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In a recent study, the PD-1 inhibitor has been widely used in clinical trials and shown to
improve various cancers. However, PD-1/PD-L1 inhibitors showed a low response rate
and were effective for only a small number of cancer patients. Thus, it is important to figure
out the issue about the low response rate of immunotherapy. Here, we performed ssGSEA
and unsupervised clustering analysis to identify three clusters (clusters A, B, and C)
according to different immune cell infiltration status, prognosis, and biological action. Of
them, cluster C showed a better survival rate, higher immune cell infiltration, and
immunotherapy effect, with enrichment of a variety of immune active pathways
including T and B cell signal receptors. In addition, it showed more significant features
associated with immune subtypes C2 and C3. Furthermore, we used WGCNA analysis to
confirm the cluster C-associated genes. The immune-activated module highly correlated
with 111 genes in cluster C. To pick candidate genes in SD/PD and CR/PR patients, we
used the least absolute shrinkage (LASSO) and SVM-RFE algorithms to identify the targets
with better prognosis, activated immune-related pathways, and better immunotherapy.
Finally, our analysis suggested that there were six genes with KLRC3 as the core which can
efficiently improve immunotherapy responses with greater efficacy and better prognosis,
and our study provided clues for further investigation about target genes associated with
the higher response rate of immunotherapy.

Keywords: lung adenocarcinoma, PD-1 inhibitor, LASSO analysis and SVM-RFE, immune cell infiltration, TCGA

INTRODUCTION

According to recent research, lung cancer is a highly malignant type of cancer with poor prognosis. It
ranks among the top cancers in terms of morbidity and mortality (Jemal et al., 2011), wherein about 60%
of the patients in the early stages of lung cancer underwent combined treatment of surgery,
chemotherapy, and radiotherapy but did not achieve satisfactory therapeutic effect, and cancer-driver
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gene-targeted therapy also encounters the problemof drug resistance
[27]. The emergence of immunotherapy brings hope to lung cancer
patients. Also, the interactions of PD-1 and its ligands constitute a
major immunosuppressive pathway in tumors (Brahmer et al., 2012;
Robert et al., 2015). Since 2010, the PD-1 or PD-L1 antibodies have
been showing significant antitumor activity, including NSCLC (Ohe
et al., 2007; Herbst et al., 2015). In addition to activating T-cells by
binding to its ligands (PD-L1 and PD-L2) to enhance T-cell
antitumor functions, the PD-1 effect was also seen in other
immune cells (Barber et al., 2006; Sharpe et al., 2007).

Nowadays, several therapeutic antibodies with PD-1- or PD-
L1-suppressing properties have been formulated for managing
malignancies such as NSCLC clinically. However, these
immunotherapies show a low remission rate in patients. Thus,
a great deal of effort has been undertaken to find predictive
biomarkers for patients with optimal response to these
inhibitions, and there were also studies devoted to finding
biological targets to improve the response rate of
immunotherapy. Hu et al. analyzed the differences in the gene
expression profiles of patients with high and low expression of
PD-1 and PD-L1 and found that more than one hundred genes,
including IL-21, KLRC3, and KLRC4, were significantly
upregulated in the high-expression group, compared with the
low-expression group [26]. In the present, it is urgent to confirm
the targets that can be applied to improving the response rate of
immunotherapy.

Here, we performed the ssGSEA and unsupervised clustering
analysis to identify targets with better prognosis,

immunotherapy, and that are activated in immune-related
pathways based on the red module for 111 genes that are
highly correlated with cluster C based on the LASSO and
SVM-RFE analyses. The six genes with KLRC3 as the core
were identified as the key genes with a better prognosis and
correlated with immunotherapy.

MATERIALS AND METHODS

Datasets and Samples
The gene expressions of a total of 1881 patients with detailed survival
information obtained fromTCGA-LUAD (https://portal.gdc.cancer.
gov/) and GEO datasets of GSE31210, GSE30219, GSE68465,
GSE37745, GSE50081, and GSE72094 were generated. The
expression values were log-transformed, and the “ComBat”
algorithm was used for reducing probable batch effects resulting
from the inter-dataset biases (non-biotech) (Johnson et al., 2007).

Gene Signature and Single-Sample Gene
Set Enrichment Analysis
A set of marker genes for types of immune cells was selected based on
Bindea et al. (2013). For enrichment computation in the individual
sample gene set, the absolute enrichment fractionswere derived via the
GSEA program for traits that have been validated by prior
experimentation. For confirming the immune cell populations, the
ssGSEA analysis of each sample was accomplished using the immune

FIGURE 1 | (A) Consensus clustering-based identification of two clusters (n = 1,881). Sample consensus is displayed by heatmaps shown in white (consensus
value = 0) for samples that never aggregated jointly and blue color (consensus value = 1) for samples that always aggregated jointly. (B) Survival analysis of patients with
two clusters. (C) Landscape immune cell infiltration in two clusters. (D) Differential gene expressions are imaged by a volcano plot. (E) Different expressions of PD-1/PD-
L1 in the two clusters. (F) GO analysis showing differential gene expressions.
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cell signature gene predictions (Supplementary Table S1) (Bindea
et al., 2013).

Gene Set Variation Analysis and Functional
Annotation
To explore the biological event differences between clusters A, B,
and C, we used the “GSVA” R packages to conduct the GSVA
enrichment analysis (Figure 2A). The
“c2.cp.kegg.v7.2.symbols.gmt” was obtained from the MSig DB
dataset, and the p-adjust < 0.5 was considered as statistically
significant. The subtypes also were seen to correlate with the
immune studies and prognosis by Thorsson et al. (2018),
aggressive subtype by Dama et al. (2017), and luminal and
basal subtypes by Zhao et al. (2019) to analyze the overlap
with our study cluster C (Figure 3A). To confirm the events
in the different subgroups, the distribution of mutant gene
frequencies affected by SNVs and CNVs was investigated
across various subtypes (Figure 3B). The frequency of
mutations in each gene was significantly different across

subtypes (Fisher exact test with the BH test correction,
adjusted p < 0.05).

Consensus Clustering for Tumor-Infiltrating
Immune Cells and Differential Expression
Genes
For each sample, hierarchical agglomerative clustering was
implemented for LUAD depending on a specific pattern. In this
procedure, the “Consensus Cluster Plus” R package was used to
perform “PAM” analysis, which is a Euclidean distance and Ward’s
linkage-based unsupervised clustering approach. To ensure clustering
stability, the aforementioned process was repeated about 100 times.

Differential Expression Genes Associated
With the Two Clusters
Depending on the infiltration of immune cells, patients were
classified into high and low immune-cell infiltration subtypes. To
determine DEGs between two clusters, the limma R package was

FIGURE 2 | (A) Identification of three clusters by consensus clustering. (B) Patient survival analysis. (C) Landscapes of immune cell infiltration. (D–F) KEGG
analysis. (G–J) Distribution of TMB, neo-antigens (Indel, SNV), and silent mutation rate in the three clusters.
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FIGURE 3 | (A)Overlay of different clusters (inner ring) with LUAD expression subtypes (outer ring). (B)Oncoprint distributions of somatic mutation (SNV/indel) and
copy number variation (CNV) events in different clusters. (C) Distribution of immune, aggressive luminal, and basal subtypes in different clusters. (D) Distribution of
immune-related gene expression in different clusters. (E) Rate of clinical response to anti-PD-L1 immunotherapy in different clusters, and (F) Kaplan–Meier curves for
samples with different clusters in the IMvigor210 cohort.
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utilized, and absolute fold change was designated to >1, and
significance criterion adjusted to p < 0.05.

Construction of Signature Gene of Lung
Adenocarcinoma
For immunotherapy response assessment of lung cancer patients
presenting newly defined immunophenotypes, the gene expression
profiles and clinical outcome data of 348 patients from the
IMvigor210 (a clinical response trial dealing with PD-L1
blockade by atezolizumab) were collected. The responses to
anti-PD-L1 therapy constituted the observed endpoints, which
were complete response (CR), partial response (PR), progression of
disease (PD), and stability of disease (SD). Regarding the objective
response rate (ORR) and disease control rate (DCR), they,
respectively, involved patients with CR and PR (for ORR) and

patients with CR, PR, and SD (for DCR). Based on the top 10
marked genes of metabolic subtypes, we separated the IMvigor210
cohort into three subtypes (cluster A, cluster B, and cluster C).

For candidate gene selection, we used a least absolute shrinkage
and selector operation (LASSO) algorithm, whose penalty
parameter was adjusted by setting a cross-validation (10-folds)
approach. Meanwhile, we used another algorithm, support vector
machine–recursive feature elimination (SVM-RFE), to accomplish
gene selection for the CR/PR and SD/PD patients. For further
narrowing on the gene among the training cohort, L1-penalized
Cox analysis was eventually carried out through gene integrations
from either of the aforementioned two algorithms.

Gene Expression Data With Immunotherapy
Under the Creative Commons 3.0 license (http://research-pub.
gene.com/IMvigor210CoreBiologies), the IMvigor210 dataset

FIGURE 4 | (A) Scale-free fit index analysis of 1–20 soft threshold power β. (B)Mean connectivity analysis of 1–20 soft threshold power. (C)Genes are hierarchically
clustered into various modules indicated by different colors. (D) Heatmap displaying correlations among module eigengenes. (E) GO analysis of the red module genes.
(F) Correlation of the median expression of genes (red module) with the PD-1/PD-L1 level.
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was obtained from accessible, well-documented software and
data package. To determine the status of binary response in
various clusters, 298 urothelial cancer patients and 80
immunotherapy recipients with cutaneous melanoma having
complete clinical records were analyzed.

Statistical Analysis
GraphPad and R 4.0.0. were used for all statistical analyses.
The Wilcoxon test was conducted for pairwise comparison
analysis, and the Kruskal–Wallis test was adopted for
comparison among more than two groups. The FDRs in
limma and GSEA were adjusted by the
Benjamini–Hochberg approach with a significance level of
p < 0.05. The correlation of categorical clinical information
with defined clusters was statistically examined by Fisher’s
exact test. All statistical differences were considered
significant when p-value < 0.05.

RESULTS

Identification of Different Subtypes
In this study, the immune cell infiltration matrix was used to
identify two clusters with different survival rates (Figures
1A,B), and cluster one showed high immune cell infiltration
(Figure 1C) such as the DC, B-cells, CD8 T-cells, cytotoxic
cells, DC, iDC, macrophages, mast cells, neutrophils, NK, CD-
56 dim cells, T-cells, T-helper cells, Tcm, Tem, TFH, Tgd, Th1-
cells, and T-Reg. Furthermore, the PD-1 and PD-L1 showed
high expression in cluster 2 (Figure 1E). The differential
expressions of 110 genes between the two clusters
(Figure 1D) were enriched in various immune-related

pathways such as T-cell activation and cytokine activity
(Figure 1F).

Identification of Gene Subtypes and
Association With Known Subtypes
With the aid of the limma package, the differential expression
genes (DEGs) analyses for transcriptome evolution
investigation among these clusters performed to identify the
biological function of different clusters showed 110 differential
gene expressions. For the elimination of redundant genes, the
Cox analysis was performed to collect significantly correlated
prognosis genes.

The survival records used to assess the prognostic
implication of the clusters (Figure 2B) showed clusters B and
C to have a better survival rate than cluster A (p = 0.005).
Meanwhile, cluster C showed greater immune cell infiltrations
such as aDC, B cells, CD8 T cells, cytotoxic cells, DC,
eosinophils, iDC, macrophages, mast cells, neutrophils, NK
CD56-dim cells, T cells, Tcm, Tem, TFH, Tgd, and Th1 cells
(Figure 2C). Furthermore, enrichment of cluster C showed
multiple immune-associated pathways, including those for
signaling T- and B-cell receptors (Figures 2D–F).
Additionally, cluster C showed high tumor mutational
burden, neo-antigen (indel and SNV), and PD-1 expression
than other subtypes (Figures 2H–K).

Our findings showed clusters B and C to have high-
immune subtypes C3 and C2, high frequency of LumB
subtype, and aggressive subtype C4 (Figure 3C). Of these
subtypes, the immune subtype C3, LumA subtype, and
aggressive subtype C4 found in our study (Figure 2B) were
consistent with the findings of others for a better prognosis. In

FIGURE 5 | (A) LASSO and (B) SVM-RFE algorithms in the detection cohort. (C) Overlap of incorporated genes selected from two algorithms in the detection
cohort. (D) Intersection of characteristic genes with PD/RD and Cox analysis genes. (E) Correlation between immune cell infiltration and selected genes.
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addition to this, a majority of immune-checkpoint-relevant
signatures (CD274, CTLA4, HAVCR2, IDO1, LAG3, and
PDCD1) and immune-activity-relevant signatures (CD8A,
CXCL9, CXCL10, GZMA, GZMB, IFNG, PRF1, TBX2, and
TNF) exhibited significant high expression in cluster C
(Figure 3D).

Immunotherapy Response
Our findings also showed that the cluster A subtype had high SD/
PDwith 72.6% and low CR/PRwith 27.4%; however, the cluster A
subtype had higher CR/PR with 19.2% than the cluster C subtype
(Figure 3F). In the IMvigor210 cohort, the cluster C subtype had

a higher survival rate than other subtypes from anti-PD-1
treatment (Figure 3E).

WGCNA Analysis
Aided by the R package “WGCNA”, the co-expression network
was created from the expression levels of 11,518 genes
(Langfelder and Horvath, 2008). Clustering of 1,881 samples
was performed by calculating the mean linkage and Pearson’s
correlation coefficient. The soft threshold power was set at β = 3
and scale-free R2 = 0.96 to ensure that the scale-free network was
constructed (Figures 4A,B). A dynamic mixing and cutting
technique was employed to establish the hierarchical clustering

FIGURE 6 | (A–F) Expression of selected genes with varying anti-PD-1 responses. (G) Kaplan–Meier graphs of KLRC3 expression in the IMvigor210 cohort.
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tree, each of whose leaves was used to refer to a gene. Meanwhile,
a tree branch constituted gene assemblies resembling expression
data that were used to refer to a gene module. In this study, a total
of six modules were produced (Figures 4C,D), of which the red
module showed a high correlation with cluster C from 111 genes
enriched by T-cell activation, cytokine activity, and regulation of
T-cell activation (Figure 4E). The median expressions of red
module genes showed a high correlation with PD-1/PD-L1
expression (Figure 4F).

Identification of Predictive Signature
Furthermore, the most significant genes were selected via two
algorithms from the CR/PR and SD/PD patients, and the LASSO
algorithms were used to identify the prognosis gene. A total of 106
gene candidates were identified after the integration of LASSO-
and SVM-RFE-selected genes, of which six genes were selected by
both algorithms (Figures 5A–C). The correlations were seen
between the overlapping genes, including the PNOC, RHOH,
ACAP1, CYTIP, IL10RA, and KLRC3 along with the immune cell
infiltrations (Figure 5D). The expression of KLRC3 showed
significant response/nonresponse of PD-L1 (Figures 6A–F.)
and better survival (Figure 6G).

DISCUSSION

With the development of immunotherapy, PD-1/CTLA4
inhibitors have been widely used in clinical applications
and improved prognosis of various cancers. However, the
effective response rate of PD-1 inhibitors in cancer patients,
including lung cancer, is low, which is thought to be mainly
affected by tumor mutational burden (Goodman et al. (2017),
microsatellite instability (MSI), efficient DNA mismatch
repair (DMMR) (Xiao and Freeman, 2015), and other
factors. In order to improve the response rate of
immunotherapy, researchers are constantly working on the
study of marker genes and potential biological therapeutic
targets related to immunotherapy response. It has been
reported that IFN-γ-related gene expression contributes to
immunotherapy prediction, such as CCR5, CXCL9, IFNG,
STAT1, and PRF1 (Ayers et al., 2017), and these genes are
related to tumor antigen presentation, T cytotoxic activity,
and immune cell infiltration. These IFN-γ-related genetic
signatures are necessary for immunotherapy response
(Sharma and Allison, 2015). However, the immune
response marker genes for lung adenocarcinoma need to be
further studied.

Here, by analyzing the gene expression data of a large number
of lung adenocarcinoma patients, we searched for genes
associated with better prognosis and immune cell infiltration,
hoping to be further used in immunotherapy. Based on
differential gene expression, we identified three subtypes
showing different survival and immunotherapy effects.
Among them, immune-related genes include CD274, CTLA4,
HAVCR2, IDO1, LAG3, and PDCD1 as immune checkpoint-
related markers, and CD8A, CXCL10, CXCL9, GZMA, GZMB,
IFNG, PRF1, TBX2, and TNF (immune activity-related

signatures) expressions in cluster C were higher than other
subtypes, indicating that cluster C has a high level of
immunoreactivity, that is, subtype C has a high potential for
immune activation, which can elicit an effective immune
response.

Ultimately, six genes including PNOC, RHOH, ACAP1,
CYTIP, IL10RA, and KLRC3 were selected by both algorithms
of LASSO and SVM-RFE analysis. Prepronociceptin (PNOC) is a
preprotein of a series of intracellular products involved in pain
and inflammation signaling (Rodriguez-Romaguera et al., 2020).
In cancer research, PNOC is highly expressed in glioma cells,
epithelial ovarian cancer, and other tumors and has been reported
as a prognostic biomarker (Chan et al., 2012; Jin et al., 2018).
RHOH, a member of the RhoE/Rnd3 subfamily of GTPases, is
highly expressed in B cells, suggesting that it is involved in the
development of B-cell malignant leukemia (Dallery-Prudhomme
et al., 1997) and is closely related to the immune
microenvironment in chronic leukemia (Troeger et al., 2012).
ACAP1 is involved in cell membrane transport and cell
migration, is an Arf6 GAP, that is, important for immune cell
migration and infiltration, and is associated with tumor immune
infiltration and prognosis in breast cancer (Zhang et al., 2020).
Cytohesin-interacting protein (Cytip) is associated with dendritic
cell (DC) maturation and T cell activation and may function in
the tumor immune microenvironment (Heib et al., 2012).
IL10RA encodes a receptor molecule for the inflammatory
factor IL10 and is associated with IL10 expression and STAT3
phosphorylation in colorectal cancer. The expression of IL10RA
is also considered to be associated with the clinical stage of
colorectal cancer (Zadka et al., 2018).

Most importantly, patients with high expression of KLRC3
had significantly higher response rates to immunotherapy and
better prognosis, and KLRC3 can be regarded as the core gene of
these six genes. KLRC3 is a natural killer cell receptor gene, and
previous studies have shown that KLRC3 affects the stemness and
proliferative potential of glioma cells and is involved in
glioblastoma tumorigenesis and progression (Cheray et al.,
2017). This gene is also upregulated in patients with high
expression of PD1 and PDL1 (Hu et al., 2020; Lamberti et al.,
2020), suggesting that it may be involved in the regulation of PD1
and PD-L1 expression.

We used WGCNA analysis to confirm cluster C-associated
red modules with 111 genes. LASSO and SVM-RFE
algorithms confirmed that the key gene KLRC3 was
significantly associated with CR/PR status with better
prognosis. Our study also has some limitations, such as the
lack of experimental and clinical validation data, although the
omics data analysis was performed; so, our study results will
stimulate further verification or falsification in the scientific
community.

Based on our findings in this study, specific changes in the
landscape of immune cell infiltration and mutations and
transcriptome profiles may have a dramatic impact on
improving immunotherapy. KLRC3 may be a core gene
suitable for prognosis in lung adenocarcinoma and is
associated with SD/PD and CR/PR patients, which will
improve reference for future immunotherapy-related studies.
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