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A B S T R A C T   

Background: Acute respiratory distress syndrome (ARDS) is a fatal outcome of severe sepsis. 
Machine learning models are helpful for accurately predicting ARDS in patients with sepsis at an 
early stage. 
Objective: We aim to develop a machine-learning model for predicting ARDS in patients with 
sepsis in the intensive care unit (ICU). 
Methods: The initial clinical data of patients with sepsis admitted to the hospital (including 
population characteristics, clinical diagnosis, complications, and laboratory tests) were used to 
predict ARDS, and screen out the crucial variables. After comparing eight different algorithms, 
namely, XG boost, logistic regression, light GBM, random forest, Gaussian NB, complement NB, 
support vector machine (SVM), and K nearest neighbors (KNN), rebuilding a prediction model 
with the best one. When remodeling with the best algorithm, 10% was randomly selected to test, 
and the remaining was trained for cross-validation. Using the area under the curve (AUC), 
sensitivity, accuracy, specificity, positive and negative predictive value, F1 score, kappa value, 
and clinical decision curve to evaluate the model’s performance. Eventually, the application in 
the model illustrated by the SHAP package. 
Results: Ten critical features were screened utilizing the lasso method, namely, PaO2/PAO2, A- 
aDO2, PO2(T), CRP, gender, PO2, RDW, MCH, SG, and chlorine. The prior ranking of variables 
demonstrated that PaO2/PAO2 was the most significant variable. Among the eight algorithms, the 
performance of the Gaussian NB algorithm was significantly better than that of the others. After 
remodeling with the best algorithm, the AUC in the training and validation sets were 0.777 and 
0.770, respectively, and the algorithm performed well in the test set (AUC = 0.781, accuracy =
78.6%, sensitivity = 82.4%, F1 score = 0.824). A comparison of the overlap factors with those of 
previous models revealed that the model we developed performs better. 
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Conclusion: Sepsis-associated ARDS can be accurately predicted early via a machine learning 
model based on existing clinical data. These findings are helpful for accurate identification and 
improvement of the prognosis in patients with sepsis-associated ARDS.   

1. Introduction 

Acute respiratory distress syndrome (ARDS) is an acute diffuse lung injury accompanied by further acute respiratory failure and is a 
clinical syndrome with a high incidence in critical illness. The outcome of ARDS depends on the severity of the lung injury at the early 
stage [1,2]. The clinical manifestations were respiratory distress and refractory hypoxemia with bilateral pulmonary infiltration, 
which was challenging to distinguish from cardiogenic pulmonary edema on imaging [1–4]. The diagnosis of ARDS, therefore, relies 
solely on clinical criteria, as pathological measurements of lung injury are impractical in most patients [4–6]. The poor reliability of 
some criteria in the Berlin definition may lead to insufficient understanding by clinicians. Clinicians had a low recognition rate for mild 
and severe ARDS in the LUNG-SAFE study [5]. ARDS is common in critical illness but has not been fully recognized or treated. Sepsis is 
a life-threatening organ dysfunction induced by the host’s dysregulated inflammatory response to various infections [6–9] and is the 
most common risk factor for ARDS [10–14]. ARDS is associated with high morbidity, adverse outcomes, high mortality, and excessive 
medical costs in the ICU. A large-scale trial of moderate to severe ARDS involving 459 ICUs in 50 countries reported that the hospital 
mortality rate was 43% at 90 days [15]. The mortality rate of sepsis-associated ARDS is approximately 27%–37% [16]. Therefore, early 
dynamic prediction of sepsis-associated ARDS and corresponding treatment can effectively improve the clinical prognosis. 

Sepsis-associated ARDS patients have high morbidity and mortality rates. Machine learning models are helpful for accurately 
predicting ARDS in patients with sepsis at an early stage. Currently, machine learning is the application of artificial intelligence in 
generating disease prediction models [17–19]. For instance, based on machine learning algorithms (gradient boosting, random forest, 
bootstrapping, minimum absolute shrinkage, and selection operators), classification variables are selected to identify ARDS pheno-
types using existing clinical data [20–22]. Previously developed machine learning models were used to classify ARDS patients into 
hypoinflammatory and hyperinflammatory subphenotypes. Presently, regardless of the etiology or severity, ARDS patients are treated 
in a homogenous fashion [3]. The use of the novel P/FPE ratio for assessing ARDS severity after onset is significantly better than the use 
of the current PaO2/FiO2 criteria [23]. This approach can help manage patients with ARDS and provide more accurate, personalized 
treatment options for each severity of ARDS. However, some studies based on databases used to predict ARDS have deleted many 
laboratory parameters before model construction because more than 50% of the important data are missing (for example, oxygen 
partial pressure and carbon dioxide partial pressure). In addition, multiple database indices cannot be completely consistent, which 
inevitably leads to bias in the results and limits their application; therefore, a high-performance model that can predict ARDS in septic 
patients using only simple clinical indicators is needed. 

Therefore, in the study, machine learning algorithms will be applied to develop an early prediction model for ARDS based on 
clinical data, and patient characteristics will be evaluated by interpreting the final model to early identify or exclude ARDS in patients 
with sepsis. High-risk patients with sepsis-associated ARDS may benefit from this model. 

2. Methods 

2.1. Research objects 

This study included 279 patients, 18 years old or older, who met the criteria of ’ Sepsis-3 ’ [10] in the ICU ward of the Third Xiangya 
Hospital of Central South University from January 2013 to April 2022, and were diagnosed with sepsis and managed according to 
international guidelines. They are treated by the same group of doctors, the same group of first-line doctors have roughly the same 
level, and if they encounter difficult diseases, they are guided by an experienced superior doctor, so most patients receive treatment 
almost the same, which will not have a big difference in the results. Admission time was more than 24 h and was not diagnosed as ARDS 
within 24 h of admission. ARDS was defined according to the Berlin definition. Sepsis-associated ARDS was defined as ARDS occurring 
24 h after admission in patients diagnosed with sepsis. Compared with sepsis, patients diagnosed with septic shock were excluded due 
to the different etiology, severity, and therapy, and they tend to be more severe. Patients who were diagnosed with ARDS before 
admission or within 24 h of admission, or had a history of chronic lung disease or pneumonectomy (such as bronchiolitis, pulmonary 
fibrosis, or pulmonary contusion), or had a high data loss rate or incomplete important clinical data were excluded. Only the data of the 
admission day were used as potential features. All included patients had sepsis as an admission diagnosis. 

2.2. Data 

The data were derived from medical records. Data include (1) demographic characteristics (2) clinical characteristics (previous 
disease history, admission/discharge diagnosis, course of disease, surgery/consultation, etc.) (3) complications (4) medication history 
(5) laboratory indicators (blood gas analysis, procalcitonin (PCT), C-reactive protein (CRP), bacterial (fungal) culture and identifi-
cation, myocardial injury markers, liver and kidney function, electrolyte, blood routine, coagulation routine, urine sediment analysis) 
and other variables. When there was more than one data point available for a specific feature, we used only the first one. Crucial 
features were screened by the lasso method from 82 first recorded variables at admission. The primary outcome is to predict ARDS in 
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Table 1 
The baseline characteristics of the total population.  

Variables deletion Classification 
items 

All (n = 279) Non-ARDS  
(n = 112) 

ARDS  
(n = 167) 

statistic P - 
value 

Blood transfusion therapy 
(Yes = 1 No = 0), n (%) 

0 0 1 (0.358) 1 (0.893) 0 (0.000) nan nan   

1 278 (99.642) 111 (99.107) 167 (100.000)   
Gender male 1, female 0, n 

(%) 
0 0 80 (28.674) 43 (38.393) 37 (22.156) 8.642 0.003   

1 199 (71.326) 69 (61.607) 130 (77.844)   
FIB g/L, median [IQR] 0 nan 3.320 [1.990,4.830] 2.990 [1.830,4.470] 3.530 [2.050,4.830] − 1.341 0.180 
APTT s, median [IQR] 0 nan 43.100 

[33.500,57.400] 
43.600 
[32.800,55.900] 

42.700 
[34.800,58.000] 

− 0.511 0.610 

INR, median [IQR] 0 nan 1.290 [1.140,1.580] 1.230 [1.100,1.510] 1.310 [1.160,1.620] − 1.387 0.166 
PT s, median [IQR] 0 nan 14.900 

[13.200,18.100] 
14.200 
[12.800,16.900] 

15.000 
[13.300,18.500] 

− 1.485 0.138 

PTA %, mean (±SD) 0 nan 62.489 ± 25.394 66.740 ± 26.214 59.638 ± 24.417 2.303 0.022 
D-dimer mg/L, median 

[IQR] 
0 nan 4.640 [2.210,10.290] 4.797 

[2.310,11.310] 
4.480 [2.100,10.250] 0.702 0.483 

pH, median [IQR] 0 nan 7.400 [7.330,7.454] 7.401 [7.350,7.455] 7.390 [7.310,7.450] 1.401 0.161 
Mechanical Ventilation 

(No = 0 < 96 h = 1 ≥
96 h = 2), median 
[IQR] 

0 nan 2.000 [1.000,2.000] 2.000 [1.000,2.000] 2.000 [1.000,2.000] − 0.354 0.664 

Age, median [IQR] 0 nan 61.000 
[48.000,69.000] 

62.000 
[48.000,72.000] 

61.000 
[48.000,68.000] 

0.590 0.555 

Cl mmol/L, median [IQR] 0 nan 113.000 
[108.000,117.739] 

113.000 
[107.000,117.000] 

113.000 
[108.487,118.000] 

− 0.759 0.448 

SO2c %, median [IQR] 0 nan 96.757 
[93.747,98.485] 

97.686 
[95.900,99.000] 

95.800 
[91.300,97.834] 

4.983 <0.001 

Hb (BGA) g/L, median 
[IQR] 

0 nan 99.00 [83.05,116.08] 98.00 
[82.83,115.83] 

101.00 
[85.18,119.00] 

− 1.001 0.317 

PO2 mmHg, median [IQR] 0 nan 85.900 
[72.900,117.000] 

102.509 
[83.653,133.000] 

76.700 
[65.400,98.100] 

5.577 <0.001 

PCO2 mmHg, median [IQR] 0 nan 31.900 
[27.300,38.700] 

31.922 
[27.200,37.111] 

31.900 
[27.387,39.200] 

− 0.524 0.601 

oxygen content vol%, 
median [IQR] 

0 nan 14.900 
[11.700,18.468] 

16.200 
[12.200,18.468] 

14.200 
[11.400,17.400] 

2.725 0.006 

PO2(T) mmHg, median 
[IQR] 

0 nan 100.000 
[71.000,113.000] 

111.237 
[95.600,134.000] 

80.300 
[65.400,111.237] 

6.381 <0.001 

PCO2(T)mmHg, median 
[IQR] 

0 nan 34.846 
[28.100,37.300] 

34.846 
[29.600,35.400] 

34.846 
[27.500,38.700] 

0.028 0.978 

pH(T), median [IQR] 0 nan 7.356 [7.330,7.420] 7.356 [7.350,7.410] 7.356 [7.320,7.421] − 0.058 0.955 
Lac mmol/L, median [IQR] 0 nan 3.800 [1.700,5.298] 4.400 [1.400,5.298] 3.800 [2.100,5.298] − 0.480 0.630 
SB mmol/L, median [IQR] 0 nan 17.610 

[16.400,20.800] 
17.610 
[17.500,20.600] 

17.610 
[16.100,21.100] 

0.112 0.911 

AB mmol/L, median [IQR] 0 nan 19.152 
[17.600,21.600] 

19.152 
[19.152,21.400] 

19.152 
[17.100,21.600] 

0.911 0.360 

A-BE mmol/L, median 
[IQR] 

0 nan − 6.498 [-8.200,- 
3.100] 

− 6.498 [-6.498,- 
3.200] 

− 6.498 [-8.400,- 
3.000] 

0.481 0.629 

S-BE mmol/L, median 
[IQR] 

0 nan − 6.821 [-8.400,- 
3.200] 

− 6.821 [-6.821,- 
3.500] 

− 6.821 [-8.700,- 
3.200] 

0.671 0.500 

P50 mmHg, median [IQR] 0 nan 27.452 
[25.230,28.220] 

27.452 
[25.430,27.770] 

27.400 
[24.850,29.150] 

0.480 0.630 

AG mmol/L, median [IQR] 0 nan 8.300 [0.925,13.300] 5.600 
[0.925,13.000] 

9.000 [0.925,13.300] − 1.202 0.227 

RI %, median [IQR] 0 nan 129.000 
[110.988,299.000] 

110.988 
[66.000,129.000] 

201.000 
[110.988,380.000] 

− 6.741 <0.001 

PaO2/PAO2 mmHg, median 
[IQR] 

0 nan 44.200 
[25.100,57.047] 

57.047 
[43.700,60.200] 

34.600 
[20.800,53.000] 

6.764 <0.001 

A-aDO2 mmHg, median 
[IQR] 

0 nan 146.758 
[124.800,225.400] 

146.758 
[98.600,147.600] 

163.100 
[139.300,299.500] 

− 4.920 <0.001 

TCO2 vol%, median [IQR] 0 nan 38.732 
[34.400,42.800] 

38.732 
[36.900,41.900] 

38.732 
[33.800,43.100] 

0.427 0.669 

K mmol/L, median [IQR] 0 nan 3.700 [3.252,4.300] 3.500 [3.252,4.100] 3.800 [3.252,4.300] − 2.288 0.021 
Ca mmol/L, median [IQR] 0 nan 1.020 [1.010,1.120] 1.020 [1.020,1.110] 1.030 [0.990,1.120] 0.076 0.940 
Hct (BGA) %, median [IQR] 0 nan 34.800 

[27.900,37.007] 
36.500 
[27.900,37.007] 

34.200 
[28.000,37.007] 

0.452 0.650 

FiO2, median [IQR] 0 nan 42.256 
[35.000,50.000] 

42.256 
[34.000,42.256] 

42.256 
[37.000,60.000] 

− 2.408 0.015 

(continued on next page) 
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Table 1 (continued ) 

Variables deletion Classification 
items 

All (n = 279) Non-ARDS  
(n = 112) 

ARDS  
(n = 167) 

statistic P - 
value 

TEMP ◦C, median [IQR] 0 nan 37.000 
[36.800,37.373] 

37.373 
[37.000,37.373] 

37.000 
[36.600,37.373] 

2.352 0.017 

Platelets 109/L, median 
[IQR] 

0 nan 107.000 
[47.000,191.000] 

107.000 
[45.000,179.000] 

107.000 
[49.000,201.000] 

− 0.429 0.668 

Hct %, median [IQR] 0 nan 31.200 
[25.100,37.100] 

30.000 
[23.800,37.300] 

31.400 
[26.200,36.700] 

− 0.832 0.406 

Hemoglobin g/L, median 
[IQR] 

0 nan 98.000 
[77.000,118.000] 

93.000 
[69.000,116.000] 

102.000 
[82.000,120.000] 

− 2.317 0.021 

WBC 109/L, median [IQR] 0 nan 11.320 
[6.350,17.880] 

11.840 
[7.820,19.790] 

10.890 
[6.050,16.660] 

1.586 0.113 

Na mmol/L, median [IQR] 0 nan 138.000 
[134.000,142.000] 

138.000 
[134.000,141.077] 

138.000 
[134.000,142.000] 

− 0.786 0.432 

MCHC g/L, median [IQR] 0 nan 326.000 
[316.000,337.000] 

326.000 
[312.000,337.000] 

326.000 
[318.000,335.000] 

− 0.351 0.726 

MCH pg, median [IQR] 0 nan 30.700 
[29.300,31.800] 

30.900 
[29.300,33.000] 

30.500 
[29.400,31.600] 

1.944 0.052 

MCV fL, median [IQR] 0 nan 93.800 
[88.200,98.000] 

94.364 
[88.300,100.500] 

92.700 
[88.100,96.400] 

2.030 0.042 

RBC 1012/L, median [IQR] 0 nan 3.360 [2.780,4.040] 3.210 [2.710,3.970] 3.450 [2.890,4.040] − 1.158 0.247 
Monocyte count 109/L, 

median [IQR] 
0 nan 0.450 [0.200,0.810] 0.490 [0.260,0.870] 0.410 [0.190,0.710] 1.896 0.058 

Basophils %, median [IQR] 0 nan 0.100 [0.100,0.300] 0.200 [0.100,0.400] 0.100 [0.100,0.300] 0.675 0.492 
Eosinophils %, median 

[IQR] 
0 nan 0.100 [0.000,0.504] 0.200 [0.000,0.500] 0.100 [0.000,0.504] 1.010 0.299 

Monocyte %, median [IQR] 0 nan 3.800 [2.000,6.600] 4.000 [1.700,6.200] 3.800 [2.300,6.800] − 0.899 0.369 
Lymphocyte %, median 

[IQR] 
0 nan 8.900 [4.300,16.000] 10.672 

[4.700,17.500] 
7.800 [4.200,15.200] 1.810 0.070 

Neutrophils %, median 
[IQR] 

0 nan 85.100 
[76.000,91.500] 

84.400 
[73.900,90.700] 

86.100 
[76.900,91.700] 

− 1.663 0.096 

RDW %, median [IQR] 0 nan 14.100 
[13.100,15.700] 

14.400 
[13.100,16.100] 

14.000 
[13.100,15.300] 

1.361 0.174 

Basophils count 109/L, 
median [IQR] 

0 nan 0.010 [0.000,0.030] 0.020 [0.010,0.030] 0.010 [0.000,0.030] 0.997 0.310 

Eosinophils count 109/L, 
median [IQR] 

0 nan 0.010 [0.000,0.060] 0.010 [0.000,0.060] 0.010 [0.000,0.060] 1.539 0.111 

Neutrophils count 109/L, 
median [IQR] 

0 nan 9.100 [5.420,14.690] 9.910 
[6.110,16.650] 

8.845 [5.170,14.380] 1.325 0.185 

Lymphocyte count 109/L, 
median [IQR] 

0 nan 0.690 [0.400,1.220] 0.880 [0.490,1.270] 0.650 [0.370,1.090] 2.713 0.007 

CRP mg/L, median [IQR] 0 nan 127.115 
[71.465,200.000] 

105.782 
[61.869,167.803] 

145.480 
[88.490,216.990] 

− 3.530 <0.001 

platelet hyperplasia %, 
median [IQR] 

0 nan 0.137 [0.080,0.220] 0.140 [0.090,0.220] 0.130 [0.070,0.220] 1.367 0.172 

MPV fL, mean (±SD) 0 nan 10.693 ± 1.417 10.715 ± 1.230 10.678 ± 1.530 0.219 0.827 
PDW fL, median [IQR] 0 nan 16.400 

[15.900,16.900] 
16.300 
[15.900,16.811] 

16.405 
[15.900,16.900] 

− 0.813 0.416 

RDW (fL),median [IQR] 0 nan 48.703 
[44.436,54.300] 

50.900 
[45.746,56.200] 

47.100 
[44.148,51.700] 

2.641 0.008 

TP g/L, median [IQR] 0 nan 50.500 
[44.500,57.400] 

51.500 
[45.100,58.800] 

50.000 
[44.300,56.600] 

1.072 0.284 

DBil μmol/L, median [IQR] 0 nan 8.100 [4.500,19.200] 7.000 
[3.500,18.400] 

9.000 [5.200,19.500] − 1.651 0.099 

TBil μmol/L, median [IQR] 0 nan 15.900 
[10.000,31.700] 

13.700 
[9.000,28.900] 

17.200 
[10.700,33.800] 

− 1.636 0.102 

AST, median [IQR] 0 nan 62.000 
[27.000,201.000] 

58.000 
[29.000,180.000] 

66.000 
[27.000,214.000] 

− 1.281 0.201 

ALT, median [IQR] 0 nan 36.000 
[16.000,111.000] 

29.000 
[14.000,109.000] 

39.000 
[18.000,111.000] 

− 1.133 0.257 

Urea mmol/L, median 
[IQR] 

0 nan 12.193 
[7.410,18.670] 

11.660 
[6.120,18.340] 

12.610 
[8.260,18.800] 

− 1.186 0.236 

TBA μmol/L, median [IQR] 0 nan 6.100 [3.000,16.800] 5.900 
[3.000,24.100] 

6.200 [3.100,14.900] 0.298 0.766 

A/G, median [IQR] 0 nan 1.300 [1.000,1.500] 1.200 [0.900,1.500] 1.300 [1.000,1.600] − 1.307 0.190 
Globulin g/L, median [IQR] 0 nan 22.400 

[18.200,27.200] 
23.500 
[18.800,28.700] 

21.900 
[18.000,25.825] 

1.610 0.108 

Albumin g/L, mean (±SD) 0 nan 27.810 ± 6.598 28.285 ± 6.898 27.491 ± 6.368 0.983 0.326 
CK-MB, median [IQR] 0 nan 35.000 

[21.000,72.000] 
34.000 
[18.154,58.000] 

37.000 
[22.000,85.000] 

− 1.682 0.093 

(continued on next page) 
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patients with sepsis after admission. 

2.3. Design 

This study first utilizes multiple machine learning algorithms for data classification. These algorithms are as follows: XG Boost, 
logistic regression, light GBM, random forest, Gaussian NB, Complement NB, SVM, and KNN. Through the data set partitioning 
function, the randomization/allocation of the training and validation cohorts were performed according to the proportion of the 
sample, which is a commonly used function in cross-validation. In each training, 70% of the overall sample was selected for training, 
the remaining for validating, ensuring that the training samples selected for multiple model algorithms are consistent to better 
compare multiple models. The performance of the model is evaluated by the above indicators (AUC, etc.). The forest plot shows the 
ROC results of each algorithm to predict ’ ARDS ’. 

The best algorithm is selected for remodeling through multiple algorithms comparison. It was chosen by comprehensively 
comparing the various indicators of the multiple models (AUC, accuracy, and Kappa index). During modeling with the best algorithm, 
10% was randomly selected to test. The study was conducted strictly according to the TRIPOD checklist (supplemental materials). 

2.4. Multiple machine learning algorithms 

Each algorithm has its own specific situation [24–27]. As an ensemble learning algorithm, XG Boost can efficiently process missing 
data to construct accurate prediction models [24]. Light GBM shows excellent performance in processing very large structured data 
sets with ultra-high training speed [25], but it is susceptible to the number of features and sample size. Random forest (RF) has high 
classification accuracy but requires a large amount of calculation [26,27]. Due to its stable classification efficiency and excellent 
performance on small-scale data, Gaussian NB is easy to implement and run quickly [28]. Using traditional logistic regression, more 
data were needed to obtain a classifier with similar performance to the Gaussian NB. KNN classifies samples by nearest neighbors. 
However, there are several limitations, such as sparse problems, imbalance problems, and noise problems [29]. SVM can be used for 
linear/nonlinear classification, solving machine learning problems with small samples, but is sensitive to parameter adjustment and 
function selection [30]. Complement NB is especially suitable for imbalanced data sets. Specifically, CNB uses the supplementary data 
of each category to calculate the weight of the model. Considering the overall indicators to find the most accurate model, 
comprehensively. 

2.5. Model interpretation 

The SHAP package regards all the features as ’ contributors ’ and generates a SHAP value. The SHAP value diagram and variable 
importance graph are used to show the contribution and importance ranking of each feature to the model, respectively. 

2.6. Statistical analysis 

The chi-square test and Mann-Whitney U test were used for the categorical variables and the quantitative variables, respectively. 
Analysis of the differences was conducted using the stats models 0.11.1 package (Python). 

In this study, the critical features were screened by the lasso method, and the cross-validation method was used to eliminate 

Table 1 (continued ) 

Variables deletion Classification 
items 

All (n = 279) Non-ARDS  
(n = 112) 

ARDS  
(n = 167) 

statistic P - 
value 

LDH, median [IQR] 0 nan 451.000 
[287.000,863.000] 

363.446 
[279.000,781.000] 

500.000 
[305.000,953.000] 

− 2.132 0.033 

CK, median [IQR] 0 nan 379.000 
[108.000,1425.000] 

242.000 
[86.000,837.000] 

521.000 
[146.000,1730.000] 

− 2.633 0.008 

UA μmol/L, median [IQR] 0 nan 347.000 
[236.000,474.000] 

363.000 
[245.000,472.000] 

346.000 
[236.000,493.000] 

0.682 0.496 

Cre μmol/L, median [IQR] 0 nan 135.000 
[81.000,263.000] 

131.000 
[80.000,264.000] 

140.000 
[82.000,253.000] 

− 0.291 0.771 

Mb ng/ml, median [IQR] 0 nan 564.000 
[177.700,1199.000] 

370.800 
[151.300,997.174] 

749.600 
[263.600,1221.400] 

− 2.421 0.016 

PCT ng/ml, median [IQR] 0 nan 7.579 [2.070,35.980] 4.980 
[1.230,32.910] 

10.350 
[2.560,38.980] 

− 1.927 0.054 

TT s, median [IQR] 0 nan 18.000 
[16.300,21.100] 

18.200 
[16.600,21.600] 

17.900 
[16.100,20.800] 

1.381 0.168 

Glu, median [IQR] 0 nan 0.000 [0.000,0.000] 0.000 [0.000,0.000] 0.000 [0.000,0.000] − 0.015 0.983 
SG, median [IQR] 0 nan 1.018 [1.015,1.020] 1.018 [1.015,1.020] 1.020 [1.015,1.020] − 2.318 0.018 
Pro, median [IQR] 0 nan 1.000 [0.000,1.000] 1.000 [0.000,1.000] 1.000 [0.000,1.000] − 2.040 0.016 

APTT: activated partial thromboplastin time; TT: thrombin time; INR: international normalized ratio; PTA: prothrombin time activity; SO2c: oxygen 
saturation; Lac: lactic acid; SB: standard bicarbonate; AB: actual bicarbonate; S-BE: standard base excess; A-BE: actual base excess; AG: anion gap; RI: 
respiratory index; TBA: total bile acid; A/G: Albumin/Globulin; BGA: Blood Gas Analysis. nan, Not A number. 
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features with a coefficient of 0. The KNN algorithm is used to fill the missing values. The lasso method obtains a simpler model by 
compressing partial regression coefficients to construct a penalty function. Therefore, it retains the advantages of subset shrinkage and 
is a biased estimation for processing multicollinearity data (The version of the package used by the algorithm is shown in Appendix 1). 
The predictive value and critical value of sepsis variables were determined by the receiver operating characteristic (ROC) curve. 

2.7. Medical ethics approval 

This was a retrospective study that received expedited approval and informed consent waiver from the Ethics Committee of the 
Third Xiangya Hospital, Central South University (protocol number 22310). 

3. Results 

3.1. Baseline characteristics 

This study involved 279 patients. During the multiple model comparison, the training set and the validation set were 195 and 84 
patients, respectively. The baseline characteristics of the population are summarized in Table 1. Consistent with previous studies, most 
of the patients were elderly, and the median age was 61 (range 48–69). Males accounted for 71.3% of the total population, which 
verified previous reports that male patients were more likely to suffer from sepsis due to smoking and other risk factors. Among the 
people with sepsis-related acute respiratory distress syndrome, 77.8% were male, indicating that they were more likely to develop 
ARDS. Statistically significant differences in gender (P < 0.05) were found in the dataset. It is not difficult to find that most patients 
received mechanical ventilation treatment, which is still a crucial treatment. In the population, there are 167 (59.86%) sepsis patients 
with ARDS and 112 (40.14%) sepsis patients without ARDS. These characteristic variables were statistically significant, including 
gender, prothrombin time activity (PTA), oxygen saturation, oxygen partial pressure (PO2), oxygen content, oxygen partial pressure in 
the temperature (PO2(T)), respiratory index, ratio of arterial to alveolar oxygen partial pressure (PaO2/PAO2), alveolar-arterial oxygen 
partial pressure difference (A-aDO2), FiO2, hemoglobin, mean corpuscular volume (MCV), red blood cell distribution width (RDW), 
lymphocyte count, C-reactive protein (CRP), lactate dehydrogenase (LDH), Creatine Kinase (CK), myoglobin, urine specific gravity 
(USG or SG), urine protein, potassium, and body temperature. In sepsis patients with ARDS, PaO2/PAO2 is the most important risk 

Fig. 1. Workflow diagram of this study. (A) Data collection process. (B) Establishment of machine learning model and comparison of eight models.  
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factor, followed by A-aDO2, PO2(T), CRP, gender, and PO2. Fig. 1A, B, is the schematic diagram of this study. 

3.2. Variable selection 

With the lasso method, ten critical variables were selected: ’ PaO2/PAO2 ’, ’ A-aDO2 ’, ’ PO2(T) ’, ’ CRP ’, ’ gender ’, ’ PO2 ’, ’ RDW ’, 
’ mean red blood cell hemoglobin content (MCH) ’, ’ SG ’, ’ chlorine ’. 

3.3. Multi-algorithm models comparison 

The classification of the data samples was attempted using eight machine-learning algorithms. When evaluating the kappa statistics 
on the training data, we found that the highest is the XG Boost algorithm (0.991). However, when comparing the kappa values, 
Gaussian NB had the highest consistency of kappa values on the two datasets, with only a 5.7% difference. Considering the overall 
indicators, Gaussian NB was found to be the most robust and accurate algorithm, with AUCs of 0.765 in the training set and 0.745 in 
the validation set, respectively (Fig. 2A and B). In addition, Gaussian NB is the best option when data is scarce [24]. This may be 
because it is a simple, fast, and highly scalable algorithm that performs well on small-scale data and is a suitable choice for binary 
classification problems. Furthermore, its cut-off value, sensitivity, accuracy, specificity, positive and negative predictive value, F1 
score, and Kappa value were 0.728, 0.732, 0.734, 0.748, 0.812, 0.646, 0.769, and 0.460, respectively (Table 2). Alternatively, Table 2 
and Supplemental Table 1 provide indexes for other machine learning algorithms. The forest plot (Fig. 2C) illustrates the ROC results of 
each model to predict ARDS. The clinical decision curve (Fig. 2D) shows the net benefit ability of each model. 

Fig. 2. Comparison of eight machine learning algorithms. (A, B) The ROC results of the models were established by eight machine learning al-
gorithms in the training set and validation set. (C) A forest plot of each model AUC score built by eight machine learning algorithms. (D) Calibration 
plots of models built by eight machine learning algorithms. 
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3.4. Best algorithm model 

Through multi-model comparison, it was found that Gaussian NB performed best, and we used Gaussian NB to re-establish the 
prediction model for analysis. The AUCs of the training and validation sets were 0.777 and 0.770, respectively (Fig. 3A and B). The 
AUC of the final model in the test set was 0.781, and the accuracy was 78.6% (Fig. 3C–Table 3). What’s more, once the sample size 
reached 175, the AUC reached a stable state (Fig. 3D). Training, validation, and test set evaluation indexes are shown in Supplemental 
Tables 2–3 and Table 3, respectively. 

3.5. Model interpretability 

The SHAP diagram (Fig. 4A) depicts the role of each feature in the validation set in predicting ARDS. From blue to red, indicating 
that the abscissa’s absolute value increases from small to large. When the abscissa is negative and the absolute value is larger, the 
possibility of negative prediction results is greater. In contrast, when the abscissa is positive and the absolute value is larger, the 
possibility of positive prediction results is greater. For example, the greater PaO2/PAO2, the less likely the patient is to develop ARDS, 
yet the patient is more likely to do so the larger of A-aDO2. The priority ranking of each variable (Fig. 4B) shows that PaO2/PAO2, A- 
aDO2, PO2(T), CRP, and gender are more relevant variables. In terms of features, PaO2/PAO2 is the most significant feature variable, 
followed by A-aDO2, PO2(T), CRP, and gender. 

Two force diagrams exhibit how the features of the two cases affect the results (Fig. 4C and D). A patient who developed ARDS was 
predicted to be positive by the model (Fig. 4C). In this case, the longest red part is A-aDO2 (631.99 mmHg), which is the greatest 
contributor to ARDS in the patient. The second largest positive impact on the results is PaO2/PAO2 (8.5 mmHg), and the largest 
negative impact on the results is CRP (75.61 mg/L). Similarly, a patient who didn’t develop ARDS was predicted to be negative 
(Fig. 4D). The three variables that possess the most positive effects are CRP (253.96 mg/L), Cl (125 mmol/L), and PaO2/PAO2 (43.5 
mmHg). On the contrary, the most negative effects were gender (female), PO2 (106 mmHg), and urine specific gravity (1.015). 

4. Discussion 

This may be the first attempt to construct a clinical prediction model for ARDS in sepsis patients in the ICU with limited and easily 
available clinical data using machine learning. In this retrospective cohort study, we compared the baseline characteristics of sepsis 
patients and identified 10 clinical variables originating from readily available clinical data to establish a prediction model for ARDS. 
The results of this study and the established model could lead to early, accurate identification and personalized treatment of ARDS. 
Compared with several of the previous ARDS prediction models [31,32], our model performed better in terms of the overlap of several 
variables. The AUC of the overlapping variables for predicting ARDS incidence was only 0.626 in the training set (Supplemental Fig. 1), 
which was significantly lower than that of our model. On the other hand, the pathogenesis of COVID-19 and sepsis is not the same, so it 
is normal to predict ARDS with different variables. In addition, compared with other prediction models, ARDS can be predicted within 
24 h before they reach the Berlin definition. Interestingly, the model requires fewer clinical indicators, which means that the patient’s 
medical expenses can be saved to a large extent. Overall, the risk of ARDS in sepsis patients in the ICU can be predicted based on clinical 
variables alone, at least in selected populations with sepsis, and the model performed better than previous ARDS prediction models did, 
which is the novelty of our work. 

Due to the SHAP values, our research becomes interpretable machine learning. Several features, such as PaO2/PAO2, A-aDO2, PO2, 
and gender, have been identified by previous risk score models [33–35]. Notably, several points in our study were not noted in 
previous models, namely, CRP, RDW (fL), MCH, and SG. These are significant characteristics neglected by traditional risk scores. 

Table 2 
Multi-model classification–training set results.  

Model AUC(SD) Cut off 
(SD) 

Accuracy 
(SD) 

Sensitivity 
(SD) 

Specificity 
(SD) 

Positive 
predictive 
value (SD) 

Negative 
predictive 
value (SD) 

F1 score 
(SD) 

Kappa 
(SD) 

XG Boost 1.000 
(0.000) 

0.873 
(0.012) 

0.996 
(0.000) 

1.000 
(0.000) 

1.000 
(0.000) 

1.000 (0.000) 0.989 (0.000) 1.000 
(0.000) 

0.991 
(0.000) 

logistic 0.789 
(0.016) 

0.553 
(0.036) 

0.744 
(0.013) 

0.784 
(0.038) 

0.694 
(0.034) 

0.792 (0.012) 0.679 (0.031) 0.787 
(0.016) 

0.469 
(0.022) 

Light GBM 1.000 
(0.000) 

0.567 
(0.024) 

0.994 
(0.002) 

0.997 
(0.004) 

1.000 
(0.000) 

1.000 (0.000) 0.985 (0.005) 0.998 
(0.002) 

0.987 
(0.005) 

RandomForest 1.000 
(0.000) 

0.540 
(0.037) 

0.987 
(0.012) 

0.997 
(0.004) 

0.998 
(0.004) 

1.000 (0.000) 0.970 (0.027) 0.999 
(0.002) 

0.974 
(0.024) 

GNB 0.765 
(0.017) 

0.728 
(0.120) 

0.734 
(0.012) 

0.732 
(0.027) 

0.748 
(0.036) 

0.812 (0.019) 0.646 (0.018) 0.769 
(0.012) 

0.460 
(0.023) 

SVM 0.787 
(0.018) 

0.602 
(0.031) 

0.733 
(0.015) 

0.759 
(0.052) 

0.705 
(0.056) 

0.793 (0.021) 0.659 (0.034) 0.774 
(0.020) 

0.451 
(0.027) 

KNN 0.834 
(0.020) 

0.680 
(0.098) 

0.640 
(0.075) 

0.743 
(0.112) 

0.748 
(0.127) 

0.916 (0.070) 0.541 (0.059) 0.810 
(0.046) 

0.336 
(0.104) 

CNB 0.742 
(0.022) 

0.195 
(0.388) 

0.700 
(0.023) 

0.693 
(0.062) 

0.721 
(0.052) 

0.787 (0.020) 0.609 (0.029) 0.735 
(0.034) 

0.395 
(0.037)  
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Studies have shown that the negative predictive value of the CRP level remains reasonable when comparing patients with no sepsis vs. 
confirmed, possible, or uncertain sepsis [36]. Moreover, CRP levels in ARDS patients are generally high. ARDS is associated with the 
activation of inflammatory cells and the release of inflammatory factors. The RDW/albumin ratio is a predictive prognostic biomarker 
for ARDS patients [37]. In addition, sepsis can induce red blood cell dysfunction, as indicated by decreased mean corpuscular he-
moglobin content and erythrocyte deformability. Mechanical ventilation is generally required for patients with sepsis-associated 
ARDS, and the PaO2/PAO2 ratio plays the most significant role in this model, as it reflects pulmonary ventilation function and 
helps to determine the severity of ARDS. Studies have shown that adjusting the mechanical ventilation settings according to the 
patient’s condition is expected to improve lung function and clinical outcome [38]. Similarly, A-aDO2 is used to judge lung ventilation 
function and sensitively reflects lung oxygen uptake. The variable indicators involved in the model are not only easy to obtain but also 
highly representative. 

Although this study developed and validated an early dynamic prediction model for sepsis-related ARDS, which provides some 
support for early clinical measures for high-risk patients, there are still some limitations, and additional work is needed. First, we opted 

Fig. 3. The performance of the model is built by the Gaussian NB algorithm. (A, B, C) The ROC result of the model was established by the Gaussian 
NB algorithm in the training set, validation set, and testing set. (D) The ROC result of the model was established by the Gaussian NB algorithm in the 
training set and the validation set according to the change in sample size. 

Table 3 
Test set results of the best model.  

AUC Cut off Accuracy Sensitivity Specificity Positive predictive value Negative predictive value F1 score 

0.781 0.562 0.786 0.824 0.727 0.824 0.727 0.824  
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to analyze patients admitted to ICUs in China. Due to differences in medical status, ICU conditions, and laboratory examination 
conditions among various countries, the results of this study may be more applicable to sepsis patients admitted to ICUs in China. 
Second, this was a single-center retrospective analysis. Inevitably, the results of the study will be biased due to differences in the 
diagnosis and treatment levels at each hospital. Our findings will be more reliable and can be extended to other regions through 
multiregional and multicenter cooperation in the future. In addition, the number of eligible patients was limited. In the future, we 
intend to include more patients in prospective studies to validate our findings. Finally, no imaging data were collected. Compared with 
comprehensive imaging and laboratory data, simple laboratory examination data are not detailed enough. Nevertheless, the cost of 
prediction and medical expenses can be saved for patients only by using the data. In the future, more measures will be integrated into 
the diagnostic system to achieve personalized treatment. 

5. Conclusions 

This study developed a machine learning model that can predict sepsis-associated ARDS early, exclusively utilizing clinically 
available data, and can guide clinicians to take appropriate preventive measures to improve the clinical prognosis of high-risk patients. 
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