composition to become more similar to those of donors 
emphasize the efficacy of FMT biotherapy.

Conclusions
In this study, all scientific achievement conclusively shows 
that this research has a high potential as a pilot study. 
Regardless of age, relationship (related or unrelated), or 
gender, all Iranian rCDI patients with underlying inflam-
mation overcame CDI symptoms after receiving FMT. 
Although the FMT donors differed in terms of health 
status, all patients recovered a healthy range of gut micro-
bial community structure. Therefore, the key factor for 
successful response would be the health of the donor’s 
microbiota rather than the person’s overall physical condi-
tion. While FMT generates alterations in rCDI patients’ 
fecal bacterial diversity and the value of the MD index 
becomes similar to that of donors, the bacterial composi-
tions do not come to resemble those of donors. Although 
additional study is needed to demonstrate that Prevotella is 
a key factor for resolving rCDI in Iranians, this study is 
expected to be a foundational reference for subsequent gut 
microbiome study aimed at the Iranian population.
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