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Adenosine triphosphate (ATP) serves as the essential source of cellular energy. Over the
last two decades, however, ATP has also attracted increasing interest as an extracellular
signal that activates purinergic plasma membrane receptors of the P2 family. P2 receptors
are divided into two types: ATP-gated nonselective cation channels (P2X) and G protein-
coupled receptors (P2Y), the latter being activated by a broad range of purine and
pyrimidine nucleotides (ATP, ADP, UTP, and UDP, among others). Purinergic signaling
mechanisms are involved in numerous physiological events and pathophysiological
conditions. Here, we address the growing body of evidence implicating purinergic
signaling in male reproductive system functions. The life-long generation of fertile male
germ cells is a highly complex, yet mechanistically poorly understood process. Given the
relatively sparse innervation of the testis, spermatogenesis relies on both endocrine
control and multi-directional paracrine communication. Therefore, a detailed
understanding of such paracrine messengers, including ATP, is crucial to gain
mechanistic insight into male reproduction.
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SPERMATOGENESIS

The generation of fertile spermatozoa is one of the most complex, yet least understood
developmental processes in postnatal life. Spermatogenesis describes the differentiation and
maturation of diploid spermatogonial stem cells into haploid spermatozoa (1). Spermatogenesis
occurs in the seminiferous tubules within the mammalian testis (2) (Figure 1). These hollow tubules
are coiled loops that converge in the rete testis, which feeds into the epididymis (2, 4). Seminiferous
tubules comprise a specialized tissue subdivided into three compartments: the lumen, the germinal
epithelium, and the tubular wall. The latter is composed of extracellular matrix proteins and flat
smooth-muscle-like testicular peritubular cells (TPCs). The germinal epithelium comprises two cell
types: somatic Sertoli cells and developing germ cells.

Sertoli cells fulfill essential structural, regulatory, and nourishing functions for the surrounding
germ cells. They span from the basal lamina to the lumen and are associated with up to 50 germ cells
(5). During the course of differentiation, Sertoli and germ cells remain connected, enabling
continuous bidirectional communication. In the basal seminiferous epithelium, Sertoli cells form
necklace-like tight junction threads between adjacent Sertoli cells, creating a tight barrier between
the basal and adluminal compartments (6). This blood-testis barrier prevents passage of many
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molecules and migrating immune cells into the inner, adluminal
compartment and, thus, creates a protective, immune-privileged
environment for postmeiotic germ cell development (7).

During maturation, germ cells migrate in a complex process
from the basal compartment towards the lumen. The first wave
of spermatogenesis is initiated upon puberty and divided into
four phases (8, 9):

1. Mitot ic pro l i f era t ion of dip lo id spermatogonia
(spermatogoniogenesis)

2. Meiotic division of tetraploid spermatocytes into haploid
spermatids

3. Morphological differentiation of spermatids into
spermatozoa (spermiogenesis)

4. Sperm release into the tubular lumen (spermiation)

The first mitotic division is asymmetrical as one daughter cell
remains in the stem cell pool, while the other spermatogonium is
irreversibly determined to differentiate. In subsequent mitotic
divisions into various spermatogonial subtypes, the cells lose
contact with the basal lamina (10). Due to incomplete
cytokinesis, premeiotic germ cells stay connected via
cytoplasmic bridges allowing small molecule exchange and,
hence, synchronized development (11, 12). Spermatogonia
then differentiate into primary spermatocytes, which progress
through meiosis and cross the blood-testis barrier. Haploid
spermatids undergo drast ic morphological changes
(spermiogenesis), yielding elongated and flagellated
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spermatozoa that are located close to the tubular lumen.
Finally, in a process called “spermiation”, spermatozoa are
released into the lumen, which marks the endpoint of
spermatogenesis (2, 8). Upon release, spermatozoa remain
immotile and, thus, need to be actively transported towards
rete testis and epididymis, where they gain the capacity for
motility but remain quiescent (13–15). Sperm transport is
mediated by coordinated smooth muscle contractions of TPCs
that surround individual tubules (3, 16).

The bewildering complexity of cell types that coexist in the
seminiferous epithelium as well as the numerous proliferation
and differentiation steps that must be precisely orchestrated pose
an obvious question: Which multi-directional cellular
communication mechanisms control spermatogenesis?

Given the lack of pronounced seminiferous tubule innervation
testicular sympathetic innervation appears restricted to blood
vessels and the tunica albuginea (17), spermatogenesis relies on
endo-, auto-, and paracrine communication pathways. Therefore,
a detailed understanding of the relevant paracrine messengers,
including ATP, promises to provide much needed mechanistic
insight into male reproduction.
PURINERGIC SIGNALING

One of the paracrine messengers that has attracted increasing
scientific interest in a multitude of general physiological
FIGURE 1 | Functional P2 receptor isoform distribution among individual cell types of the seminiferous tubule. Left: Schematic illustration of the mammalian testis
and cellular architecture of a seminiferous tubule. A single layer of contractile testicular peritubular cells (TPC) lines the tubular wall. Developing germ cells are
distributed between nourishing Sertoli cells (SCs). Undifferentiated spermatogonia (SP) are located near the basal membrane. Spermatocytes (SPC) migrate to the
adluminal compartment, where they complete meiosis. The resulting haploid round spermatids (SPT) differentiate into elongated spermatids and, eventually, into
highly condensed and compartmentalized spermatozoa (SPZ). These mature, yet immotile spermatozoa are then released into the lumen (spermiation) and undergo
further maturation steps once transported to the epididymis. Adapted from: Fleck, Kenzler et al. (3). Right: Distribution of P2 isoforms in various cell types of the
seminiferous tubule. Schematic shows the P2 receptor distribution as supported by direct functional (i.e., physiological) evidence.
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events is extracellular adenosine triphosphate (ATP) (18–21).
Through an evolutionarily conserved route for cell-to-cell
communication, extracellular ATP activates members of the
membrane-bound P2 purinoceptor family (18). ATP-gated P2
receptors are divided into two classes, namely ionotropic P2X
receptors (22, 23), and metabotropic P2Y receptors, which are
members of the G protein-coupled receptor (GPCR) superfamily
(24). The majority of the eight P2Y receptor isoforms (P2Y1, 2, 4,
6, 11) couple to Gaq, thus signaling via phosphoinositide
turnover. Gaq activates phospholipase C, which in turn
hydrolyzes phosphatidylinositol-4,5-bisphosphate to inositol-
1,4,5-trisphosphate (IP3) and diacylglycerol. Cytosolic increase
in IP3 level triggers Ca2+ release from internal Ca2+ storage
organelles (i.e., the endo/sarcoplasmic reticulum) via IP3
receptors. The main effector of P2Y12, P2Y13, and P2Y14 is
Gai/o followed by an activation or inactivation of adenylate
cyclase and altered cytosolic cyclic adenosine monophosphate
(cAMP) levels (25).

P2X receptors, by contrast, are homo- or heterotrimeric
ligand-gated nonselective cation channels. They share a
common transmembrane topology – intracellular termini and
two transmembrane domains separated by a large extracellular
loop (26) – with DEG/ENaC/ASIC channels. Upon ATP
binding, conformational changes lead to the opening of a
cation-permeable channel pore (27). Among the P2X family,
seven homotrimeric (P2X1–7) and several heterotrimeric
isoforms have been described, all of which share substantial
Ca2+ permeability, but are readily distinguished by ligand
affinities, activation and desensitization kinetics, as well as
distinct pharmacological fingerprints (28). The complexity of
both receptor families, which cover a vast dose-response range of
effective ATP concentrations, and the broad spatiotemporal
response scales of P2 receptors confer both functional
specificity and physiological flexibility to a ubiquitous signaling
pathway. Accordingly, a given cell’s P2 receptor expression
profile underlies its unique response phenotype upon ATP
exposure. Notably, as both metabotropic and ionotropic ATP
response pathways represent substantial cellular Ca2+ gates,
purinoceptors mediate numerous Ca2+-dependent downstream
effects, including control of gene transcription, protein
phosphorylation, ion channel function, muscle contraction,
and more (29). While the general picture is still incomplete, we
here seek to summarize evidence from a growing number of
reports about purinergic signaling routes within the seminiferous
tubule and their potential implications in spermatogenesis and
male (in)fertility.

Purinoceptor Signaling in Germ Cells
Given the broad physiological response scale of purinoceptors,
purinergic signaling has been proposed to play a role in
controlling germ cell maturation at different developmental
stages. In mice, twelve such stages are sequentially transitioned
to complete one seminiferous epithelial cycle. Accordingly,
immunohistochemical investigation of cell type- and stage-
dependent protein expression has been notoriously difficult.
Early work described immunoreactivity for several P2X
receptor subtypes in the rat testis (30). Various germ cell types
Frontiers in Endocrinology | www.frontiersin.org 3
throughout different stages of the seminiferous epithelial cycle
were found immunopositive for P2X2, P2X3, and P2X5
receptors. By contrast, P2X4 and P2X6 receptors appeared
absent from rat testis samples – a finding that was later
contradicted by Ko and coworkers (31). P2X1 receptors were
exclusively detected in blood vessels and P2X7 antibody staining
was restricted to Sertoli cells (30). Notably, P2X2 and P2X3
isoforms, which frequently form functional heteromers in the
nervous system (32), were usually observed in the same cell types
and stages (30).

Recently, we combined gene expression analysis, immuno-
and bioanalytical chemistry, protein knockdown, and single-cell
electrophysiology to gather functional evidence for purinergic
signaling in male germ cells (33). We identified a
multidimensional ATP response pathway consisting of both
P2X4 and P2X7 receptors and downstream Ca2+-activated
large conductance (BK) K+ channels in prepubescent mouse
spermatogonia (Figure 2AIII). P2X4 and P2X7 receptors display
distinct ATP affinities, and their activation triggers
transmembrane currents with characteristic kinetics that enable
unequivocal electrophysiological isoform identification.
Coopera t ive ly ac t iva ted by concurrent membrane
depolarization and increased cytoplasmic Ca2+, hyperpolarizing
BK channels provide a negative feedback mechanism that
counteracts the effects of P2X receptor activation and ensures
swift repolarization of the spermatogonial membrane
potential (33).

While some of the apparent discrepancies between the above
studies (30, 31, 33) likely result from species [mouse (33) versus
rat (30, 31)] and/or age [juvenile (33) versus adult (30, 31)]
differences, they also highlight the limitations of unidirectional
(i.e., immunochemistry-only) protein expression analysis.
Electrophysiological recordings from postmeiotic germ cells in
acute seminiferous tubule slices of adult mice are technically
challenging. Our own unpublished data nonetheless indicate
functional expression of a fast activating and slowly
desensitizing ATP-activated channel in postmeiotic
spermatocytes and/or round spermatids (Figure 2AIV). The
molecular identity of this putative P2X receptor remains to
be identified.

Given the emerging role of extracellular ATP in numerous
physiological signaling processes, it is tempting to speculate that
spermatozoa might be exposed to varying concentrations of
extracellular ATP in the testis, epididymis, and/or female
reproductive tract. ATP might, therefore, play a role in
modulating sperm fertilizing capacity. In humans, extracellular
ATP has been reported to increase the fertilizing potential of
sperm and, accordingly, sperm exposure to ATP during IVF
treatment has been suggested (36). Early studies report that
extracellular ATP triggers acrosome exocytosis in human
sperm via P2X-dependent Na+ influx (37, 38). In rat
spermatozoa, P2X7 has been proposed to mediate the ATP-
triggered acrosome reaction (39). While the acrosomal
membrane is as yet inaccessible to electrophysiological
recordings, acrosomal P2X receptor currents remain to be
verified. A different mechanism was found in bovine
spermatozoa, where extracellular ATP appears to activate P2Y
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receptors. The resulting elevation in cytoplasmic Ca2+ activates
PKCa, which triggers acrosomal exocytosis (40). In 2007,
Edwards et al. quantified the effects of extracellular ATP on
acrosomal exocytosis, protein tyrosine phosphorylation, and
sperm motility parameters in human sperm (41). In healthy
and asthenozoospermic donors, ATP had no impact on
acrosome exocytosis or tyrosine phosphorylation. However, it
significantly altered sperm motility, increasing curvilinear
velocity and percentage of hyperactivation. This observation
might explain the previously described benefits of ATP
supplement during IVF treatment.

Navarro et al. reported a nonselective cation current in the
midpiece of mouse spermatozoa that is activated by external ATP
exposure (Figure 2AV) (34). This current matches the kinetics and
pharmacological profile reported for recombinant P2X2 and,
importantly, is absent in P2X2-/- mice. Despite the loss of this
ATP-gated current, P2X2-/- spermatozoa show unaltered motility
and acrosome reaction. However, P2X2-/- males are subfertile
when given the chance to mate at high frequencies, indicating that
Frontiers in Endocrinology | www.frontiersin.org 4
P2X2 adds a selective advantage under frequent mating
conditions. The authors hypothesize that increased intracellular
Ca2+ through P2X2 energizes sperm mitochondria in the
midpiece, presumably as a consequence of Ca2+-dependent
potentiation of enzymes in the Kreb’s cycle (42).

Purinoceptor Signaling in Sertoli Cells
Work from multiple laboratories suggests that extracellular ATP
triggers a rapid and transient increase in the cytosolic Ca2+

concentration of Sertoli cells, albeit with partly conflicting
propositions for the underlying purinoceptor isoforms (31, 33,
43–47).

Endocrine control of spermatogenesis along the hypothalamic–
pituitary–testicular axis converges on Sertoli cells (48). Sertoli cell
function is centrally regulated by gonadotropins, either directly by
follicle stimulating hormone (FSH) or indirectly by luteinizing
hormone-dependent generation of dihydrotestosterone. FSH
surges trigger cAMP production and mobilization of cytosolic
Ca2+ in Sertoli cells (48). Interestingly, both ATP and its uridine
A

B B

FIGURE 2 | ATP sensitivity across cell types of the seminiferous tubule. (A) Representative whole-cell voltage-clamp recordings from various testicular cell types,
transiently exposed to extracellular ATP (100 µM). Negative current indicates cation influx through P2X receptors. (AI) Slowly desensitizing P2X2 and/or P2X4 current in a
mouse TPC (3). (AII) ATP activates P2X2 in murine Sertoli cells (33). (AIII) 100 µM ATP selectively activates P2X4, but not P2X7 in premeiotic spermatogonia. Note the
delayed BK-mediated outward current (33). (AIV) Postmeiotic germ cells exhibit an ATP-induced inward current, but the underlying P2X isoform is yet to be identified
(unpublished data; recording in an acute seminiferous tubule section from an adult mouse according to (33), extracellular solution containing (mM) 145 NaCl, 5 KCl, 1
CaCl2, 0.5 MgCl2, and 10 HEPES; pH = 7.3, intracellular solution containing (mM) 143 KCl, 2 KOH, 1 EGTA, 0.3 CaCl2, 10 HEPES, and 1 Na-GTP ([Ca2+]free = 110 nM);
pH = 7.1, stimulation with 100 mM ATP for 5 s). (AV) Epididymal mouse spermatozoa with characteristic fast-activating and slowly desensitizing P2X2 current evoked by
extracellular ATP. Electrophysiological recording was performed on a head plus midpiece fragment by Navarro et al. (2011) (34). (B) Combined ionotropic and
metabotropic ATP responses of various cells in an acute seminiferous tubule section visualized as Ca2+-dependent changes in fluorescence. Imaging was performed
according to published experimental protocols (35). (BI) Brightfield micrograph of the seminiferous tubule section under investigation. (BII) Fluorescence images of the
same seminiferous tubule bulk-loaded with fura-2/AM (30 mM, 30 min at room temperature). Pseudocolor images (rainbow 256 color map) illustrate relative cytosolic Ca2+

concentration before, during, and after ATP stimulation (unpublished data).
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derivative UTP inhibit FSH-dependent cAMP accumulation by
70% in rat Sertoli cells, suggesting that P2Y2 or P2Y4 receptors are
involved (43). Moreover, rapid IP3 accumulation was observed
upon ATP exposure in primary cultures of rat and mouse Sertoli
cells, in line with P2Y2 or P2Y4 receptor activation (49). In rat
Sertoli cells, extracellular ATP evoked 17b-estradiol production/
secretion. This effect depended on both membrane depolarization
via Na+ influx (implicating P2X receptors) and Ca2+ release from
internal stores (suggesting a concurrent role of P2Y receptors) (47).

Both receptor identification and direct functional
characterization of purinergic signaling in mouse Sertoli cells
were performed by Veitinger et al. in 2011 as well as Fleck et al.
in 2016 (33, 45). P2X2 and P2Y2 are the prevailing purinoceptors
(Figure 2AII) with confirmatory results obtained from both Sertoli
cell–germ cell co-cultures (45) and acute seminiferous tubule
sections (33). These (electro-)physiological observations are in
accordance with early findings by Foresta et al. in rat Sertoli cells.
Here, the authors claimed that ATP exposure generates both an
increase in cytosolic Ca2+ by release from intracellular stores (P2Y
receptors) and a depolarizing Na+ influx consistent with P2X
receptor activation (43). Notably, Veitinger and coworkers
establish that mitochondria serve as essential regulatory
components of Sertoli cell purinergic Ca2+ signaling (45).

Purinoceptor Signaling in Testicular
Peritubular Cells
Spermatogenesis completes with the release of still immotile
spermatozoa from the seminiferous epithelium into the lumen of
the seminiferous tubule. After detachment from Sertoli cells, sperm
must therefore be transported towards the rete testis and epididymis
for further maturation. Accordingly, precisely regulated tubular
transport mechanisms are imperative for reproduction.

Early on, observations of minute motions of seminiferous
tubule segments (50, 51) have sparked speculation about a
critical role for smooth muscle-like TPCs (52, 53) in male (in)
fertility through mediating contractile tubule movements (54,
55). However, direct experimental in vivo evidence for paracrine
control of TPC contractions has been lacking (56) and
quantitative live-cell measurements of seminiferous tubule
contractions are rare and controversial (57–60). Somewhat
surprisingly, early work explicitly excluded extracellular ATP
as an activator of TPCs (61). By contrast, we recently reported
both ATP-dependent Ca2+ signals and adenosine-dependent
proinflammatory actions in human TPCs in vitro (62, 63).
Notably, we also identified purinergic signaling pathways as
physiological triggers of tubular contractions both in vitro and
in vivo. By acting on ionotropic (P2X2 and/or P2X4) and
metabotropic (P2Y2) purinoceptors (Figure 2), extracellular
ATP elevates cytosolic Ca2+ (Figure 2B), activates TPC
contractions, and triggers stage-dependent directional sperm
movement within the mouse seminiferous tubules (3).
Combining recordings from primary mouse and human TPC
cultures as well as acute mouse seminiferous tubule slices with
intravital multiphoton imaging of intact tubules, we provide
direct and quantitative evidence for purinergic TPC signaling
that triggers robust peristaltic movement of luminal sperm (3).
Electrophysiological and Ca2+ imaging data suggest that, while
Frontiers in Endocrinology | www.frontiersin.org 5
metabotropic P2Y signaling is sufficient to induce ATP-
dependent contractions, influx of extracellular Ca2+ through
ionotropic P2X receptors enhances TPC contractions. While
the full picture is admittedly still incomplete, current data
support a concept of Ca2+-induced Ca2+ release mechanisms
that amplify ATP-dependent excitation-contraction coupling.

Being under androgen control, expression of TPC
contractility proteins initiates with puberty and, notably, TPC-
selective androgen receptor knock-out renders mice infertile
(64). Both findings underscore a potential role of TPC
contractions in male (in)fertility. Accordingly, pharmacological
targeting of purinergic signaling pathways to (re)gain control of
TPC contractility represents an attractive approach for male
infertility treatment or contraceptive development (3). Still,
translation of TPC contractions and their putative role(s) from
mice to humans awaits further physiological investigation.
CONCLUDING REMARKS

With recent technical advances in male reproductive physiology,
we and others identified functional P2X and/or P2Y receptors in
essentially all cell types of the seminiferous tubule, constituting a
purinergic signaling network (Figure 2). Local ATP elevations
will affect the surrounding cells within a limited paracrine radius
both electrophysiologically and biochemically by triggering
membrane depolarization as well as substantial Ca2+ influx and
cAMP signaling. Distinct type- and stage-specific purinoceptor
repertoires will determine unique response profiles of individual
target cells. Moreover, ectonucleotidases provide pathways of
local ATP degradation/metabolization, restricting the effective
range of paracrine ATP signaling (65). Both Sertoli and germ
cells have been proposed as putative ATP release sites (66), but a
conclusive picture of extracellular ATP release in the testis
requires future investigation.
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