
3276  |  	﻿�  Ecology and Evolution. 2019;9:3276–3294.www.ecolevol.org

 

Received: 25 September 2018  |  Revised: 13 December 2018  |  Accepted: 8 January 2019

DOI: 10.1002/ece3.4948

O R I G I N A L  R E S E A R C H

A pathway for multivariate analysis of ecological communities 
using copulas

Marti J. Anderson1,2  |   Perry de Valpine3 |   Andrew Punnett2 |   Arden E. Miller4

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

1New Zealand Institute for Advanced Study 
(NZIAS), Massey University, Auckland, New 
Zealand
2PRIMER‐e (Quest Research Limited), 
Auckland, New Zealand
3Department of Environmental Science, 
Policy and Management, University of 
California, Berkeley, California
4Department of Statistics, University of 
Auckland, Auckland, New Zealand

Correspondence
Marti J. Anderson, New Zealand Institute for 
Advanced Study (NZIAS), Massey University, 
Auckland, New Zealand.
Email: m.j.anderson@massey.ac.nz

Funding information
Royal Society of New Zealand

Abstract
We describe a new pathway for multivariate analysis of data consisting of counts of 
species abundances that includes two key components: copulas, to provide a flexible 
joint model of individual species, and dissimilarity‐based methods, to integrate infor‐
mation across species and provide a holistic view of the community. Individual spe‐
cies are characterized using suitable (marginal) statistical distributions, with the 
mean, the degree of over‐dispersion, and/or zero‐inflation being allowed to vary 
among a priori groups of sampling units. Associations among species are then mod‐
eled using copulas, which allow any pair of disparate types of variables to be coupled 
through their cumulative distribution function, while maintaining entirely the sepa‐
rate individual marginal distributions appropriate for each species. A Gaussian copula 
smoothly captures changes in an index of association that excludes joint absences in 
the space of the original species variables. A permutation‐based filter with exact fam‐
ily‐wise error can optionally be used a priori to reduce the dimensionality of the cop‐
ula estimation problem. We describe in detail a Monte Carlo expectation maximization 
algorithm for efficient estimation of the copula correlation matrix with discrete mar‐
ginal distributions (counts). The resulting fully parameterized copula models can be 
used to simulate realistic ecological community data under fully specified null or al‐
ternative hypotheses. Distributions of community centroids derived from simulated 
data can then be visualized in ordinations of ecologically meaningful dissimilarity 
spaces. Multinomial mixtures of data drawn from copula models also yield smooth 
power curves in dissimilarity‐based settings. Our proposed analysis pathway pro‐
vides new opportunities to combine model‐based approaches with dissimilarity‐
based methods to enhance understanding of ecological systems. We demonstrate 
implementation of the pathway through an ecological example, where associations 
among fish species were found to increase after the establishment of a marine 
reserve.
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1  | INTRODUC TION

Multivariate ecological community data, consisting of counts of 
species’ abundances, have a number of salient statistical prop‐
erties that have been studied over many decades (Bliss & Fisher, 
1953; ter Braak, 1996; Clarke, Chapman, Somerfield, & Needham, 
2006; Martin et al., 2005; McArdle, Gaston, & Lawton, 1990; Taylor, 
Woiwood, & Perry, 1979; Whittaker, 1952). They are typically high 
dimensional (Dunstan, Foster, Hui, & Warton, 2013)—the number 
of species (p) often exceeds the number of sampling units (N), and 
most species are rare (McGill et al., 2007), contributing many zeros 
to an (N × p) matrix of count data (Y). In addition, individual vari‐
ables generally show over‐dispersion (McArdle et al., 1990; White & 
Bennetts, 1996) and often zero‐inflation (Martin et al., 2005; Welsh, 
Cunningham, Donnelly, & Lindenmayer, 1996; Wenger & Freeman, 
2008). The degree of over‐dispersion and zero‐inflation varies, not 
only among species (Clarke, Chapman et al., 2006; Taylor, 1961), but 
also within a species across different environmental conditions, tem‐
porally or spatially (McArdle & Anderson, 2004; Smith, Anderson, & 
Millar, 2012; Taylor et al., 1979). Thus, multi‐species datasets consist 
of mixed variable types; counts of different species are generally in‐
commensurable, due to differences in the sizes, morphologies, life‐
history strategies, detectabilities, and behaviors of different species.

Species also display associations with one another (Somerfield 
& Clarke, 2013). Statistical non‐independence may reflect phylo‐
genetic or functional inter‐relationships (Paradis & Claude, 2002), 
synchronous (or asynchronous) behavior or dispersal mechanisms 
(Kendall, Bjørnstad, Bascompte, Keitt, & Fagan, 2000), or inter‐spe‐
cific interactions, such as competition (Goldberg & Landa, 1991), 
commensalism, or trophic relationships (Zurell, Pollock, & Thuiller, 
2018). Associations can also be generated indirectly through species 
responding in similar (or opposing) ways to environmental gradients 
or habitats (Dunstan, Foster, & Darnell, 2011; Warton et al., 2015). 
Furthermore, relationships among species vary in time and space 
under changing biotic or abiotic conditions (Clark, Wells, & Lindberg, 
2018); for example, species may only compete when resources are 
limiting (Perry, Mitchell, Zutter, Glover, & Gjerstad, 1994), in certain 
parts of their range (Pacala & Roughgarden, 1985), or in the absence 
of predation (Chase et al., 2002).

To analyze multi‐species count data, many researchers have 
used methods based on an N × N matrix of dissimilarities, D, 
among sampling units (Anderson, 2001; Clarke, 1993). These ap‐
proaches handle high‐dimensional count data and reliably detect 
important changes in the structure of ecological communities 
(Anderson, 2001; Clarke, 1993; Clarke, Somerfield, & Chapman, 
2006; Legendre & De Cáceres, 2013). The focus here is to mea‐
sure holistic changes in the identities of species and potentially 
also changes in species’ relative or proportional abundances. 
Dissimilarities, often calculated using measures that exclude joint 
absences, such as Bray–Curtis, Hellinger, or Jaccard (Legendre & 
Legendre, 2012), integrate information across all species to define 
ecological relationships among sampling units. Some measures 
(such as Gower's measure, 1971) also accommodate data having 

different types of variables (see Legendre & Legendre, 2012). 
Most dissimilarity measures of interest to ecologists emphasize 
the extent to which two sampling units either share, or do not 
share, any species in common. Thus, important community‐level 
concepts such as beta diversity (Anderson et al., 2011; Vellend, 
2001) and turnover (Baselga, 2010), for example, are measured 
using dissimilarities. However, dissimilarity‐based methods create 
no formal model of the original variables. Roles of individual spe‐
cies and relationships among them are not directly identifiable, as 
no species‐specific parameters are estimated. Hence, one cannot 
predict the makeup of communities under defined scenarios, nor 
readily calculate power.

To characterize ecological communities and make species‐level 
predictions under specified hypotheses, formal joint statistical mod‐
els of the species variables are required. The multi‐faceted challenge 
for developing such models is to deal simultaneously with (generally) 
over‐dispersed, zero‐inflated, high‐dimensional, inter‐related, mixed 
sets of (usually discrete) variables, including a host of rare species, 
for which no single multivariate statistical distribution can be readily 
articulated. A successful model of community data should allow a 
wide variety of species‐specific marginal distributions that can flexi‐
bly change in time and space, while accounting for meaningful inter‐
specific associations.

There has been rapid recent development of new statistical 
models for multivariate species data that also incorporate inter‐spe‐
cific associations (Clark, Nemergut, Seyednasrollah, Turner, & Zhang, 
2017; Clark et al., 2018; Golding & Purse, 2016; Harris, 2015, 2016; 
Hui, 2016; Hui, Taskinen, Pledger, Foster, & Warton, 2015; Nieto‐
Lugilde, Maguire, Blois, Williams, & Fitzpatrick, 2017; Niku, Warton, 
Hui, & Taskinen, 2017; Pollock et al., 2014; Popovic, Hui, & Warton, 
2018; Thorson et al., 2016; Warton et al., 2015). Several of these, 
such as stochastic feed‐forward neural networks (“mistnet”; Harris, 
2015), Bayesian Gaussian process models (GP SDMs; Golding & 
Purse, 2016), or Markov random fields (MRF; Clark et al., 2018), have 
so far been used only on presence–absence data to enhance species 
distribution models (SDMs, Elith & Leathwick, 2009), although ex‐
tensions to abundance data may well be feasible.

Models of multivariate abundance data include generalized lin‐
ear models (GLMs) with (typically, for counts) a log link and either 
a Poisson or negative binomial (NB) error, and with correlations 
between species modeled using generalized estimating equations 
(GEEs, Wang, Naumann, Wright, & Warton, 2012; Warton, 2011; 
Warton & Guttorp, 2011). Alternatively, relationships among species 
can be modeled parsimoniously by including latent random variables 
as linear predictors in the GLM—called generalized linear latent vari‐
able models (GLLVMs, Hui et al., 2015; Niku et al., 2017; Warton et 
al., 2015). The latent variables are intended to capture correlations 
due to unmeasured environmental drivers or biotic interactions, and 
one can use model selection to identify an appropriate number of 
latent variables to include in the model (Hui et al., 2015). More so‐
phisticated GLLVMs can also accommodate spatial/temporal auto‐
correlation (Ovaskainen, Roy, Fox, & Anderson, 2016; Thorson et al., 
2016, 2015), the inclusion of species’ traits/phylogenies (Ovaskainen 
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et al., 2017), or variation in correlations at different hierarchical spa‐
tial scales (Ovaskainen, Abrego, Halme, & Dunson, 2016).

Generalized joint attribute models (GJAMs) have also been pro‐
posed for modeling multivariate ecological data (Clark et al., 2017). 
GJAMs model covariances between mixed variable types (presence–
absence, ordinal, discrete, or continuous) on their original scales. 
Discrete data (such as counts) are modeled via censoring, with par‐
titions and weights chosen to allow linkages between different vari‐
able types (Clark et al., 2017). Partition widths and associated effort 
in interval censoring also can be chosen arbitrarily to accommodate 
mean–variance relationships. Imputation across censored intervals 
maps discrete variables into a multivariate normal (MVN) space to 
estimate covariances, with Bayesian analysis being used to estimate 
the latent (imputed) states.

We consider that copulas (Mai & Scherer, 2017) also hold great 
promise for flexible joint modeling of multivariate ecological count 
data (Popovic et al., 2018). A copula is a function representing a joint 
distribution as a mapping from the cumulative distribution functions 
(cdf) of its marginals, hence can be used to couple virtually any pair of 
variables (Mai & Scherer, 2017; Sklar, 1959). Copulas allow a tailored 
multivariate distribution to be constructed from two separate parts: 
(a) the univariate marginal distributions for each variable; and (b) the 
joint distributions of the variables in a multivariate copula space. 
Although implemented fairly widely in other fields (Nikoloulopoulos 
& Karlis, 2009; Shi & Valdez, 2014), copulas have not yet been widely 
used in ecology (but see de Valpine, Scranton, Knape, Ram, & Mills, 
2014; Popovic et al., 2018).

Our primary motivation for using copulas for ecological count 
data is that they allow any marginal distribution to be used for any 
variable. One does not need to forego the utility of the wide poten‐
tial array of existing univariate statistical distributions, each with its 
own interpretable parameters, to build a joint model. Also, in copula 
models, associations among variables are modeled separately from 
their marginal distributions, making them easy to interpret, and the 
particular copula distribution used to model associations can also be 
flexibly chosen to fit a specific context. In contrast, latent variable 
models typically confound correlation structures with marginal dis‐
tributions, as correlations among species are induced via latent vari‐
ables that in turn alter the marginal distributions.

Here, we shall restrict our attention to Gaussian (MVN) copula 
distributions, and also to counts of species (abundance data) aris‐
ing from one‐way ANOVA‐type designs, but the core ideas are 
readily extended to other types of mixed datasets, other copula 
distributions, and/or more complex sampling/experimental designs. 
Gaussian copulas can draw on the rich statistical literature surround‐
ing MVN distributions, while tailoring marginal distributions to non‐
normal ecological variables. Fortunately, difficulties in estimating 
parameters for Gaussian copulas with discrete marginals (Faugeras, 
2017; Genest & Nešlehová, 2007) have recently been surmounted 
(see Appendix 1).

The aim of this work is twofold. First, we provide an accessible 
description of copulas and show how they can work for ecological 
count data through a simple bivariate example. Second, we outline 

a pathway for the analysis of multivariate ecological count data that 
combines the use of copulas with dissimilarity‐based methods. More 
specifically, copulas are first used to characterize the properties of 
individual variables and their associations in a formal parametric sta‐
tistical model. Dissimilarity‐based methods are then used to examine 
community‐level patterns for whole assemblages of species that have 
been simulated from these copula models under defined scenarios.

Our analysis pathway (a) characterizes each individual species 
via estimation of marginal distributions and their associated param‐
eters; (b) addresses high dimensionality (optionally) by screening 
data to identify significant pair‐wise associations, using an index that 
excludes joint absences; (c) characterizes associations among spe‐
cies via estimation of a copula model and its associated parameters; 
and (d) proposes simulation from copula models to generate realistic 
ecological data under specified null or alternative hypotheses for 
model‐based inference, ordination, and power analysis in dissimilar‐
ity‐based settings. In the proposed pathway, we allowed both the 
marginal parameters and the copula parameters to vary across a pri‐
ori groups, to maximize flexibility.

We demonstrate the analysis pathway with an example data‐
set: counts of fishes (p = 47 species) from the Poor Knights Islands, 
New Zealand (two of the 47 species are shown in Figure 1). Sampling 
occurred at three different times (September 1998: n1 = 15, March 
1999: n2 = 21, and September 1999: n3 = 20), spanning the estab‐
lishment of a no‐take marine reserve in October 1998 (Willis & 
Denny, 2000; data are provided in Supporting Information Table S1 

F I G U R E  1    Two fish species found at the Poor Knights 
Islands, New Zealand: Chirodactylus spectabilis (top) and Parma 
alboscapularis (bottom). Photographs by Paul Caiger
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and are also available from the Dryad Digital Repository: https://doi.
org/10.5061/dryad.3s6rm0f).

2  | A GAUSSIAN COPUL A FOR DISCRETE 
NON‐NORMAL DATA

A copula is defined by Sklar's seminal theorem (1959). Let F be a p‐
dimensional distribution function with margins F1, F2, …, Fp. There 
exists a p‐dimensional copula C such that for all (y1, y2, …, yp) ∈ ℝ p 
the following holds:

C is unique if F1, F2, …, Fp are continuous. Conversely, if C is a p‐dimen‐
sional copula and F1, F2, …, Fp are univariate distribution functions, 

then the function F(y1, y2, …, yp) is a p‐dimensional distribution func‐
tion (Mai & Scherer, 2017).

To understand how copulas work, consider that the position of 
an individual value y of a random variable Y having probability den‐
sity function (pdf) fY(y) is able to be expressed as a value along its 
cdf, denoted FY(y), on the interval [0,1]. This provides a direct map‐
ping of values from one pdf to another via their cdfs. This approach 
can also be used to map a value drawn from the pdf of a contin‐
uous random variable to the probability mass function (pmf) of a 
discrete random variable (Figure 2a). For example, consider a ran‐
dom variable Y ~ Poisson (μ = 2.5) and a standard normal variable 
Z ~ N(μ = 0, σ2 = 1), whose cdf we will denote by CZ(z). A random 
value z drawn from Z can be mapped on to Y uniquely by taking the 
inverse function: y=F−1

Y

(
CZ (z)

)
. Thus, suppose we draw z = 0.524, 

then CZ (0.524) = 0.70; that is, we have drawn the 70th percentile of 

(1)F
(
y1, y2, . . . , yp

)
=C

(
F1

(
y1
)
, F2

(
y2
)
, … , Fp

(
yp
))

F I G U R E  2    Schematic diagram 
showing the mapping between the 
probability density function of a 
continuous variable and the probability 
mass function of a discrete variable via 
their respective cumulative distribution 
functions (cdfs); (a) the mapping from the 
continuous to the discrete yields a unique 
value; (b) the mapping from the discrete 
to the continuous is non‐unique, but 
produces a range of values in the space of 
the continuous variable
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fZ(z). Mapping FY(y) one‐to‐one on CZ(z), the 0.70 quantile of fY(y) is 
then given by y=F−1

Y

(
0.70

)
=3 (Figure 2a, blue arrows).

This simple mapping idea is exploited for modeling the joint distri‐
bution (association) between any pair of disparate types of variables 
in a copula. Here, we shall use a Gaussian copula to handle multiple 
associated variables simultaneously (but see Mai and Scherer (2017); 
Shi and Valdez (2014) for a broader variety of copula distributions). 
Consider a bivariate ecological example, where Y1 are counts of in‐
dividual fish of the species Chirodactylus spectabilis (red moki), and 
Y2 are counts of Parma alboscapularis (black angelfish) from the Poor 
Knights Islands (Figure 1). Model selection (using AICc) performed 
separately on each variable for the full set of data (N = 56) sug‐
gested the NB (μ = 2.714, θ = 1.635) and the zero‐inflated NB (ZINB; 
μ = 15.375, θ = 1.857, π = 0.095) are suitable marginal distributions to 
model Y1 and Y2, respectively (Figure 3). (Note: we have simply pos‐
ited here that the parameters for each of these marginal distributions 
are equivalent to their maximum likelihood estimates.)

A measure of association between two species that excludes 
joint absences is the index of association (Somerfield & Clarke, 2013; 
Whittaker, 1952):

where y𝑖𝓀 denotes the count for species 𝓀 in sampling unit i and I𝓀ℓ 
denotes the association between species 𝓀 and species ℓ. For red 
moki and black angelfish, there is a statistically significant positive 
association of I = 0.698 (p = 0.0001, 10,000 permutations).

To model this association, we can use a standard bivariate normal 
distribution for the copula function (with variables Z1 and Z2) having 

correlation parameter ρ = 0.574 (lower left panel, Figure 3). A ran‐
dom sample of z = (1.28, 0.67) in the copula space (Figure 3, lower 
left) can be mapped into the bivariate space of species count data 
(Figure 3, upper right) by taking the inverse of the corresponding cdf 
values (the 90th and the 75th percentile, respectively) on each mar‐

ginal distribution, that is, y=
(
F−1
Y1

(
0.90

)
,F−1
Y2

(
0.75

))
, hence y = (30, 

4). A large number of such random draws from the copula model will 
generate count data in the species space that preserves their associ‐
ation as well as their individual (and disparate) marginal distributions 
(Figure 3). For a given pair of variables, there is a smooth monotonic 
relationship between rho (ρ) in the copula space and the index of 
association (I) in the space of the original variables (Figure 4a), high‐
lighting the utility of Gaussian copulas in ecological research. In con‐
trast, Pearson correlations (r) calculated among the original variables 
do not show a strong relationship with the index of association 
(Figure 4b), as the former do not omit joint‐absence information 
(Somerfield & Clarke, 2013).

One important complication, however, is the fact that a single 
point in the discrete data space corresponds to an entire region (a 
hyper‐rectangle) in the copula space (Figure 2b). Thus, estimation of 
the copula parameter(s) from discrete datasets is problematic, as the 
mapping of discrete values into the copula space is non‐unique. We 
can address this by performing Monte Carlo integration over each 
discrete interval (Shi & Valdez, 2014). Computational efficiency is 
achieved through a Monte Carlo expectation maximization (MCEM) 
algorithm (Wei & Tanner, 1990). Estimation of the parameters of the 
correlation matrix for a Gaussian copula with discrete marginal dis‐
tributions is described in greater detail in Appendix 1.
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F I G U R E  3    Standard bivariate normal 
(Gaussian) copula model with discrete 
marginal distributions for two fish 
species from the Poor Knights Islands. 
Points drawn from the copula space with 
correlation parameter ρ = 0.574 generate, 
through the specified negative binomial 
(NB) and zero‐inflated NB marginal 
distributions, points in the discrete 
bivariate data space of counts that 
correspond to an expected inter‐specific 
index of association of I = 0.698
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3  | A COPUL A MODEL FOR ECOLOGIC AL 
COUNT DATA

We propose the following steps to develop a full copula‐based 
model for high‐dimensional ecological count data:

i.	 Identify appropriate marginal distributions. For each species, an 
information criterion (such as AIC or AICc) may be used to 
choose among potential marginal distributions. Here, we 

restricted our attention to the following count distributions: 
Poisson, ZIP, NB, or ZINB (see Supporting Information Data 
S1 for R code). This step may include, for efficiency, identifi‐
cation of rare species that do not contain enough information 
to allow estimation of associations. Species may be flagged as 
“rare” if they occur as singletons or in only a small percentage 
of sampling units (e.g., <5%). We used AICc to identify marginal 
distributions for each of the p = 47 fish species in the Poor 
Knights dataset (Supporting Information Table S1), allowing both 

F I G U R E  4    (a) Relationship between the index of association (I) in the discrete bivariate data space, with marginal distributions of 
negative binomial (NB) (μ = 2.714, θ = 1.635) and zero‐inflated NB (μ = 15.375, θ = 1.857, π = 0.095; see Figure 3), as a smooth function of 
the correlation parameter (ρ) in the standard bivariate normal (Gaussian) copula space. The black line follows the mean and the gray lines 
follow the upper 0.975 and lower 0.025 quantiles of the distribution of 100 values of I that were each calculated using a sample of 5,000 
simulated datasets from the multivariate normal copula distribution at each value of ρ (taken at 0.02‐unit intervals between −1.0 and 1.0). (b) 
Relationship between the Pearson correlation (r) and the index of association (I) for all pairs of 47 variables (counts of fish species) from the 
Poor Knights Islands. (c) Index of association (I) between every pair of variables (black dots) for the fish data from the Poor Knights Islands 
for Time 2 only (p = 42, as five species did not occur at Time 2). Pairs are shown along the x‐axis in decreasing order of species’ importance, 
defined as frequency of occurrence. Blue lines show the upper and lower bounds from the permutation distribution of I, specific to each pair, 
for a two‐tailed per‐comparison empirical error rate of 0.01, obtained using 99,999 permutations. Red circles identify statistically significant 
associations
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the statistical distribution and estimated parameters to vary 
across the three groups.

ii.	 Identify significant associations among species to model. An index 
of association is calculated between every pair of species, the 
null hypothesis of no association is tested for each pair using 
P‐values obtained by permutations (Somerfield & Clarke, 2013), 

and the significance level for the tests is suitably adjusted for 
multiple tests (see Supporting Information Data S2 for R code). 
For efficiency, species flagged as “rare” may (optionally) be 
omitted. For the adjustment, one may use, for example, an 
exact family‐wise error rate (FWER), empirically derived from 
the full set of permutation distributions (Wheldon, Anderson, 
& Johnson, 2007), or a more conservative per‐comparison error 

F I G U R E  5    Heat maps of estimated copula correlation parameters for samples obtained at each of three different times (September 
1998, March 1999, and September 1999) among fish species from the Poor Knights Islands that showed at least one statistically significant 
index of association (using a per‐comparison error rate of 0.01 as a filter, e.g., see Figure 4c)

Time 2
Mar 1999

Time 1
Sep 1998

Time 3
Sep 1999
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rate (PCER). We used a PCER of 0.01 for the fish data. This 
was done separately for each group. We identified five sig‐
nificant associations (involving 10 species) in September 1998, 
followed by a sharp increase to 20 associations (involving 17 
species) in March 1999 (Figure 4c), and subsequent decrease 
to five associations (involving eight species) in September 1999. 
This step acts as a filter to reduce the size of the estimation 
problem for building a copula model and omits joint absences 
in the assessment of species’ associations. It is, however, op‐
tional; one could allow the copula model in step (iii) to include 
all inter‐specific associations.

iii.	 Build a copula model and estimate its parameters. We may reduce 
the problem to a subset of species, m ≤ p, showing a significant 
association with any other species. Given this subset of m 
species identified in step (ii), and each of their marginal dis‐
tributions from step (i), estimate the parameters of the Gaussian 
copula's correlation matrix (see Appendix 1 for details; R code 
is provided in Supporting Information Data S3). We condition 
the estimation of copula correlation parameters on the fixed 

marginal distributions, which is both practical (ensuring marginal 
distributions fit each individual variable well) and efficient (Joe, 
2005). Here, we estimated a separate copula correlation matrix 
for each group. Note that we may have chosen not to imple‐
ment step (ii) above, or perhaps, even though step (ii) may 
reduce dimensionality dramatically (m ≪ p), we may still have 
N < m, or m may begin to approach N such that some form 
of regularization is still desirable. In such cases, as we are 
using Gaussian copulas, a variety of methods for regularizing 
the inverse covariance matrix may be considered (Friedman, 
Hastie, & Tibshirani, 2008; Schäfer & Strimmer, 2005; Ullah 
& Jones, 2015; Yuan & Lin, 2007); for simplicity, we shall not 
pursue the topic of regularization further here. Furthermore, 
we hasten to add that neither rare species nor unassociated 
species are omitted from the copula models that follow, but 
they are presumed to be independent of other species. For 
the fish dataset, species’ associations varied through time, and 
structured groups of associated species were easily seen in 
copula correlation matrices (Figure 5). There was an increase 
in the strength of associations after the establishment of the 

F I G U R E  6    Schematic diagram of an 
overall pathway for analyzing ecological 
community data consisting of the 
following steps: (a) characterize marginal 
distributions for each species; (b) identify 
associations to model; (c) fit the copula; 
(d) simulate data under the full copula‐
based model for predictions under null 
or alternative hypotheses; (e) visualize 
dissimilarities among sampling units or 
centroids under the model using robust 
ordination techniques; and (f) calculate 
power for test statistics of interest
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marine reserve (March 1999), which later subsided (September 
1999). This is unlikely to have been a seasonal effect, as only 
three of the 10 species that showed significant associations 
in September 1998 did so in the following September 1999 
(Figure 5).

4  | SIMUL ATE DATA AND VISUALIZE 
RESULTS

An overall pathway to model, simulate, and visualize ecological 
community data using copulas is shown schematically in Figure 6. 
Once the parameters for all of the marginal distributions and the 
correlation matrix of the copula have been estimated for a given 
group (Figure 6a–c), then one can readily draw a random sample of a 
given modeled community, ysim (a vector of length p), for that group 
(Figure 6d) as follows:

1.	 Suppose there are i = 1, …, g groups. Let the subset number 
of species in group i showing a significant association with 
any other species in that group be denoted by mi and their 
estimated (mi × mi) correlation matrix in the Gaussian copula 
be denoted by �̂[mi]. Expand this to obtain a (p × p) correlation 
matrix �̂i for group i by placing zeros in the remaining off‐di‐
agonal elements (corresponding to species that will be modeled 
as independent of one another), and 1s along the remaining 
diagonal elements.

2.	 Draw a random sample (a vector of length p) from the p‐dimen‐
sional Gaussian copula distribution whose correlation matrix is �̂i. 
Map the values obtained for each dimension in the copula space 
through the cdf of the individual marginal distribution for each 
species to obtain a simulated count value for each of the p species 
in the community.

Ordination plots of simulated data with original data can be used 
as a simple diagnostic to assess how sensible the model may be. 
What is usually of greater interest, however, is to consider changes 
in community structure among groups in the high‐dimensional space 
articulated by the model. For this, we desire an ordination of the 
group centroids, along with some measure of the expected variation 
in those centroids (based on the model). This can be examined on the 
basis of any dissimilarity measure of interest.

Suppose there are ni sampling units in group i and N=
∑g

i=1
ni

. One generates a new (N × p) matrix of simulated data Ysim under 
the full copula model by drawing the ni sampling units, consisting of 
p‐length vectors ysim, for each group in accordance with that group's 
estimated copula correlation matrix �̂i, marginal distributions, and 
associated parameters. This is then repeated Nsim times (where Nsim 
is typically somewhat large, say Nsim = 100). One can then construct 
a super‐matrix Ysuper of dimension (N(Nsim + 1) × p) which (row‐wise) 
stacks the original matrix (Y) together with all of the Ysim matrices 
obtained via simulation under the model. From this, a chosen dis‐
similarity measure is calculated to yield Dsuper. We wish to map the 

Nsim × g centroids for all of the groups from every simulated data‐
set along with the g original centroids onto an ordination diagram. 
We can do this by calculating the distances among the (Nsim + 1) × g 
centroids from the Dsuper matrix directly (Anderson, 2017) to obtain 
Dcen. Metric multi‐dimensional scaling (mMDS) can be used to visu‐
alize the distributions of centroids for each group under the model, 
along with the original group centroids. Kernel density contours 
(Duong, 2007) clarify the shapes of these distributions in the ordina‐
tion space (Figure 6e).

F I G U R E  7    Ordinations based on Bray–Curtis dissimilarities 
of square‐root‐transformed abundances of fishes (47 species) 
from the Poor Knights Islands at three different times, obtained 
using: (a) metric multi‐dimensional scaling (mMDS) of distances 
among centroids for the original data (black symbols), also showing 
centroids of 100 datasets (colored symbols) generated under the 
full copula model (parameters estimated separately for each group, 
shown as three different colors) along with kernel density contours; 
and (b) non‐metric MDS plot of the original data, with replicate sites 
in each of three groups shown with three different colors

(a)

(b)
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Using this approach for the Poor Knights’ dataset, the ob‐
served centroid for each group falls well within the distribution 
of centroids for that group generated under the copula‐based 
model (Figure 7a). The dispersion/shape of centroid distributions 
in the reduced‐space ordination also clearly varied among groups. 
This graphic is far more informative than the (typically drawn) 
non‐metric MDS plot of the original data (Figure 7b). The latter 
is dominated by large residual variation within each group and 
concomitant high stress, which masks group differences. Consider 
how, in the univariate analysis of data from ANOVA‐type study 
designs, one typically plots the means for each group, along with 
their associated standard errors (which sensibly assumes normality 
for the distribution of means under the central limit theorem), to 
visualize both the relative positions and the variation in the group 
means. Similarly, the ordination in Figure 7a depicts the centroid 
for each group (in the space of the chosen resemblance measure) 
along with a visualization of the multivariate variation in the po‐
sitions of those centroids (shown as density contours) under the 
assumptions of the full copula model. By “full copula model,” we 
mean the set of estimated correlations among all pairs of species 
in the MVN copula space along with the full set of individual (in 
this case discrete) marginal distributions for each species and their 
associated estimated parameters.

It must be borne in mind, however, that Figure 7a was drawn 
under the assumption of a highly specific alternative hypothesis 
(HA). The three groups have been asserted to be different, and 
all of the model parameters (copula plus marginals) have been es‐
timated separately for each group. It is therefore not surprising 
that these three regions do not overlap with one another in the 
ordination space. We might also choose to visualize distributions 
of centroids under a true null hypothesis (H0). For example, we 
can calculate centroids obtained under random permutation of the 
sampling units among the three groups. These permutation‐based 
centroids assert the null hypothesis that sampling units are fully 
exchangeable among the groups to be true. We can examine the 
distributions of centroids under H0 and also under HA in a single 
ordination plot (Figure 8a). By including the originally observed 
centroids for each of the three groups here as well, we are able to 
gain an understanding of the position of our own data with respect 
to H0 and the specific HA that arises from these copula models 
(Figure 8a).

One might well ask: what would such a plot look like if the null 
hypothesis were true? Specifically, suppose we do the following: 
(a) take the full set of N = 56 sampling units and estimate a single 
set of marginal and copula parameters from these data (acknowl‐
edging no a priori groups, so H0 is true); (b) generate three groups 
of “mock” data (with sample sizes of n1 = 15, n2 = 21, and n3 = 20) 
directly from that model, then treat this dataset as if it were our 
“observed” data, but here we know that H0 is actually true; (c) esti‐
mate marginal and copula parameters separately for each of these 
“groups” in our mock dataset; and then (d) simulate data and draw 
distributions of centroids under HA and H0 in the same way as was 
done for Figure 8a.

For the mock dataset (Figure 8b), the distributions of centroids 
for the three groups generated under HA (three different colors) 
do appear separate from one another. This is because they arose 

F I G U R E  8    Ordinations based on Bray–Curtis dissimilarities of 
square‐root‐transformed abundances of fishes (47 species) from 
the Poor Knights Islands at three different times, obtained using: 
(a) metric multi‐dimensional scaling (mMDS) of distances among 
centroids for the original data (black symbols) along with centroids 
of 100 datasets generated under three separate copula models for 
each of the three groups (colored symbols, HA is true) and centroids 
of 100 datasets obtained by random permutation of the sampling 
units among the three groups (gray symbols, H0 is true); (b) mMDS 
generated in the same manner as in (a), but where data consisted of 
“mock” observations where H0 was known to be true (see text for 
details)

Observed results

(b) H0 is known to be true

(a)
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from three different sets of estimated parameters, even though 
the groups themselves, as we know, were, in this case, com‐
pletely arbitrary. However, quite tellingly, the mock “observed” 
centroids (black symbols) also lie within the distribution of cen‐
troids under H0 (gray symbols). The overlapping of contours for 
centroid distributions drawn under HA with those drawn under 
H0 also suggests a lack of real difference among the groups. Note 
too that there is quite high stress here (>0.24)—yet another signal 
that there is no distinctive group structure to display (Figure 8b). 
This can be contrasted with the clear group structure apparent in 
Figure 8a that was constructed based on the real data; we see no 
overlap in the centroid distributions under HA with those under 
H0, and the positions of the genuine observed centroids clearly 
favor HA.

5  | MODEL‐BA SED INFERENCE AND 
POWER

5.1 | Model‐based inference

We may generate data under a specified null hypothesis (H0) to 
achieve model‐based inference. One might consider a null hypoth‐
esis that asserts there are no groups and estimate a single set of 
parameters (marginals plus copula) for the full set of data. However, 
armed with a full copula model, having estimated separate parame‐
ters for each group, we may instead assume a simple null hypothesis 
that every sampling unit has an equal probability of arising from any 
group. Thus, we can generate Ysim under H0 such that each vector 
ysim is drawn under a multinomial with probabilities of 1/g for each 

F I G U R E  9    Schematic diagram 
showing methods of simulation using 
multinomial mixtures from copula models 
(with given parameters for the marginal, 
M, and copula, C, distributions) under (a) 
a null hypothesis of every sampling unit 
having an equal probability of arising 
from any of the groups; or (b) a specific 
alternative hypothesis for the case of 
three a priori groups of sampling units and 
where the alternative hypothesis asserts 
that all three groups are different from 
one another
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group (Figure 9a). For the Poor Knights’ data, these probabilities are 
𝒫i= ⅓ for the i = 1, …, 3 groups. Another alternative would be to base 
null hypothesis probabilities on sample sizes: 𝒫i = ni/N, appropriate, 
for example, if sample sizes directly reflected encounter rates of the 
existing groups in nature.

With Ysim generated in this way, one may calculate a test statistic, 
such as the PERMANOVA pseudo‐F, based on a chosen dissimilarity 
measure. Repeating this procedure many times generates a model‐
based distribution of pseudo‐F under H0. A p‐value for model‐based 
inference is calculated directly as the proportion of pseudo‐F values 
under H0 that equal or exceed the observed value. In the present 
example, the observed value of pseudo‐F is 2.716 (vertical line in 
Figure 10a). A model‐based p‐value (from 4,999 random draws) is 
p = 0.0002. The assumptions here are that the specified copula and 

marginal distributions provide a realistic joint model for these data. 
The usual permutation‐based test of pseudo‐F is distribution‐free, 
so is preferable for robust inference (in this case, with 4,999 permu‐
tations, it yielded an identical p‐value to the model‐based p‐value); 
however, a close match between the model‐based distribution and 
the permutation distribution (e.g., Figure 10a) provides support for 
the validity of the model's assumptions.

5.2 | Power analysis

Copula‐based models can be used to calculate power, thus to com‐
pare multivariate statistical tests under different scenarios. Power 
calculations require generation of data under a specified alterna‐
tive hypothesis (HA). Sliding marginal parameter values (such as μ, 

F I G U R E  1 0    (a) Distribution of 5,000 
values of the PERMANOVA pseudo‐F 
statistic to compare three times of 
sampling for the Poor Knights dataset 
based on Bray–Curtis resemblances 
calculated from square‐root‐transformed 
counts of p = 47 fish species obtained 
under permutation (F perm) or under the 
copula model (F sim); and (b) empirical 
power of PERMANOVA or CAP for 
1,000 simulated datasets at each of 20 
equal steps (as a multinomial mixture of 
probabilities between H0 and HA) for all 
47 fish species (filled symbols) or for a 
subset of 16 fish species only that had 
estimated copula correlations of ρ ≥ 0.7 
(open symbols). For each simulated 
dataset, p‐values were calculated using 
999 permutations and seven principal 
coordinate axes were used for the CAP 
approach
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θ, and/or π) between H0 and HA separately for each species can 
produce unrealistic combinations of parameters. A smooth mono‐
tonic power curve is obtained, however, by modeling the contin‐
uum between H0 and HA as a sliding scale of mixture probabilities.

Let 𝓟 denote a g × g matrix of elements 𝒫ij, the probability of 
drawing a sample ysim for simulated group i (rows) from original group 
j (columns). For the Poor Knights’ dataset, we may consider matrices 
of probabilities under H0 (𝓟0) and under HA (𝓟A) as:

respectively (Figure 9b). Next, let fk be the fractional probabilistic 
distance from H0 to HA in a chosen number of steps (k = 1, …, nsteps), 
beginning with f1 =  0 when H0 is true and fnsteps =1 when HA is true 
(Figure 9b). Note that rejecting H0 is logically distinguishable from 
the assertion that HA is true. Note also that a wide variety of HA may 
be specified. At a given step k, the probabilities 𝓟k used to simulate 
data are as follows:

To provide an example, we generated power curves with 
nsteps = 20 and 1,000 simulated datasets per step for the 
Poor Knights’ dataset and compared the empirical power of 
PERMANOVA with canonical analysis of principal coordinates 
(CAP; Anderson & Robinson, 2003; Anderson & Willis, 2003). Tests 
were done using 999 permutations for each simulated dataset, and 
CAP analyses were done using seven principal coordinates (which 
maximized allocation success). When all variables were included, 
PERMANOVA was more powerful than CAP (Figure 10b); how‐
ever, when only a subset of fish species having strong associations 
were included (namely, those having at least one association with 
an estimated ρ ≥ 0.70 in the copula model; there were 16 of these), 
then CAP was more powerful than PERMANOVA (Figure 10b). As 
an aside, we noted that generating power curves using a slightly 
different null hypothesis (i.e., where data under H0 were generated 
from a model having a single set of parameters estimated from the 
full set of N sampling units rather than being a multinomial mixture 
of equiprobable draws from three groups having three separate 
sets of parameters) made no substantive difference to any of the 
above results.

6  | DISCUSSION

Copulas provide a rich and flexible approach for modeling associa‐
tions among disparate types of variables. Recent advances in sta‐
tistical methods to estimate parameters for copulas having discrete 
marginal distributions using MCEM (see Appendix 1 below) open 
new doors for modeling count data. By allowing marginal and copula 
parameters to vary over time, we uncovered a striking increase in 

the strengths of associations among fish species after the cessation 
of fishing at a no‐take marine reserve (Figure 5). Naturally, the eco‐
logical mechanisms responsible for generating these associations 
cannot be inferred from observational data alone, but would require 
additional investigations.

Generalized linear models, GLLVMs, and GJAMs all have tremen‐
dous potential for capably modeling count data, particularly if they 
are extended to allow for changes in over‐dispersion or zero‐infla‐
tion within a species, and changes in correlations among species in 
different habitats. They do, however, have a few natural limitations. 
GJAMs avoid using classical statistical distributions, but this comes 
at a cost—the utility of explicit count distributions for characterizing 
individual species as univariate variables is lost, and how to choose 
partition widths to accommodate different mean–variance relation‐
ships remains unclear. In GLLVMs, the relationship between each 
species and each latent variable is effectively linear on a log‐scale 
(when the default log link for count data is used), which may or may 
not be appropriate/desirable. Also, the latent variable mechanism 
for inducing correlations will affect estimation of individual species’ 
over‐dispersions (and vice versa), making these two conceptually 
distinct features difficult to disentangle.

Copula models can be readily extended to include other types of 
variables commonly encountered in ecology, such as biomass, per‐
centage cover, ordinal data, or mixtures of these with counts. They 
share some of the desirable features of GLLVMs and GJAMs while 
presenting some distinct advantages. All three approaches can use 
an underlying MVN distribution to model associations, but copulas 
can also use other association models, accommodate a wider variety 
of parametric marginal distributions than GLMs, and do not entan‐
gle the association model with the marginal model. Although out‐
side the scope of the present study, a natural next step would be to 
explore the predictive capabilities of GLLVMs, GJAMs and copula 
models across a broad range of ecological datasets.

An ecologically meaningful index of association between spe‐
cies (excluding joint absences) is well‐preserved by a Gaussian cop‐
ula model. This has obvious immediate advantages, as methods to 
achieve parsimony in MVN models abound (Huang & Chen, 2015; 
Popovic et al., 2018). However, other types of copulas (Genest & 
Favre, 2007; Schölzel & Friederichs, 2008), including pair‐copula con‐
structions (such as vine copulas, see Aas, Czado, Frigessi, & Bakken, 
2009; Bedford & Cooke, 2001, 2002; Brechmann & Schepsmeier, 
2013), and also non‐parametric methods (Iman & Conover, 1982), all 
deserve further exploration for their potential use in ecology.

The identification of appropriate marginal distributions for mod‐
eling abundances also deserves more study. For fish assemblages 
at the Poor Knights, changes in over‐dispersion and zero‐inflation 
through time were clearly evident (Supporting Information Table 
S2), highlighting the need for flexibility beyond typical exponential 
families used in GLMs. The relationship σ2 = αμβ (“Taylor's power 
law”) is virtually ubiquitous for counts of any organism, with α and 
β being species‐specific (Kendal, 2004; Taylor, Woiwood, & Perry, 
1978). Variance–mean relationships that follow a power law can be 
modeled using Tweedie distributions (Tweedie, 1984), a subset of 
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exponential dispersion models (Jørgensen, 1997) or using conta‐
gious distributions (Douglas, 1980; Neyman, 1939) under a general‐
ized Poisson model (Clarke, Chapman et al., 2006; Coly, Yao, Abrial, 
& Charras‐Carrido, 2016). Special cases of the generalized Poisson 
include the NB (Quenouille, 1949), Neyman Type A (Neyman, 1939), 
Pólya‐Aeppli (Kendall & Stuart, 1963), the discretized Poisson‐
gamma (Foster & Bravington, 2013; Kendal, 2004), and the Poisson 
lognormal (Aitchison & Ho, 1989; Preston, 1948). Under‐dispersion, 
where σ2 < μ (Rogers, 1974), which can occur for organisms exhib‐
iting territorial behavior, or allelopathy (Rice, 1984), is also under‐
studied. Copulas allow any marginal distributions to be used for 
individual species, including with zero‐inflation, facilitating broader 
and deeper investigations of this topic.

A fundamental question remains: What are the limits of our ap‐
proach? For multivariate data, the available degrees of freedom (df), 
provided sampling units are independent, are likely to be bounded 
such that N ≤ df < (N × p), and to depend on the level of species’ inter‐
associations. One alternative to our proposed preliminary screening 
for significant pair‐wise associations would be to identify subsets 
consisting of coherent groups of associated species (Somerfield & 
Clarke, 2013). These practical permutation‐based approaches may 
be complimented (or replaced) by direct regularization/shrinkage of 
the copula covariance matrix (Schäfer & Strimmer, 2005). One might 
also consider joint estimation of copula and marginal parameters. 
In any case, how to assess parsimony/model complexity in the full 
framework is an open question.

We have focussed on an ANOVA‐type study design. We chose 
to fit separate parameters (copula plus marginals) to data from each 
group. However, sampling units might, instead, occur along one or 
more measured environmental gradients. Continuous predictors can 
be included in marginal distributions for each variable (as in GLMs; 
Warton et al., 2015, Niku et al., 2017; Popovic et al., 2018). However, 
responses of species to gradients are generally unimodal and may 
be modeled this way (Jamil & ter Braak, 2013; Yee, 2004, 2015), 
either along each margin or potentially inside the Gaussian copula 
space. Associations would remain constant using such an approach; 
however, copula correlations themselves might also be modeled as 
a function of environmental variables (Nikoloulopoulos & Karlis, 
2010)—an idea worth pursuing.

Our approach catered well to varying zero‐inflation, but did not 
optimize models of rare species. Rare taxa are difficult to model 
(Elith et al., 2006; Fithian, Elith, Hastie, & Keith, 2015) and may not 
occur randomly; some sites harbor greater coincidences of single‐
tons (Ellingsen, Hewitt, & Thrush, 2007). SDMs can fail to capture 
the nature of inter‐specific associations reliably, particularly for or‐
ganisms having low probabilities of occurrence (Zurell et al., 2018). 
Observational data are often too sparse to model rare taxa well 
individually, but richness (number of species per sampling unit) can 
be modeled as a Poisson (or Poisson‐binomial) random variable 
(Calabrese, Certain, Kraan, & Dormann, 2014; Gavish et al., 2017). 
Thus, future model developments could include richness as an ad‐
ditional response variable in a multivariate copula. Relationships 
between richness and abundances of prevalent species (or 

environmental variables) could be estimated, allowing potential clus‐
tering of rare taxa.

The proposed analysis pathway enables researchers to achieve 
a greater understanding of the roles and relationships among 
individual species, as well as providing a novel approach to or‐
dination and power analysis for investigating community‐level 
hypotheses. A unique feature of this framework is that we do not 
consider model‐based methods (such as GLMs, GLLVMs, GJAMs, 
or copulas) as running counter to dissimilarity‐based methods 
(such as ANOSIM, MDS, PERMANOVA or CAP). Rather, they are 
complementary: It is not a case of “either, or,” but a case of “yes, 
and….” Probabilistic statistical models are essential for charac‐
terizing assemblages on a per‐species basis, including estimation 
of useful interpretable parameters (e.g., Supporting Information 
Table S2, Figure 5), and also for simulation and prediction. Added 
value clearly attends the casting of simulations from joint‐species 
models into dissimilarity spaces. Dissimilarity‐based methods in‐
tegrate information across all species in a way that individual spe‐
cies‐based models do not. Fundamental ecological concepts such 
as proportions of species shared, turnover, beta diversity, varia‐
tion in identities of species, or gestalt shifts in composition are 
all readily examined through the use of meaningful resemblance 
measures (Anderson et al., 2011; Anderson, Ellingsen, & McArdle, 
2006; Clarke, Somerfield et al., 2006; Kraft et al., 2011; Legendre 
& De Cáceres, 2013). Ordinations that show not only relationships 
among centroids but also probabilistic variability in centroid posi‐
tions (e.g., Figures 7a and 8a) are highly desirable. Moreover, the 
behavior of dissimilarity‐based tests, historically prized for their 
broad utility and lack of assumptions, can now be further explored 
under carefully formulated hypotheses articulated by formal joint 
statistical models (Figures 9b and 10b). By using the latest model‐
based approaches in tandem with evolving community‐level 
approaches, as proposed here, we can draw the best from both 
worlds.

We consider that copula‐based joint models of species count 
data, particularly when combined with dissimilarity‐based tools, 
provide a rich new suite of flexible methods that will gener‐
ate many new scientific insights in the analysis of ecological 
communities.
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APPENDIX 1
This appendix outlines the core idea of using a Monte Carlo 
Expectation Maximization (MCEM, Wei & Tanner, 1990) algorithm 
to estimate the covariance matrix for a Gaussian copula with dis‐
crete marginal distributions that is constrained to have unit vari‐
ances along the diagonal (hence takes the form of a correlation 
matrix). By constraining the Gaussian copula covariance matrix 
in this way, our algorithm ensures that the variances of individual 
variables remain precisely as specified by their marginal probabil‐
ity mass functions. For other examples of Gaussian copulas for 
discrete data, see Dauwels, Yu, Xu, and Wang (2013) and, more 
recently, Popovic et al. (2018), who describe a general covariance 
modeling framework, including latent variable graphical mod‐
els (Meng, Eriksson, & Hero, 2014) and sparse factor analysis 
(Carvalho et al., 2008).

BA SIC MCEM

The general setup for MCEM is as follows (see Dempster, Laird, & 
Rubin, 1977; Wei & Tanner, 1990). Let y be an observed data vector. 
Let x be latent states or “missing data.” Let θ be parameters. Define 
f(y|x; θ) and f(x; θ) to be the probability density (or mass) functions of 
y given x and x, respectively, as indicated by the arguments. The like‐
lihood to maximize is as follows:

Define the maximum likelihood estimate we seek as

The MCEM algorithm works as follows:

1.	 Start with some initial value θk = 0 of θ.
2.	 Draw a sample of many values X = {xi}, i = 1,…, m, from f(x|y; θk).
3.	 Find θk + 1 as:

The Monte Carlo average is the approximation of:

1.	 Repeat the previous two steps, which are known as the 
“E”xpectation step and the “M”aximization step.

Without the Monte Carlo approximation, it can be proven 
that, provided θk is not a stationary point, iterations will always 
yield L(θk + 1) > L(θk), so that θk converges to 𝜃̂, unless there are 
local maxima or other stationary points. With the Monte Carlo 
approximation, iterations will not converge to a single value, but 
will instead oscillate about 𝜃̂, with a precision that depends on 
the number of Monte Carlo samples, m. Thus, the value of m 
should be determined by the required precision of the results. 
Operationally, the beauty of MCEM is that we maximize a simple 
average of log probabilities at each step. This is much easier to 
work with than the (log of the) expected value of the probabili‐
ties from the latent states.

MCEM FOR DISCRE TE G AUSSIAN COPUL A S
In what follows, we shall think of each discrete observation as hav‐
ing an unobserved fractional component. Let yi = (yi1, …, yip) be 
counts of p species from sampling unit (or “site”) i. Subscript i will be 
dropped in discussing the likelihood contribution for one site's data 
only. Let fj(yj) and Fj(yj) be the marginal probability mass function and 
cumulative distribution function, respectively, for species j, assum‐
ing yj takes non‐negative integer values. Dependence on parame‐
ters, θ, is implicit. Let f(y) = ∏ fj(yj) and F(y) = [F1(y1), …, Fp (yp)]. Let g(y) 
be the joint density function defined using a copula. For a Gaussian 
copula, if the observations were continuous and fj's were PDFs, this 
would be:

L (�)= ∫ f (y|x;�) f (x;�) d�
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where ϕΣ is the multivariate normal density with zero means and unit 
variances and correlation matrix Σ, I is the identity matrix, and z = (z1, 
…, zp) is defined by zj=Φ−1

(
Fj
(
yj
))

, j = 1,…, p where Φ is the standard 
normal CDF.

Let f̃j
(
yj
)
 be a probability density function defined by spreading 

the probability mass fj(yj) uniformly in the interval [yj, yj + 1); that 
means:

Now the discrete copula likelihood can be written as the following 
integral over a hypercube:

where i is for sites, and the integral is over u ∈ [0,1]p, where p is the 
number of dimensions.

To work in the space of the multivariate normal variables defined 

by z, we change variables to z=Φ−1
(
F̃ (y+u)

)
, so y+u= F̃−1 (Φ (z)) 

and

 This yields

where the integral is over z∈Φ−1
(
F̃ (y+u)

)
 for u ∈ [0,1]p. That is 

the region of z that corresponds to y + u falling in the interval [yj, 
yj + 1).

Another way to write this is by integrating over the entire range of 
z and using an indicator function to exclude z outside the range given 
above. This is written as

where Icondition is 1 if “condition” is true, and 0 otherwise. Now we 
are ready to view this in the MCEM framework:

1.	 The “latent variable” is z, whose probability density is ϕΣ (z);
2.	 The parameters are the elements of Σ;
3.	 The “observed data” are the values of z falling in the valid range 

defined above. The probability of the observed data given z is 
IF̃−1(Φ(z))∈[y , y+1);

4.	 We consider the marginal distribution parameters for f as given.

With these interpretations, f(z|y; Σ) (in the role of f(x|y; θ) in 
the section sub‐titled "Basic MCEM" above) can be sampled easily. 
For example, if we need to sample from z given z ∈ [a, b), we can 
make use of ϕΣ in the relevant range. Then the MCEM algorithm 
would be:

1.	 Start with some initial value Σk = 0 of Σ.
2.	 Draw a sample of many values Z = {zi}, i = 1, …, m, from f(z|y; Σk).
3.	 Find Σk + 1 as:

Note that the Indicator function will always be 1 (because of how 
the zi’s were sampled). That leaves only the task of maximizing the 
log‐likelihood of a normal correlation matrix based on the “sample” 
of z values, given the previous value of the correlation matrix. For a 
general multivariate normal covariance matrix (having non‐unit vari‐
ances along the diagonal and covariances in off‐diagonal elements), 
we can immediately write down the maximum likelihood estimator 
(MLE; Dwyer, 1967). However, to obtain the MLE for the correlation 
matrix, Σk + 1, a closed‐form expression is not immediately available. 
We instead use a numerical optimization technique with a spherical 
parameterization of the correlation matrix (Pinheiro & Bates, 1996, 
see section 2.3 therein), which allows us to constrain variances to 
1, correlations to the range (−1, 1), and ensures a positive‐definite 
result.

Repeat the previous two steps until a stopping criterion has been 
satisfied. A simple stopping criterion can be implemented by taking 
a set of the n most recent estimates of the parameters, Σk − n + 1, …, 
Σk, calculating the log‐likelihood associated with each of those esti‐
mates, ℓ1, …, ℓn, and fitting a simple linear model of ℓ1, …, ℓn versus 
the integer values 1, …, n (corresponding to the n most recent itera‐
tion steps in the MC algorithm); the MCEM algorithm is terminated 
when there is no evidence against the null hypothesis that the slope 
parameter associated with this linear model is significantly different 
from zero (H0: β = 0). We consider a useful approach (avoiding type II 
error) will be to require p > 0.25 in order to assert that H0 is true. 
More efficient stopping criteria may be found by estimating the vari‐
ance of parameters (Booth & Hobert, 1999) or their log‐likelihoods 
(Caffo, Jank, & Jones, 2005), using just the Monte Carlo samples 
from a single MCEM iteration.
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