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Abstract

Research Article

IntroductIon

The spatial aspect of cancer biology and drug response is 
becoming increasingly prominent as we recognize that the 
function of cells, and the activity of drugs, is determined 
not only by the state and prevalence of certain cell types 
but also by their location and environment within complex 
tissues.

In oncology, heterogeneous drug responses are common, 
with pockets of tumor showing significant cell kill from 
chemotherapeutic agents, while other areas of the tumor appear 
to be resistant.[1,2] This is in due in part to inherent molecular 
aberrations that are present in only a subset of cells, as well as 
specific resistance factors in the tumor microenvironment such 
as distinct cell types (e.g., M2 macrophages), growth factors,[3,4] 
or bacteria.[5] Another significant driver of heterogeneous drug 
responses is the unequal distribution of the drug itself within 
the tumor during clinical dosing. This creates gradients of 
drug concentration that correlates with physiological features 
of the tumor such as vasculature.[6,7] The observed patterns of 
spatial heterogeneity of drug responses within the same tumor 

create a need to analyze local drug responses within the tumor 
in a manner that takes into account such spatial features and 
gradients.

Drug‑eluting implants represent a major advancement to 
diagnose and treat a variety of cancers[8] and other diseases.[9,10] 
Such implants release drugs into specific regions of tumors 
or other tissues and thus create a regionalized effect. In 
cardiovascular applications, drug‑eluting stents also exhibit 
similar spatial patterns of drug release.[11,12] The concentration 
profiles of drugs in this setting are typically distance‑dependent 
gradients from the site of release. Whether gradients of drug 
release and tissue response are caused by heterogeneity in 
tumor physiology during standard clinical systemic dosing, or 
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by implantable drug delivery systems, traditional histological 
analyses that average effects over entire tissue sections miss 
critical features of drug response that may have clinical 
impact. To accurately determine the efficacy of a drug which 
is inherently dose‑dependent, one must take into account the 
spatial orientation and concentration differences of the drug 
in the target organ.

There have been key advancements in the development of 
novel experimental techniques using spatially conserved 
approaches to measure drug responses of tumors and other 
tissues. These approaches are able to analyze specific regions 
of tissues based on their defined location in the organ. 
Examples include spatial transcriptomics and proteomics, 
with multiple platforms becoming available.[13,14] The gold 
standard for clinical diagnoses remains histopathological 
analysis by H&E and immunohistochemistry (IHC)/
immunofluorescence (IF), but quantitative approaches that 
take into account spatial drug gradients and physiological 
features are currently lacking.

There is a significant need to analyze and quantitative 
histopathological data in an analogous spatially confined 
and preserved manner. To this end, we have developed an 
annotation pipeline utilizing python, CellProfiler, and other 
methods that are capable of allowing users to define specific 
regions within a whole tumor section and creating regions 
of interest (ROIs) that correspond to drug delivery regions 
eluted from an implantable microdevice used for intratumor 
delivery of chemotherapeutic agents. The pipeline is capable 
of quantitating cellular markers from IHC‑ or IF‑stained 
slides for a large variety of markers and provides direct 
quantitative measurement of drug effect in a distance and drug 
concentration‑dependent manner.

Methods

Histological processing and slide preparation
Samples implanted with microdevices are prepared and 
processed using established histology workflows as shown in 
Figure 1.[15] Slides are then stained and scanned on standard 
equipment such as Leica Bond autostainers, with images stored 
locally on a workstation for image processing.

To determine drug release directions at a specific level of 
an embedded microdevice, a fiducial is used as a reference 
point for each microdevice. Fiducials can be a feature of the 
microdevice (e.g., a notch that is identifiable during paraffin 
block sectioning), or a fluorescent marker compound or drug 
released unilaterally, which can be detected on an unstained 
serial section. It can also be a physiological feature of the tumor 
such as a blood vessel, or a tumor region defined by histological 
markers such as for proliferation, hypoxia, or stromal content. 
Once the angle of the fiducial is determined for an embedded 
microdevice, the angles of all other drugs can be derived.[15]

To investigate the impact of local drug diffusion within 
whole‑slide images (WSI), we outline below the procedure 

for (1) managing blocks, slides, samples, and devices, (2) 
defining and extracting ROIs, (3) applying cell segmentation 
and measuring biomarker intensities for individual objects, 
and then, (4) imposing a spatial context upon the cells within 
the ROIs.

Project structure
As a project may contain hundreds of slides, project data is 
stored in a structured hierarchy, as shown in Figure 2a. A given 
project is comprised of multiple blocks, each containing serial 
sections for each level of the implanted microdevices. This 
hierarchy assists in maintaining the relationships between serial 
sections from the same paraffin block, as microdevice positions 
and angles are conserved from section to section. Projects may 
be structured differently, provided the image analysis pipeline 
is adjusted accordingly.

All WSIs are stored in a folder named “slides;” snapshots of 
red‑green‑blue (RGB) images are acquired (e.g., using Aperio 
ImageScope) and are stored in a folder named “snapshots;” 
snapshots that are optionally merged and renamed with a 
unique identifier (e.g., drug) are stored in the “regions” folder; 
regions that have been annotated by CellProfiler are stored in 
the “regions_{annotation name}” folder. Specific names in 
quotation marks are arbitrary and can be adjusted by the user.

Metadata associated with a project include two regular 
expressions (regexes) and device layouts. Device layouts 
specify drug locations near a device in cylindrical coordinates, 
as determined by their level and angle. These metadata are 
contained in a “project.json” file, as shown in Figure 2b.

The two regexes aid reading and manipulating images when 
developing scripts and are used for matching and extracting 
metadata from snapshot and region filenames. To guarantee 
uniqueness within a project, snapshot filenames must contain 
the following fields in some order: “project,” “block,” “level,” 
“panel,” “sample” (e.g., ‘PROJ1_BLK1_LVL1_PANEL1_
SMP1.tif’); region filenames must additionally contain 
“drug” (e.g., “PROJ1_BLK1_LVL1_PANEL1_SMP1_
DRUG1.tif”). The regexes corresponding to the above filenames 
in Python’s regex syntax are “^(?P<project> [A‑Za‑z0‑9‑] 
+)_(?P<block> [A‑Za‑z0‑9‑+ ] +)_LVL(?P<level> [0‑9] 

Figure 1: Histology workflow. Several samples implanted with devices 
are embedded, sectioned, stained, and scanned, with an annotation step 
for determining device orientation..
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+)_(?P < panel> [A‑Za‑z0‑9] +)_(?P < sample> [A‑Za‑z0‑9‑] 
+)\ \ . t i f$”  and “^(?P<project> [A‑Za‑z0‑9‑]  +)_
(?P<block> [A‑Za‑z0‑9‑+ ] +)_LVL(?P<level> [0‑9] 
+)_(?P < panel> [A‑Za‑z0‑9] +)_(?P < sample> [A‑Za‑z0‑9‑] 
+)_(?P < drug> [A‑Za‑z0‑9‑+%] +)\\.tif$,” respectively, and 
the exact allowable characters in each matching group may 
be adjusted accordingly.

Cropping regions of interest
As up to as many as ten microdevice‑implanted samples may 
be embedded in a single paraffin block, the resulting WSIs 
contain numerous, irregularly shaped ROIs. To obtain these 
regions, we use Aperio ImageScope, a program for visualizing 
and annotating WSIs from Leica slide‑scanning microscopes.

Several aspects of the cropping step are established before any 
cropping is done. A magnification level that allows ROIs to fit 
on a single monitor is chosen; typically, ×5 magnification is 
sufficient to capture the implant hole and surrounding regions 
of drug diffusion. Brightness and contrast are set to default 
values (zero) for consistency within slide batches. The filename 
assigned to the snapshots must follow the user‑defined regular 
expression as defined in the project.json file.

For each sample within a slide, a ROI is defined by a specific 
morphological feature (e.g., location of device implant, 
biomarker expression, or other tumor morphological feature). 
In our case, the center of the device implant serves as a 
location marker for drug release. Using this point as origin, 
we specify the magnification level, take a screenshot, and save 
the screenshot according to the filename format described 
above.

WSIs with more than three channels, as is the case with 
most multiplexed immunofluorescence images, require a 
modification to the above procedure. The snapshot feature 
in ImageScope generates RGB images directly from the 
program viewport. If four or more colors are used, additional 
snapshots (one per each additional set of three channels) are 
taken per sample. This is a particular limitation of ImageScope 

which may not arise if other software tools are used for ROI 
extraction.

Image preprocessing
Images are preprocessed using a set of python scripts, as shown 
in Figure 3a.

Step one of the python scripts merges the RGB snapshots 
stored in the “snapshots” folder into a single multichannel 
image, identifies the number of regions of drug diffusion within 
the image using the project.json file, creates the appropriate 
number of copies of files, appends the drug name to the 
filename, and saves them to the “regions” folder. The number 
of copies created depends on the number of drugs released at 
a particular level of the microdevice.

Step two of the python script reads in a comma‑separated 
values (CSV) file (or creates one if it does not exist), modifies 
it, and saves it. The CSV file consists of filenames and two pairs 
of points for each filename, one for the center of the reservoir 
and the other for the center of curvature. For each filename, 
the script renders the image, a user‑interactive bow using the 
two pairs of points, and buttons for marking whether to include 
or exclude the image, for quality control purposes [Figure 4]. 
The two pairs of points are marked by crosses and can be 
adjusted by the user to annotate the position and direction of 
drug diffusion. The bow direction is determined by summing 
the angle of the microdevice’s fiducial and the relative angle 
between the fiducial and the drug.

Step three of the python script makes minor modifications to 
the CSV file for input into CellProfiler.

Image processing
ROIs extracted from WSIs, along with metadata in the 
associated CSV file, are input into CellProfiler[16] for image 
and spatial processing. The construction of the CellProfiler 
pipeline depends on the imaging modality used [Figure 3b]. 
For brightfield images, a spectral deconvolution step resolves 
the image into the individual dyes (e.g., hematoxylin, 
DAB). For multichannel images, the image stack can be 
split using ColorToGray directly into the corresponding 
biomarkers. Nuclear objects are computed by running 
the IdentifyPrimaryObjects module on the nuclear image 
and cellular objects from nuclear objects using the 
IdentifySecondaryObjects module. The MakeWedgeMask 
CellProfiler module generates a binary mask from the well 
and center points to filter segmented objects of interest. The 
MakePaddedMask CellProfiler module generates a rectangular 
mask expanded out from the wedge mask to aid in cropping 
and minimizing extraneous image processing.

Spatial processing
Associated with each region of drug diffusion are two points 
that determine the reservoir, one for the center of the reservoir 
and one for the center of curvature. Imposing a polar coordinate 
system based on these two points enables distance‑dependent 
profiling of the segmented objects [Figure 5]. A custom 
CellProfiler module (MeasureObjectDistanceFromReservoir) 

Figure 2:  Project folder layout (a) and project.json file structure (b) for 
a sample project

ba
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was written to measure the azimuthal and radial position of 
objects relative to the bow coordinates.

Direct/indirect measurements of drug concentration can 
be obtained using other imaging modalities and registered 
with IHC/IF images to obtain the correlation between drug 
concentration and drug effect. If unavailable, the distance of 
a cell or pixel to the drug reservoir edge can serve as a proxy 
for drug concentration.

Worked examples
Project preparation
This study was performed in strict accordance with 
IACUC‑approved protocol 2017N000003 at Brigham and 
Women’s Hospital.

Tumors injected with ovarian cancer cells to form patient‑derived 
xenografts were loaded with the payload as shown in 
Figure 6 for 24 h. Samples were obtained from sacrificed 
mice and formalin‑fixed and paraffin‑embedded (FFPE). 
Five‑µm sections were obtained from paraffin blocks, 
stained with cleaved caspase 3 (rabbit monoclonal, clone 
5A1E, catalog no. 9664, dilution 1/300; Cell Signaling) 
against diaminobenzidine (DAB), and counterstained with 
hematoxylin.

Tumors grown from the MC38 breast cancer metastasis 
cell line in mice were implanted with microdevices loaded 
with the payload as shown in Figure 6 for 7 days. Samples 
were explanted from sacrificed mice and FFPE. Five‑µm 

sections were obtained from paraffin blocks and stained with 
an antibody panel consisting of the following biomarkers: 
DAPI (NucBlue R37606, Invitrogen); F4/80 (rabbit 
monoclonal, clone D2S9R, catalog no. 70076, dilution 
1/250; Cell Signaling); STAT1 (rabbit monoclonal, clone 
D1K9Y, catalog no. 14994, dilution 1/3000; Cell Signaling); 
Arginase‑1 (rabbit monoclonal, clone D4E3M, catalog 
no. 93668, dilution 1/100; Cell Signaling); and PD‑L1 (rabbit 
monoclonal, clone D5V3B, catalog no. 64988, dilution 1/100; 
Cell Signaling), and counterstained with DAPI. All IHC was 
performed on the Leica Bond RX automated staining platform.

Regions of doxorubicin diffusion in serial sections were imaged 
using the Revolve microscope (Echo Labs) in fluorescence 
mode.

The project.json files for the two sets of slides above are 
constructed as shown in Figures 6c and 7c. The complete 
contents of both files are available in the supplementary 
section.

Image processing
Figure 8 demonstrates two main use cases of the image 
analysis pipeline. Tumor sections from Level 5 of the ovarian 
PDX dataset and Level 9 of the MC38 dataset were picked 
for these examples.

Fiducial directions for the implanted microdevices in each 
block were annotated using arrows (8‑1). ROIs within slides 
were identified and cropped using ImageScope’s snapshot 
tool (8‑2), then merged with a python script if necessary (8‑2a). 
The drug reservoir edge location and direction were annotated 
using Step 3 of the python script (8‑3). IHC/IF images were 
registered with fluorescent images of doxorubicin diffusion 
from serial sections using the interactive similarity plugin in 
ImageJ.

Annotated images were input into CellProfiler, and 
the appropriate pipelines for each imaging modality 
were constructed. To begin, the MakeWedgeMask and 

Figure 4: Quality control. Images of areas with poor tissue integrity or 
drug release outside of the desired tissue are excluded.

Figure 3:  Image (pre) processing. Cropped images are annotated with the well position and angle using the device orientations (a), and analyzed 
using the appropriate CellProfiler pipeline (b). Names of CellProfiler modules are indicated in italics.
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MakePaddedMask modules generated binary masks for 
filtering objects of interest and for minimizing the processed 
portion of images (8‑4a).

For the CC3 panel [Figure 8a], images were unmixed using 
the UnmixColors module into the DAB and hematoxylin 
channels. To quantify apoptosis, a threshold approach was 
used instead of object segmentation, as the signal appeared 
highly acellular and irregular, posing difficulties for nucleus/
cell segmentation. The apoptotic index was measured as the 
ratio of the area of CC3‑positive pixels divided by the area of 
tissue‑positive pixels.

For the macrophage panel [Figure 8b], images were split 
using the SplitChannels module into six grayscale images. 
The IdentifyPrimaryObjects and IdentifySecondaryObjects 
modules were used to segment nuclei and cells, and the 
MeasureObjectSizeShape module was used to measure the 
mean intensities of the six channels for each object, and the 
MeasureObjectDistanceFromReservoir module was used to 
measure each object’s angular and radial distance from the 
reservoir.

All  data  were  exported to  CSV f i les  us ing the 
ExportToSpreadsheet module.

Spatial processing
All histograms in Figures 5–8 were weighted using the inverse 
of the pixel or object distance to center, to account for the linear 
dependence of pixel or object count on distance to center. For 
the brightfield panel, pixels were binned by distance, with the 
following metrics computed per bin: ratio of CC3‑positive 
pixels to total pixels; total intensity of doxorubicin. For the 
multiplex immunofluorescence panel, cells were binned by 
distance, with the following metrics computed per bin: number 
of cells; total pixel intensity of doxorubicin; F4/80+ cells out 
of all cells; STAT‑1+ cells out of F4/80+ cells; Arginase‑1+ cells 
out of F4/80+ cells; PD‑L1+ cells out of F4/80+ cells.

dIscussIon

The objective of our work was to create a pipeline for 
high‑throughput analysis of IHC and IF images from 
spatially defined regions of multiple tumor sections, with 
a particular focus on integrating drug release gradients 
with pharmacodynamics (PD) effects. Results demonstrate 
that spatially‑aware measurements are achievable using a 
semiautomated, user‑assisted image analysis pipeline featuring 
custom python scripts and CellProfiler modules that both 
guide precise identification of and profile regions based on 
distance from drug‑delivering microdevices. Specifically, we 
showed that spatial processing of tumor PD markers along 
drug diffusion gradients offers a quantitative description of 
in vivo changes in cell population densities for a variety of cell 
types and markers in a drug concentration‑dependent manner.

Many existing software tools for annotating WSIs, including 
ImageJ, Aperio ImageScope, QuPath, and Indica Labs’ HALO 
support common geometries such as points, lines, polygons, 
and ellipses. However, the geometry of the drug gradients 
generated about microdevices necessitated the development 
and use of custom tools. Our method may also guide others in 
developing their own tools for bespoke applications.

Figure 5: Spatial processing. Segmented objects and areas are profiled 
as a function of distance.

Figure 6: Device loading diagram (a), project folder layout (b), and project.json file structure (c) for the ovarian PDX dataset.

cba



J Pathol Inform 2021, 1:?? http://www.jpathinformatics.org/content/10/1/??

Journal of Pathology Informatics6

The advantages of multiplex histochemical techniques apply 
to our method: populations of cell phenotypes defined by 
colocalization of specific biomarkers can be quantified in 
terms of distance from the drug release reservoir. For instance, 
we show that macrophage polarization, which is associated 
with favorable drug responses in tumors, can be assessed by 
comparing populations of F4/80+/Arginase‑1+ cells (indicating 
M2 polarization) with F4/80+/Stat‑1+ cells (indicating M1 
polarization).[17] Various macrophage subpopulations as 
a function of distance and drug concentration are shown 
in Figures 5b‑8. Analogously, characterization of drug 
effect‑dependent T‑cell aggregation in tumors can be assessed 
using functional lymphocyte markers such as CD3, CD4, CD8, 
and FoxP3.

A performance metric for the method is estimated time 
requirement. A typical microdevice project may encompass 36 
therapy conditions, each measured in six‑fold replicates (216 
ROI images) across 18 IF markers, for a total of 3,888 
individual drug response phenotypes. For each image, one or 
more snapshots are acquired by toggling channels and cropping 
in ImageScope, each of which requires ~30s. For each image, 
bow orientation for an individual drug phenotype measurement 
requires ~10–20s, and the decision to include or exclude is 
usually ~1s but may take up to 5s. The total estimated cropping 
and annotation time is approximately 9–12 h. The execution 
time of the CellProfiler pipelines is dependent on the number 
of available cores and central processing unit speed but remains 
minor compared to the manual cropping and annotation time. 
On our workstation (Intel Core i9‑7900X at 4.30 GHz, 20 
logical processors), image processing for the project described 
above would finish in under 20 min.

We estimate that a total turnaround time of up to 2 weeks 
would be allowable for integrating the data output into clinical 
decision‑making on which chemotherapies to prioritize for 
treatment. This estimate is based on published turnaround times 
of 2 weeks for genomic assays that predict drug sensitivity, 
such as FoundationOne PCDx.[18] Allocating 1 week for sample 
processing, sectioning, antibody staining, and imaging would 

allow one additional week for completing the computational 
pipeline described here, which is already feasible. Shortening 
of manual input times would nonetheless be desirable for more 
routine clinical use, as well as to reduce demand on personnel.

Several key future areas of improvement have been identified. 
Most notably, we anticipate that image processing and machine 
learning feature recognition algorithms can be used to identify 
microdevice and reservoir positions and orientations within a 
tissue section. Combined with the constraints that microdevice 
locations and orientations are essentially fixed with respect to 
each other from serial section to serial section within a paraffin 
block, and that reservoir orientations are rigidly positioned 
about the microdevice, deployment of these algorithms would 
eliminate nearly all manual annotation tasks, only potentially 
requiring minor adjustments.

Another area of improvement is integration with WSI analysis 
software. The software may operate directly on the underlying 
pixel data and directly manage annotations, eliminating 
time‑and memory‑intensive cropping operations as well as 
the directory structure and CSV files described above. At 
present, ImageScope itself is not used for image analysis, as 
it is proprietary and difficult to extend; open‑source programs 
such as QuPath and Napari are potential candidates.

Moreover, our method is sensitive to artifacts from the standard 
histology workflow (e.g., dust, out‑of‑focus regions, uneven 
staining, and folds and tears in tissue). Such confounding effects 
may impinge upon ROIs and bias measurement operations. 
Instead of excluding entire ROIs, as is currently done, undesired 
artifacts may be removed using polygon‑or pixel‑based annotation 
tools or machine vision methods.[19,20] Variations in staining may 
be reduced by maintaining stringent histology standards, including 
embedding samples close to each other within a given paraffin 
block, avoiding placing tissue sections close to coverslip edges, 
consistent sample preparation and fixation, antibody validation, 
and slide staining and scanning in batches.[21]

Additional depth in analysis and measurement may be 
introduced. Spatial analysis algorithms, inspired by the 

Figure 7: Device loading diagram (a), project folder layout (b), and project.json file structure (c) for the MC38 dataset.
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geospatial and ecology analysis community, could further 
enhance drug concentration‑dependent cell–cell interaction 
analysis.[22‑25] Image registration with other modalities such as 
imaging mass spectroscopy and spatial transcriptomics may 
offer additional mechanistic insight by integrating biological 
readouts from different modalities.[26,27]

We envision that this pipeline will enable  in vivo 
pharmacokinetic (PK) and PD profiling of drug action, 
not only in tumors but also in any solid tissue. Notably, in 
combination with the availability of up to twenty reservoirs on 
a drug‑delivering microdevice, the pipeline may fuse in vivo 
mechanistic insight from the pharmacologic space with the 
spatial, temporal, and omics spaces, potentially enabling deep, 
tailored precision therapy response measurement.

conclusIons

We present here an integrated image analysis pipeline consisting 
of custom python scripts and CellProfiler pipelines that guide 
annotation of regions of drug diffusion. The pipeline allows 
users to profile the spatial effects of local drug diffusion in 
microdevice‑implanted tumors in high throughput, essentially 
generating PK/PD quantitation for multiple drugs and tissue 
regions from a given tumor. The pipeline enables spatial profiling 
by moving from polygons to custom annotation tools, allowing 
correlation of drug gradients with drug effects in the context of 
the tumor microenvironment. The addition of in vivo mechanistic 
insight enables quantitative analysis of tumor response as 
measured by multiple markers with drug release gradients, tissue 
heterogeneity, and other spatial aspects of tumor physiology.

Code
The python scripts are available at https://github.com/
biomicrodev/antilles. The custom CellProfiler modules are 
available at https://github.com/biomicrodev/jonaslab‑cpp.
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