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Medical image segmentation is an essential component of computer-aided

diagnosis (CAD) systems. Thyroid nodule segmentation using ultrasound

images is a necessary step for the early diagnosis of thyroid diseases. An

encoder-decoder based deep convolutional neural network (DCNN), like

U-Net architecture and its variants, has been extensively used to deal with

medical image segmentation tasks. In this article, we propose a novel N-shape

dense fully convolutional neural network for medical image segmentation,

referred to as N-Net. The proposed framework is composed of three major

components: a multi-scale input layer, an attention guidance module, and an

innovative stackable dilated convolution (SDC) block. First, we apply the multi-

scale input layer to construct an image pyramid, which achieves multi-level

receiver field sizes and obtains rich feature representation. After that, the

U-shape convolutional network is employed as the backbone structure.

Moreover, we use the attention guidance module to filter the features

before several skip connections, which can transfer structural information

from previous feature maps to the following layers. This module can also

remove noise and reduce the negative impact of the background. Finally,

we propose a stackable dilated convolution (SDC) block, which is able to

capture deep semantic features that may be lost in bilinear upsampling. We

have evaluated the proposed N-Net framework on a thyroid nodule ultrasound

image dataset (called the TNUI-2021 dataset) and the DDTI publicly available

dataset. The experimental results show that our N-Net model outperforms

several state-of-the-art methods in the thyroid nodule segmentation tasks.

KEYWORDS

deep convolutional neural network, medical image segmentation, dilated

convolution, multi-scale input layer, thyroid nodule
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1. Introduction

The thyroid gland is a butterfly-shaped endocrine gland,

which lies in the anterior part of the neck just below the

thyroid cartilage (Chang et al., 2010b). Generally, some thyroid

nodules have a clear and regular boundary, but others are in

blurred and irregular margins. Previous studies (Chen et al.,

2020b) have shown that hypoechoic nodules with irregular

margins are more likely to develop into malignant nodules. The

detection rate of thyroid nodules in the general population is

3–7%, and the diagnostic rate with the help of high-resolution

ultrasonography is 20–76%. Among the cases detected, 5–15%

of patients with nodules are confirmed as having thyroid cancer

(Brito et al., 2013). Although most thyroid nodules are benign

(non-cancerous), a fraction of them tends to turn into thyroid

cancer (Chen et al., 2020a). In order to diagnose and treat

thyroid cancer at the earliest phase, it is desired to detect and

diagnose the nodules as early as possible.

Ultrasound and computed tomography (CT) are the most

widespread approaches for the diagnosis of thyroid diseases.

In clinical practice, ultrasound examinations are dependent

on visual inspection by experienced clinicians, which requires

concentrated attention and a high level of skill. The diagnosis

process is time-consuming, labor-intensive, and prone to

operation bias. Furthermore, it is hard to identify the subtle

differences between malignant and benign nodules. Geometry

and margins of thyroid nodules are the key features to

distinguishing between malignant and benign nodules (Lee

et al., 2011). For example, taller-than-wide shape and spiculated

boundary are two of the major characteristics to determine

whether the thyroid nodules are malignant or not (Moon et al.,

2008). Segmentation plays a critical role in the detection of

nodules and the generation of a region of interest (ROI) for

subsequent analysis in thyroid ultrasound images (Ma et al.,

2017). Incorrect segmentation results will lead to misdiagnoses

that are based on boundary features. Therefore, accurate thyroid

nodule segmentation is essential to promote the study of thyroid

disease diagnoses, providing valuable information for clinicians

to make the best possible diagnostic judgment.

Many innovative methods have been proposed for accurate

medical image segmentation. Traditional approaches include

contour and shape based methods (Chang et al., 2010a), and

region based methods (Poudel et al., 2018). In the study of

Poudel et al. (2018), histogram equalization was utilized to adjust

the contrast and a median filter was used to reduce speckle

noise. In the end, the contour evolution was used to improve

the segmentation of thyroid nodules in ultrasound images.

Methods based on unsupervised learning have been also

successfully used in medical image segmentation. Tsantis et al.

(2006) designed a hybrid unsupervised learning model for

thyroid nodules segmentation in ultrasound images integrating

wavelet-based edge detection and Hough transformation, which

is able to outline thyroid nodules regardless of discontinuous

boundaries and extensive structure noise. Zhao et al. (2013)

proposed a thyroid nodule segmentation method based on the

normalized cut of graph theory, which can reduce image noise

by using homomorphic filtering.

The restriction of these methods is the use of hand-crafted

features to obtain segmentation results. On the one hand, the

selection of hand-crafted features may be biased to specific tasks,

which hampers the generalization performance of the model.

The extracted features may be well utilized on one type of dataset

in a specific task but not as well on another type of image data

set or in another segmentation task. On the other hand, it is

difficult to extract representative low-level features for various

applications. Therefore, there is no universal method to extract

the hand-crafted features.

Over the past few decades, due to its ability to extract high-

level semantic features from raw images, a deep convolutional

neural network (DCNN) has been widely used in the field of

medical image segmentation (Sevastopolsky, 2017; Yu et al.,

2018; Zhang et al., 2019a). Without extracting hand-crafted

features as in traditional methods, DCNN-based approaches

can learn useful features for the segmentation tasks. A fully

convolutional network (FCN) (Long et al., 2015) was first

adopted to get accurate 2D segmentation results (Ma et al.,

2017). Since the FCN has consecutive spatial pooling and

convolution strides, the learned features have a significant loss

in spatial details, which will affect the accuracy of segmentation.

Ronneberger et al. (2015) proposed a U-shape FCN referred

to as U-Net and it has become the mainstream in medical

image segmentation (Roy et al., 2017; Norman et al., 2018;

Sarker et al., 2018; Jha et al., 2020; Zhang et al., 2020; Isensee

et al., 2021; Jin et al., 2021). The U-Net structure includes an

encoder part and a decoder part. The purpose of the encoder

is to reduce the spatial dimension of feature maps gradually

and learn high-level semantic features. The Decoder aims to

recover the object details and spatial dimensions gradually with

the use of upsampling layers. Many variants of U-Net models

have been designed for various medical image segmentation

tasks. Oktay et al. (2018) designed U-shape DCNN coupled

with a novel attention gate (called attention-U-Net) for pancreas

segmentation in CT abdominal images. Fu et al. (2018) proposed

a modified U-Net architecture (referred to as M-Net) for joint

optic disc and cup segmentation. A multi-scale input layer and

a hybrid loss were utilized in M-Net, which can provide deep

supervision to improve the segmentation performance. Based

on the multi-scale input layer and hybrid loss, Zhang et al.

(2019b) proposed an attention guided network (AG-Net) for

retinal image segmentation and Mehta and Sivaswamy (2017)

presented a novel M-Net to segment brain structures from 3D

Magnetic Resonance Images (MRI).

Inspired by U-Net, numerous studies have attempted to

improve the structure of U-Net for various image recognition

tasks. For example, Zhou et al. (2019) creatively proposed a

simple and effective modified U-Net that redesigns the original
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U-Net skip connection. It reduces the loss of information in the

copy aggregation from the encoder to the decoder. However, it

has many parameters, and the information of the upper layer is

not integrated, which causes the fine-grainedness of the Decoder

part to be still not fine enough. Amer et al. (2020) proposed

a new model based on U-net and incorporated with dilated

convolution, where residual blocks are employed instead of the

basic U-Net units. Each block is enriched with a squeeze and

excitation unit for channel-wise attention and adaptive feature

re-calibration. In Ibtehaz and Rahman (2020), Ibtehaz et al.

designed MultiResUNet leading to two advantages. First, the

MultiRes block is proposed and replaces all 2D convolution

blocks in the classical U-Net. Second, a Res path with four 3×3

convolution and four short connections of Residual properties

are creatively proposed to replace skip connections. Gudhe

et al. (2021) proposed an innovative approach to segment

lesions/tumors by exploiting the inherent properties of the

residual learning and the dilated convolutions to efficiently

capture both the local and the contextual features. Due to the

great success of convolutional neural networks (such as U-

Net) in the field of medical image segmentation, we chose

U-Net as the basic framework when designing the network.

However, U-Net based methods are a double-edged sword,

because the intrinsic features of convolution operations result

in limited receptive fields, and they fail to establish long-range

dependencies and global contextual connections.

Therefore, we designed a stackable dilated convolution

(SDC) block to solve the problem of restricted receptive fields.

Meanwhile, we added the attention guidance (AG) module

before the jump connection structure to establish long-range

dependencies, and introduce a multi-scale mechanism to solve

the problem of ignoring the global contextual information of

different scales. In this study, we propose a combined fully

convolutional network for thyroid nodule segmentation using

ultrasound images, referred to as N-Net. Themain contributions

of this study are 3-fold as follows:

1) We propose an N-shape fully convolutional network,

which contains a multi-scale U-shape convolutional network to

learn multi-scale feature representations. The multi-scale input

layer is used to construct an image pyramid input, which can

achieve multi-level receiver field sizes, thus learning rich feature

representations. This makes the network learn both the global

and the local information of thyroid ultrasound images to extract

the multi-level features.

2) An attention guidance module is proposed to preserve

the structural semantic features to improve the segmentation

performance. This module makes the model pay more attention

to the thyroid regions of the input image and reduces the effect

of mixed noise in ultrasound images on our network. It can be

considered as semantic guidance in the network to acquire more

precise semantic representations.

3) We designed a stackable dilated convolution (SDC) block

to encode the high-level semantic contextual features from

feature maps. The SDC block adopts a hybrid (both parallel and

cascade) dilated convolution with different dilation rates. Our

network can learn the semantic features which may be lost in

bilinear upsampling through the SDC block.

The remainder of this article is organized as follows. Section

2 introduces related study. Section 3 describes the proposed

method in detail. Section 4 presents the experiment results.

Conclusions are summarized in Section 5.

2. Related study

2.1. Traditional segmentation methods

Traditional segmentation methods include contour and

shape based methods and region based methods. Tsantis et al.

used the morphological and wavelet-based features of nodules

in thyroid ultrasound images to assess the malignancy risk of

thyroid nodules on ultrasonography in 2009 (Tsantis et al.,

2009). Liu et al. applied a level set-based method to the

segmentation of cardiac MRI images (Liu et al., 2014) and

glandular staining images (Wang et al., 2017). However, due

to the low contrast, speckle echoes, blurred margins of thyroid

nodules, and shadows of calcification points in the thyroid

ultrasound images, the direct use of level set approaches cannot

result in a good performance for segmenting thyroid nodules.

Poudel et al. (2017) proposed a 3D thyroid segmentation

method, which performed 2D image segmentation using the

active contour method and then fused the 2D segmentations to

get the final 3D results. Although traditional machine learning

algorithms perform well in detection and segmentation, with

the advent of the era of big data, the performance of traditional

machine learning has become a bottleneck in fully utilizing

big data.

2.2. Deep learning based segmentation
methods

In recent years, models based on DCNN have demonstrated

significant improvements IN thyroid nodule segmentation (Ma

et al., 2017; Ying et al., 2018; Shen et al., 2020; Tang and Ma,

2020; Wang et al., 2020; Zhang et al., 2020). In Ying et al.

(2018) proposed a method using cascaded U-Net and VGG-

19 (Simonyan and Zisserman, 2014) network to segment the

ROI area of thyroid nodules to assist doctors in diagnosis.

However, the segmentation results of nodules with complicated

edge details are not accurate enough. Moreover, Zhang et al.

(2020) proposed a cascade U-Net to segment and classify thyroid

nodules. The cascaded U-Net is composed of U-Net-I and U-

Net-II, which segment the nodules in the image with uniform

resolution and original resolution, respectively. In addition, this

method takes segmentation as an auxiliary task to improve
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classification performance. Tang and Ma (2020) designed a

robust coarse-to-fine two-stage segmentation algorithm, which

is based on Deeplabv3+ (Chen et al., 2018) architecture. Shen

et al. (2020) designed a two-stage network, using the detection

and segmentation results to generate class-discriminative cues

for improving the classification performance. This method

won third place in the classification task at the TN-SCUI2020

challenge. As the first place in the segmentation task ranking

in the TN-SCUI2020 challenge. Wang et al. (2020) proposed

a cascaded segmentation framework and a resnet-based dual

attention classification network to improve the segmentation

and classification of thyroid nodules, respectively. In the future

study, in order to be applied to assist doctors in the formulation

of preoperative plans, the network can be designed to be lighter

and faster while retaining most of the accuracy of the algorithm.

In pixel-wise semantic segmentation tasks, the segmentation

result has the same size as that of the input image.

Generally, a deep convolutional layer can learn useful feature

representations, but max-pooling layers may lead to the loss of

semantic and spatial information. Therefore, methods such as

bilinear interpolation, deconvolution, and dilated convolution

are used in CNN-based networks to solve this problem. When

dilated convolution is adopted, the information in the down-

sampled feature map can be more accurately decoded into

the output label than that using the bilinear interpolation

or the deconvolutional layer. The dilated convolution (or

atrous convolution) was originally proposed for the efficient

computation of the wavelet transform (Holschneider et al.,

1990). Chen et al. (2017a) used dilated convolution for dense

segmentation. The dilated convolution in the bottleneck is used

in the DeepLab-type of models that introduced this idea in

2017 (Chen et al., 2017b). Since it uses a larger kernel than

the standard convolutional layer, the dilated convolution can

enlarge the size of the receptive field without increasing the

number of parameters or the amount of computation. The main

idea of dilated convolution is to insert a "hole" (zero) between

the pixels of the convolution kernel to improve the resolution of

the image, thus yielding dense feature extraction in DCNN.

3. The proposed method

Figure 1 shows the overall structure of our N-Net. The

upper part is the three-dimensional overall N-shape architecture

of our network. Additionally, the detailed modules of the N-

Net model are shown in the following section. The "dash

arrow line" between the two blue blocks of the coding section

represents data flow (the copy of the data). Our network is

an N-shape encoder-decoder structure. It is composed of three

parts. The first part is a multi-scale input layer that can build

an input image pyramid and achieve a multi-level receptive

field fusion, preserving both the low-level and the high-level

features. The second part is a U-shape convolutional network,

which is used as the backbone for learning high-level semantic

feature representation. In this part, the attention guidance block

(Oktay et al., 2018) is employed to guide the encoding layers. In

this way, the N-Net can pay more attention to the foreground

pixels in an input image for the segmentation task. In the third

part, motivated by atrous convolution (Chen et al., 2017a),

we designed a stackable dilated convolution (SDC) module

to extract contextual semantic information and generate high-

level feature maps. In the end, we optimized the segmentation

network by minimizing a cross-entropy loss.

3.1. U-shape convolutional network

In our study, the proposed U-shape convolutional network

is optimized based on the U-Net (Ronneberger et al., 2015)

architecture, which has been demonstrated to be very effective

and successful for medical image segmentation (Ronneberger

et al., 2015; Dong et al., 2017; Norman et al., 2018). It consists of

an encoder flow (left side) and a decoder flow (right side). In the

encoding part, each step has a cascade of convolutional layers

of size 3×3 and maxpooling by 2×2, which reduces the size of

input by half and generates a series of feature maps. Moreover,

the rectified linear unit (ReLU) activation function is followed,

which introduces non-linearity into the model. The decoding

part is very similar to the encoding part, with one exception:

upsampling layers replace maxpooling to double the size of the

featuremaps and restore it to the original size of the input image.

The skip connections transfer the corresponding feature maps

from encoder flow and concatenate them to up-sampled decoder

feature maps, which are introduced to enable the network to

learn rich features. Meanwhile, skip connections can provide

enough information to deduce the fine grain labeling of the

image without any post-processing (Ronneberger et al., 2015).

3.2. Muti-scale input layer

We propose a multi-scale input layer to generate an

input image pyramid, which contains four-layer input images

with different resolutions. The strategy has been shown to

improve the segmentation performance significantly in other

tasks (Mehta and Sivaswamy, 2017; Fu et al., 2018). Some

other studies (Li and Yu, 2016; Liu et al., 2017) exploited the

multi-scale images to multi-branch models respectively and

fused the feature maps in the last convolutional layer. Our N-

net applies three 2×2 average pooling layers to downsample

the input original image and build a pyramid input in the

encoder part, avoiding the considerable growth of parameters

and preserving the low-level feature representation. This layer

can provide multi-level receiver field sizes and obtain rich

feature representations.
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FIGURE 1

Illustration of our N-Net segmentation framework.

3.3. Attention guidance module

We use the attention guidance module to improve the

sensitivity of the network to the foreground and reduce

the effect of the background noises. This module can also

tackle the boundary blur problem caused by upsampling. In

addition, it can learn high-level and semantic features, thus

providing rich information for improving the segmentation.

In contrast, the attention module proposed by Oktay et al.

(2018) pays less attention to the irrelevant area in an input

image while highlighting the regions useful for a specific

task. As shown in Figure 2, our attention guidance module

consists of the input image I and a feature map Fm. A

channel-wise 1×1 convolutional layer is used to perform a

channel transformation. Two transformed feature maps are

integrated with an element-wise coupled and a ReLU layer.

A 1×1 convolutional layer is applied as an additional linear

transformation with a sigmoid activation and feature map Fm

to produce the final attention map A. We have compared the

performance by adding the AGmodule before and after the skip

connection and found that the former has a greater performance

improvement for segmentation. In addition, since this module

is placed before skip connections, it can be considered as

semantic guidance, helping low-level features integrate high-

level semantic representations while guiding the subsequent

upsampling process through skip connections. As can be seen

from the attention map in Figure 3, the attention guidance

module makes the model pay more attention to the foreground

region of the input image during the feature extraction process,

which is the thyroid nodule region of the segmentation task.

3.4. Stackable dilated convolution block

We propose a stackable dilated convolution (SDC) block

to encode the high-level semantic contextual features from

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2022.872601
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Nie et al. 10.3389/fnins.2022.872601

FIGURE 2

Flowchart of the attention guidance module. I and Fm are the inputs of the attention guidance module and A is the calculated attention map.

FIGURE 3

The attention map highlights the foreground region of the thyroid nodule.

feature maps. Compared with the standard convolutional layer,

the dilated convolution uses a larger convolutional kernel and

enlarges the receptive field without reducing the resolution

of the feature map. In the semantic segmentation network,

the larger the receptive field of the final predicted pixels, the

better segmentation performance the deep network can achieve.

In addition, it should be mentioned that the use of dilated

convolution does not increase the number of parameters and

computations.

As shown in Figure 4, our SDC block has four branches.

The four-branch structure is utilized since this is a tradeoff

between accuracy and computation burden. Each branch in

SDC is stacked with dilated convolutional layers with different

dilation rates. As a result, the SDC has four branches of dilated

convolution stack. The size of the convolution kernel is 3×3,

and the expansion coefficient will gradually increase, from 1

to 1, 3, and 11. Thus, the receptive field of each branch will

be 3, 7, 9, and 31, respectively. It employs different receptive

fields, similar to Inception (Szegedy et al., 2017) structures. In

order to keep the number of channels constant, we set the

same padding parameter as the dilation rates. At the end of

each dilated branch, we apply a 1×1 convolutional layer for

corrected linear activation. Finally, we directly add the original

features with other features via a skip connection. In general, the

convolution of a large reception field can extract and generate

abstract features for large objects, while the convolution of a

small reception field is good at segmenting small objects. By

stacking the dilated convolution with different dilation rates,

the SDC block is able to allow the network to learn contextual

information and extract features for objects of various sizes.
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FIGURE 4

The illustration of the stackable dilated convolution (SDC) block. It has four branches of dilated convolution stack: 3x3 convolutional layer. Each

branch is stacked with dilated convolutions with expansion rates of 1, 3, and 11. The SDC block can extract features from di�erent scales.

The four cascaded dilated convolution branches are added to

the feature map itself and then sent to the subsequent decoding

module. The input size is the same as the output size in the SDC

module.

4. Experiment results

4.1. Experimental setup

4.1.1. Two datasets

The TNUI-2021 dataset was used to evaluate our N-Net,

which consists of 1,381 ultrasound thyroid nodule images.

The resolution of each image is 780×780. This dataset was

acquired from 483 patients by doctors in the Fujian Medical

University Union Hospital using two apparatuses, Supersonic

Aixplorer and SAMSUNG WS80A. In the TNUI-2021 dataset,

each image is paired with ground truth (GT) image. The GT

images were manually labeled by the expert pathologists in

the Fujian Medical University Union Hospital. The labels were

stored in tabular files, and benign and malignant classifications

were also labeled. There are 72 images of benign nodules and

1,309 images of malignant nodules.

The DDTI dataset contains 637 ultrasound thyroid nodule

images of different resolution sizes, such as 560×360, 280×360,

and 245×360. The ratio of the training set, validation set, and

test set is 6:2:2, and the augmented patches are resized to the size

of 512×512 for training.

4.1.2. Experiment settings

Considering the serious imbalance of these two types of

data, we aggregated the data of benign and malignant nodules

to divide the data set. We employed a 5-fold cross-validation

method to evaluate the performance of our N-net. Specifically,

the TNUI-2021 dataset was randomly and equally divided into

five non-overlapping sub-datasets. For each time, 20% of images

were used for testing, and the remaining 80% of images were

used for training and validation. The ratio of the training set,

validation set, and test set in each experiment was 6:2:2. The

averaged results of five validations were obtained as the final

results. The N-Net training and testing were completed in

PyTorch. The training and testing platform was the Ubuntu

18.04 system with an NVIDIA GeForce RTX 2070 graphics card,

which has 8 Gigabyte memory.

4.1.3. Training phase

In our N-Net, in order to reduce the risk of overfitting, we

enlarged the training dataset with the online data augmentation

processing, including rotation of images at 90, 180, and 270-

degree angles, horizontal flip, and vertical flip. Then we resized

the augmented patches to the size of 512×512 for training.

The Adam optimizer (Kingma and Ba, 2014) with a batch

of 16 and 32 was used to optimize the segmentation task.

We set the initialized learning rate to 0.0001. To avoid our

network trapping in overfitting during training, we employed

the validation datasets to supervise them and terminated the

training process after 300 epochs.

4.1.4. Testing phase

To improve the robustness of medical image segmentation

method, we also adopted an augmentation strategy on testing

dataset, as that in Dai et al. (2016), Zhang et al. (2018), including
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TABLE 1 Thyroid nodule segmentation performance of di�erent segmentation approaches on the TNUI-2021 dataset.

Method Dice (%) mIoU (%) Precision (%) Recall (%) F1-Score (%)

U-Net (Ronneberger et al., 2015) 88.87± 0.62 83.72± 0.55 85.06± 1.66 77.31± 0.72 78.40± 1.19

AttU-Net (Oktay et al., 2018) 89.45± 0.65 84.42± 0.56 84.87± 0.82 79.13± 2.32 79.53± 1.27

PSP-Net (Zhao et al., 2017) 89.25± 0.38 83.91± 0.51 85.37± 1.81 78.34± 2.53 79.12± 0.74

U-Net++ (Zhou et al., 2019) 91.41± 0.48 86.86± 0.44 87.01± 0.91 82.91± 1.07 83.68± 0.90

M-Net (Fu et al., 2018) 91.52± 0.57 86.67± 0.51 88.06± 1.37 82.36± 1.75 83.6± 1.12

DeepLabV3 (Chen et al., 2017a) 91.66± 0.6 86.88± 0.67 88.04± 0.93 82.97± 2.11 83.81± 1.13

Ours 91.95 ± 0.12 87.21 ± 0.22 88.88 ± 1.29 83.26 ± 1.17 84.37 ± 0.18

The best results are in bold. The average of 5-fold cross-validation± SD.

FIGURE 5

Comparison of precision-recall curves of our N-Net and other medical image segmentation approaches on the TNUI-2021 dataset.

image rotation of images at 90, 180, and 270 degree angles,

horizontal flip, and vertical flip (equal to predicting each image

6 times). In the end, we used the average of six prediction maps

to get the final prediction map. All baseline approaches utilized

the same strategy during the testing phase.

4.2. Evaluation metrics

To evaluate the segmentation performance, several metrics

were used in our experiments, including dice coefficient (Dice),

mean intersection over union (mIoU), Precision, Recall, and

F1-Score, which were calculated as follows:

Dice =
2TP

FP + 2TP + FN
, (1)

mIoU =
1

k+ 1

k∑

i=0

TP

FP + TP + FN
, (2)

Precision =
TP

TP + FP
, (3)

Recall =
TP

TP + FN
, (4)

F1− Score = 2
RecallPrecision

Precision+ Recall
, (5)
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FIGURE 6

Visual comparison of thyroid nodule segmentation results generated from five typical methods, including our N-Net. (A) Input, (B) GT, (C) Ours,

(D) DeepLabV3, (E) M-Net, (F) PSP-Net, (G) AttU-Net, and (H) U-Net.

where TP, FP, and FN denote the number of true positives,

false positives, and false negatives, respectively. We used the

Dice, mIoU, Precision, Recall, and F1-Score to measure the

segmentation performance.

4.3. Comparisons with di�erent
segmentation methods

We compared the proposed N-Net model with several

different segmentation approaches in Table 1, including a U-

shape convolutional network (U-Net) (Ronneberger et al.,

2015), an attention U-Net (AttU-Net) (Oktay et al., 2018), a

pyramid scene parsing network (PSP-Net) (Zhao et al., 2017),

a Unet++ network (Zhou et al., 2019), a multi-label deep

network (M-Net) (Fu et al., 2018), and an atrous convolution

for semantic image segmentation network (DeepLabV3) (Chen

et al., 2017a). Five metrics were used, including Dice, mIoU,

Precision, Recall, and F1-Score to evaluate the segmentation

performance of those methods. A quantitative comparison is

shown in Table 1. Moreover, we have drawn the Precision-

Recall curve to compare our N-Net with other medical image

segmentation approaches, as shown in Figure 5. As can be

seen, our N-Net model achieves the best performance on the

TNUI-2021 dataset. For the segmentation task of thyroid nodule

ultrasound images, our model achieves 0.9195, 0.8721, 0.8888,

0.8326, and 0.8437 in Dice, mIoU, Precision, Recall, and F1-

Score, more accurate than other methods. Compared with the

backbone U-Net (Ronneberger et al., 2015), the Dice increases

from 0.8887 to 0.9195 by 3.08%, the mIoU increases from 0.8372

to 0.8721 by 3.49%, the Precision increases from 0.8506 to

0.8888 by 3.82%, the Recall increases from 0.7731 to 0.8326 by

5.95%, the F1-Score increases from 0.784 to 0.8437 by 5.97%,

which demonstrates that the proposed N-Net architecture is

beneficial for thyroid nodule ultrasound images segmentation.

The segmentation results using different methods are visually
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TABLE 2 Thyroid nodule segmentation performance of di�erent segmentation approaches on the DDTI dataset.

Method Dice (%) mIoU (%) Precision (%) Recall (%) F1-Score (%) Flops (G) Time (ms)

U-Net (Ronneberger et al., 2015) 84.17 76.29 70.48 81.23 71.57 46.42 27.75

AttU-Net (Oktay et al., 2018) 84.91 77.37 71.37 81.7 72.76 266.47 84.81

PSP-Net (Zhao et al., 2017) 81.25 73.36 69.08 73.72 65.91 9.43 4.96

M-Net (Fu et al., 2018) 86.4 79.38 80.45 76.59 75.45 63.59 31.58

DeepLabV3 (Chen et al., 2017a) 87.72 82.66 82.77 82.88 79.54 109.33 48.69

nnU-Net (Isensee et al., 2021) 88.59 80.76 82.27 85.23 82.79

Ours 88.76 82.69 81.53 82.94 79.62 68.52 36.96

1st in TN-SCUI2020 (Wang et al., 2020) 92.39 86.84 84.33 86.71 86.37 410.58 108.49

Two-stage cascaded of Ours 93.67 88.46 90.4 91.94 90.62 137.04 73.92

The best results are shown in bold.

compared in Figure 6. As we can see from the updated result in

Table 1 when the cross-validation was adopted, the performance

of our N-Net is significantly better than that of the DeepLabV3.

The quantitative comparison in the DDTI dataset is shown in

Table 2. It can be noted that our N-Net has a gap compared with

the first place in the TN-SCUI2020 network (Wang et al., 2020).

Due to a large number of model parameters, the average time to

predict each ultrasound image will increase, which is unfavored

by clinicians in diagnosis in real time. Our method was utilized

since this is a trade-off between accuracy and computation

burden. We could achieve a good segment accuracy by using a

one-stage network with fewer parameters, and it can make the

diagnosis in a shorter time.

In addition, in terms of visualized segmentations as shown

in Figures 6, 7, we can find that our network achieves better

segmentation results at the edge of the target region than that

of the DeepLabV3 (Chen et al., 2017a). Since the DeepLabV3

network uses direct bilinear upsampling 16 times to obtain

the segmentation result, the boundary and detail information

has been lost in the feature extraction process, which may

not be fully restored during decoding. In our network, the

detailed information obtained by the encoder is propagated

to the subsequent decoder through skip connections, thereby

effectively solving the loss of edge information caused by

sampling.

4.4. Ablation study

Ablation studies were performed to analyze the effectiveness

and the contributions of each module in the proposed N-Net

model on the TNUI-2021 dataset. In addition, in terms of

visualized segmentations, the results are shown in Figure 8.

4.4.1. E�ect of the attention guidance module

Our proposed N-Net model employs the U-Net

(Ronneberger et al., 2015) as a baseline model. We used

the attention guidance module to guide the learning of

more accurate semantic features of target regions during

downsampling by channel fusion of the input images and

the feature maps after convolutional layers, thus providing

rich information for improving segmentation. Specifically,

this module was used to highlight the thyroid nodule region

and to reduce the background effects. Table 3 shows how the

quantitative performance changes by adding an attention

guidance module to an improved U-Net (Ronneberger et al.,

2015) architecture. As we can see, the Dice, mIoU, Recall, and

F1-Score significantly increase with the attention guidance

module compared to without: the Dice is increased by 0.49%

from 0.8887 to 0.8936, the mIoU is increased by 0.52% from

0.8372 to 0.8424, the Recall is increased by 2.51% from 0.7731

to 0.7982, and the F1-Score is increased by 0.95% from 0.7840

to 0.7935, respectively, with the exception that the Precision is

decreased by 0.07% from 0.8506 to 0.8499. The above results

indicate that the attention guidance module is beneficial for our

segmentation task.

4.4.2. E�ect of adopting multi-scale input layer

Table 3 also shows the effect of the multi-scale input layer,

which further improves the performance of thyroid nodule

ultrasound image segmentation. Compared to the “Attention

guidance (AG)module+U-Net,” the Dice increases from 0.8936

to 0.9028 by 0.92%, the mIoU increases from 0.8424 to 0.8534 by

1.1%, the Precision increases from 0.8499 to 0.8575 by 0.76%,

the Recall increases from 0.7982 to 0.8099 by 1.17%, and the

F1-Score increases from 0.7935 to 0.8113 by 1.78%, respectively.

We improved the multi-scale input layer by integrating the

attention guidance module and SDC block. The multi-scale

input layer builds an image pyramid to provide both local

and global information at different scales into the network and

extract multi-scale features for fusion, which greatly improves

the performance of the entire network. Thus, the above results

demonstrate that the multi-scale input layer is effective in our

N-Net model.
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FIGURE 7

The segmentation area and error of DeepLabV3 and our N-Net methods are further visualized on the TNUI-2021 dataset. (A–D) Ground truth,

ours result, ours segmentation errors, DeepLabv3 result, and DeepLabv3 segmentation errors.

4.4.3. E�ect of the stackable dilated
convolution block

The SDC block we proposed has four branches similar to

Inception structures, and each branch is stacked with dilated

convolutions with different dilation rates. One advantage of

the SDC block is that during feature extraction, the size of

the receptive field completely covers a square area without

any holes or missing edges. This means that it can avoid

the gridding effects when using dilated convolution, allowing

the deep network to learn more accurate semantic features

and improve the accuracy of the model segmentation task.

Another benefit of the SDC block is that it can be achieved

by stacking dilated convolutions with different dilation rates,

thus naturally enlarging the receptive fields of the network

without adding more modules. This is important for segmenting

relatively large target regions. In addition, the SDC block is

naturally integrated with the original layers of the network,

without adding extra blocks. We set the input and output

feature maps of the SDC block to have the same size

and channels.

As shown in Table 3, our proposed SDC module improves

the Dice, mIoU, Precision Recall, and F1-Score in thyroid nodule

ultrasound image segmentation. Compared to the ’Multi-scale

input layer + Attention guidance (AG) module + U-Net’, the

Dice increases from 0.9028 to 0.9195 by 1.67%, the mIoU

increases from 0.8534 to 0.8721 by 1.87%, the Precision increases

from 0.8575 to 0.8888 by 3.13%, the Recall increases from

0.8099 to 0.8326 by 2.27%, and the F1-Score increases from

0.8113 to 0.8437 by 3.24%, respectively. It reveals that our SDC

block is useful for the segmentation task, and it may help to

extract more high-level semantic information compared to the

standard convolution.
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FIGURE 8

Visual comparison of ablation study on the TNUI-2021 dataset. (A) Input, (B) GT, (C) ours, (D) multi-scale+AG +U-Net, (E) AG+U-Net, and (F)

U-Net.

TABLE 3 Ablation study for each component of our model for thyroid nodule segmentation on the TNUI-2021 dataset. The average of 5-fold

cross-validation ± SD.

Method Dice (%) mIoU (%) Precision (%) Recall (%) F1-Score (%)

Backbone (U-Net) 88.87± 0.62 83.72± 0.55 85.06± 1.66 77.31± 0.72 78.40± 1.19

Attention guidance (AG)+ U-Net 89.36± 0.42 84.24± 0.4 84.99± 1.05 79.82± 1.33 79.35± 0.83

Multi-scale+ AG+ U-Net 90.28± 0.46 85.34± 0.55 85.75± 1.61 80.99± 2.52 81.13± 0.92

SDC+Multi-scale+ AG+ U-Net 91.95 ± 0.12 87.21 ± 0.22 88.88 ± 1.29 83.26 ± 1.17 84.37 ± 0.18

The bold values indicates the best results.
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5. Conclusion

In this study, we propose a relatively new N-Net for

thyroid nodule segmentation. First, we proposed to use a

multi-scale input layer to achieve multi-level receiver field

sizes and obtain rich feature representations. After that,

the U-shape convolutional network was employed as the

backbone structure. Moreover, we proposed an attention

guidance module to filter the features before several skip

connections, which can transfer structural information from

the previous feature maps to the following layers. This

module can also remove noise and reduce the negative

impact of the background. Finally, we propose a stackable

dilated convolution (SDC) block, which is able to capture

and encode deeper semantic features that may be lost in

bilinear upsampling. Experimental results on the TNUI-

2021 dataset and the DDTI dataset demonstrate that

the proposed N-Net model outperforms several typical

segmentation approaches.
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