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The organ-on-a-chip (OOC) technology has been utilized in a lot of biomedical fields
such as fundamental physiological and pharmacological researches. Various materials
have been introduced in OOC and can be broadly classified into inorganic, organic,
and hybrid materials. Although PDMS continues to be the preferred material for
laboratory research, materials for OOC are constantly evolving and progressing, and
have promoted the development of OOC. This mini review provides a summary of
the various type of materials for OOC systems, focusing on the progress of materials
and related fabrication technologies within the last 5 years. The advantages and
drawbacks of these materials in particular applications are discussed. In addition, future
perspectives and challenges are also discussed.
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INTRODUCTION

An organ-on-a-chip (OOC) is a microfluidics-based cell culture device that contains continuously
perfused chambers inhabited by living cells to simulate tissue- and organ-level physiology (Bhatia
and Ingber, 2014; Ahadian et al., 2018). The development of OOC stems from the recognition
that the conventional two-dimensional static cell culture methods lack the ability to mimic the
environment that cells experience in vivo (Ryan et al., 2016; Duval et al., 2017). Microfluidic
technology provides a way to simulate spatiotemporal chemical gradients, dynamic mechanical
forces, and critical tissue interfaces by manipulation of fluids at micro levels. OOC systems that
can recreate key aspects of the complex physiological microenvironment of human lung (Huh
et al., 2010), heart (Maoz et al., 2017), stomach (Lee K. K. et al., 2018), intestine (Kim et al., 2016),
liver (Weng et al., 2017), kidney (Sateesh et al., 2018), blood vessels (Wang et al., 2015), etc., have
been developed. Moreover, multi-organs-on-a-chip or body-on-a-chip systems have been proposed
(Sung et al., 2019; Zhao et al., 2019a). OOC platforms have shown application potential in a lot of
biomedical fields such as fundamental physiological and pharmacological researches (Zhang and
Radisic, 2017; Zhang et al., 2018a).
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Materials play the major roles in the development of
microfluidics and OOC technologies. In general, material
considerations include non-toxic to cells, gas permeable,
optically transparent for microscopic imaging, costs of the
materials and the fabrication process, and the ability to model
specific properties of organs (Lee et al., 2014). Although
polydimethylsiloxane (PDMS) is still the most common material
for laboratory research, emerging materials such as hydrogel,
paper and hybrid materials are being developed and used. In this
mini review, the classic and advanced materials and fabrication
technologies for OOC devices are introduced and discussed,
focusing on the progress within the last 5 years. The major
properties, limitations, and typical applications in OOC of some
representative materials are summarized in Table 1. Future
perspectives and challenges in the development of materials for
OOCs are briefly discussed.

MATERIALS FOR OOCs

Inorganic Materials
Silicon and glass are the main inorganic materials for OOCs. The
first-generation microscale cell culture analog (µCCA) devices
mimicking the organ-level function of human physiology were
fabricated on silicon (Sin et al., 2004; Mahler et al., 2009).
Compared to opaque silicon, glass is optically transparent and
optimal for real-time imaging, while reducing the absorbance
of hydrophobic molecules and the adsorption of biomolecules
(Lee S. et al., 2017; Kulthong et al., 2018). Nevertheless,
glass chips with enclosed channels are not suitable for long-
term cell culture because glass is not gas permeable. Another
problem is that glass is typically processed with standard
photolithography and etching, which are time-consuming and
expensive. Recently, femtosecond laser ablation technique has
been applied to fabricate 3D structures in glass-based OOCs (Xu
et al., 2015; Schulze et al., 2017). Liquid glass, a photocurable
amorphous silica nanocomposite enabling soft replication, has
been developed for low-cost prototyping of glass microfluidics
(Kotz et al., 2016).

Elastomer
Elastomers are polymers with elasticity, and generally having
lower Young’s modulus and higher yield strain than other
materials. PDMS is one of the most common materials used for
the fabrication of microchips for the life science applications. It is
not only gas permeable, biocompatible and optically transparent,
but also particularly useful in prototyping new devices by
soft lithography and micromolding technique (McDonald and
Whitesides, 2002). Its elasticity allows to demold the PDMS
replica with complex 3D structures (Suzuki et al., 2017).
Moreover, the elasticity can be used to fabricate biomimetic cell
culture scaffolds, such as the human lung-on-a-chip and gut-on-
a-chip with pneumatically controlled deformation (Figure 1A)
(Huh et al., 2010; Kim et al., 2012) and the microvascular
models (Choi et al., 2014; Zhang W. et al., 2016). Apart from
the conventional replication method, other strategies including
hybrid stamp approach (Kung et al., 2015), razor-printing

(Cosson et al., 2015), sacrificial template methods (Cheng et al.,
2016) can also be used for PDMS. An optimized blend of PDMS-
methacrylate macromers has been developed and demonstrated
for 3D stereolithography (SL) with mechanical properties similar
to conventional thermally cured PDMS. The 3D-printable PDMS
resin would facilitate the fabrication of PDMS-based OOC
platforms (Bhattacharjee et al., 2018).

Nevertheless, some characteristics of PDMS such as
incompatibility with organic solvents, hydrophobicity and
strong adsorption of biomolecules also limits its application
in certain fields. Surface modifications of PDMS or the use
of alternative materials may be feasible solutions. Some
polymers with similar fabrication procedures suitable for rapid
prototyping, higher rigidity, and better resistance to solvents,
such as thermoset polyester (TPE), polyurethane methacrylate
(PUMA) and Norland adhesive 81 (NOA81), have been assessed
as complementary to PDMS (Sollier et al., 2011). However,
they have not developed into the common choice in OOC
devices. Styrene-(ethylene/butylene)-styrene (SEBS) copolymer
(Domansky et al., 2017) and tetrafluoroethylene-propylene
(FEPM) elastomer (Sano et al., 2019) that do not absorb
hydrophobic molecules have been used for fabrication of OOCs
for drug discovery and development.

To establish vascular networks, a biodegradable elastomer,
poly(octamethylene maleate (anhydride) citrate) (POMaC)
is used to construct a scaffold (AngioChip) with a build-
in microchannel network. This material provides desired
mechanical properties, biodegradation rate, and biocompatibility
for specific applications (for example, human myocardium or
liver tissue engineering) (Zhang B. et al., 2016; Zhang et al.,
2018b). In a platform termed Biowire II, two parallel POMaC
wires are suspended in the microwell between which cardiac
tissue would self-assemble, matching the mechanical properties
of the native cardiac tissue (Zhao et al., 2019b). A biodegradable
elastomer with significantly low Young’s modulus has
been synthesized and demonstrated utility in cardiac tissue
engineering constructs (Davenport Huyer et al., 2016).

Plastic
Typical plastic materials for microfluidics include poly(methyl
methacrylate) (PMMA), polycarbonate (PC), polystyrene (PS),
Cyclic Olefin Polymer (COP) and Cyclic Olefin Copolymer
(COC). They are generally optically transparent, more rigid
than elastomers, less gas-permeable than PDMS, resistant to
the permeation of small molecule, but incompatible with
most organic solvents (Ren et al., 2013; Gencturk et al.,
2017). Among these materials, PMMA has been widely utilized
as substrate materials for OOC devices due to its rigid
mechanical property, excellent optical transparency and low
auto-fluorescence background (Chen X. et al., 2016; Miller and
Shuler, 2016). Porous PC membranes are usually incorporated
between microchannels in OOC systems to model tissue-
tissue interfaces (Shah et al., 2016; Pocock et al., 2017). PS is
highly biocompatible and suitable for cell growth and adhesion
(Lee et al., 2019). COP and COC present excellent optical
transmittance in both the visible and UV range, allowing for
high quality fluorescence imaging. They are also FDA approved,
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TABLE 1 | Typical materials for OOC applications.

Materials Major properties Limitations Typical applications in OOC

Glass + Surface stability
+ Optically transparent
+ Electrically insulating

– Not gas permeable
– High cost of fabrication

• OOC device substrate
• Glass-based chip for transform studies

(Kulthong et al., 2018)
• Enabling real-time imaging (Li X. et al.,

2018)

PDMS + High elasticity
+ High gas permeability
+ Biocompatibility
+ Rapid prototyping

– Hydrophobicity
– Strong adsorption of biomolecules
– Not compatible with organic

solvents

• Most common OOC substrate
• Biomimetic cell culture scaffold (Kim et al.,

2012)
• Microvascular model (Zhang W. et al., 2016)

Plastic + Optically transparent
+ Low absorption
+ Rigid
+ Suitable for mass production

– Less gas-permeable
– Unsuitable for prototyping

• OOC device substrate (Miller and Shuler,
2016)
• Porous membrane to model tissue-tissue

interfaces (Pocock et al., 2017)

Paper + Highly porous
+ Matrix of cellulose
+ Potable and low cost

– Limited detection methods
– Difficult to integrate

microcomponents

• OOC device substrate
• TRACER (Young et al., 2018)
• Model of respiratory system (Rahimi et al.,

2016)

Collagen + Biocompatible
+ Enzymatically degradable
+ Similar in structural and

mechanical properties to native
tissues
+ Good cell adhesion

– Weak mechanical properties • Microvascular networks (Zheng et al., 2012)
• Scaffold mimicking 3D villi structure (Shim

et al., 2017)
• Neurovascular model (Adriani et al., 2017)
• Skin model (Lee S. et al., 2017)
• Kidney model (Lee S. J. et al., 2018)
• Pumping heart chamber model (Li R. A.

et al., 2018)
• Liver spheroids, tumor spheroids (Yamada

et al., 2015; Jeong et al., 2016)

Gelatin + Biocompatible
+ Biodegradable
+ Similar in composition to collagen
+ Good cell adhesion
+ Tunable properties by the addition

of functional group (e.g., GelMA)

– Weak mechanical properties
– Rapid degradation

• Heart-on-a-chip (Zhang Y. S. et al., 2016)
• Skin model (Zhao et al., 2016)
• Microvascular networks (Yang et al., 2016)
• Spheroid-based liver model (Bhise et al.,

2016)

Alginate + Biocompatible
+ Biodegradable
+ Easy functionalization
+ Immediate gelation at mild

condition

– Weak mechanical properties
– Poor cell adhesion
– Uncontrollable degradation

• Scaffolds containing living cells (Ning et al.,
2016)
• Liver spheroids, tumor spheroids (Chan

et al., 2016; Kang et al., 2016)
• Hydrogel fibers (Zhu et al., 2017)

PEG and its derivatives
(e.g., PEGDA)

+ Biocompatible
+ Tunable and precise mechanical

and degradation properties
+ Relatively low protein adsorption

– Less cell adhesive
– Limited biodegradation

• Self-organizing cardiac microchambers (Ma
et al., 2015)
• Liver organoids generation (Ng et al., 2018)
• Intestinal organoids generation

(Cruz-Acuña et al., 2017)

showing a promising potential for future routine clinical use
(Mottet et al., 2014). And recently, polylactic acid (PLA) as
a sustainable, low absorption, low autofluorescence alternative
to other plastics for OOC applications has been demonstrated
(Ongaro et al., 2020).

Thermoplastics are suitable for thermo-processing, which is
excellent for commercial production due to high production-
rate and low cost, but not economical for prototypic use (Ren
et al., 2013). Some novel materials such as a photocurable
soft lithography compatible liquid PS prepolymer (Nargang
et al., 2014) and a fast curing PMMA prepolymer that can
be used as a negative photoresist and directly structured
using UV or visible light (Kotz et al., 2018) have been
developed for rapid prototyping. Fabrication methods for rapid
prototyping of whole-thermoplastic microfluidic chips with

microvalves and micropumps are being developed and could
be employed for the OOC applications (Pourmand et al., 2018;
Shaegh et al., 2018).

Paper
Paper microfluidics has the advantages of lightweight, easy-
of-use and low cost. The cellulose matrix of paper allows for
a porous structure for cell growth in a 3D format. Paper-
based microfluidics with dynamic control of physiological
microenvironment can be formed on multilayered paper and be
used as high-throughput test platforms (Mosadegh et al., 2015;
Sapp et al., 2015). And by directly incorporating a luminescent
sensing film, the spatiotemporal oxygen consumption rates or
pH gradients can be monitored in real-time through quantitative
image analysis (Boyce et al., 2016; Kenney et al., 2018). In a
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FIGURE 1 | Representative materials used for OOC applications. (A) A PDMS gut-on-a-chip device containing two microchannels separated by a flexible porous
membrane, and vacuum chambers on both sides. Adapted with permission from Kim et al. (2012), The Royal Society of Chemistry. (B) Configuration of a
paper-based Tissue Roll for the Analysis of Cellular Environment and Response (TRACER) platform. Adapted with permission from Young et al. (2018), Elsevier.
(C) Paper-based air-liquid-interface for in vitro human respiratory system model. Adapted with permission from Rahimi et al. (2016), The Royal Society of Chemistry.
(D) A neurovascular chip with gel channels for cell co-culturing. Adapted with permission from Adriani et al. (2017), The Royal Society of Chemistry. (E) Generation of
core-shell hydrogel droplets for spheroid-based liver model. Adapted with permission from Chen Q. et al. (2016), The Royal Society of Chemistry. (F) On-chip
spinning of hydrogel microfibers with morphological and structural complexity, as well as a heterogeneous composition. Adapted with permission from Yu et al.
(2016), John Wiley & Sons. (G) Microchannel generation within cell-laden hydrogel by user-programmed multiphoton excitation induced localized degradation.
Adapted with permission from Arakawa et al. (2017), John Wiley & Sons.

device named tumor roll for analysis of cellular environment
and response (TRACER), different cells are seeded in a
defined area on the paper, and then the 3D tumors are
assembled by rolling the biocomposite strip. By unrolling the
strip, the model can be rapidly disassembled for snapshot
analysis (Figure 1B) (Rodenhizer et al., 2016; Young et al.,
2018). The Khademhosseini group presented the use of
hydrophobic paper as a semi-permeable membrane for culturing
cells at the air-liquid interface. The final paper-based device
provides a cost-effective platform for human respiratory system
studies under physiologically relevant conditions (Figure 1C)
(Rahimi et al., 2016).

Having many similarities with paper, nitrocellulose
membranes (Guo et al., 2018), threads (Yang et al., 2014),
and cloths (Wu and Zhang, 2015) have also been investigated
as a scaffold for cell culture. They have potential as superior
alternatives to paper due to the stronger, higher controllable
rates for fluid mixing and lower environmental impact
(Bagherbaigi et al., 2014).

Hydrogel
Hydrogels are polymeric materials distinguished by high water
content (Seliktar, 2012). They can mimic salient elements
of native extracellular matrices (ECMs) due to their high
biocompatibility and tunable properties, such as elasticity,

porosity, permeability, stiffness and degradability. These
properties of hydrogels are largely dependent on the types,
gelation methods, and fabrication technologies. Hydrogels
can be broadly classified into natural, synthetic, and hybrid
according to their source (Caliari and Burdick, 2016; Jiang
et al., 2016; Liu et al., 2019). Typical natural hydrogels include
collagen, alginate, gelatin, agarose, and fibrin. They are generally
highly biocompatible and containing cell-binding sites for cell
attachment, spreading, growth, and differentiation. Collagen
is the most common ECM component in the body and one
of the most widely used hydrogels for bioengineered tissue
microenvironments (Antoine et al., 2014). Gelatin has a
similar composition to collagen. Gelatin methacryloyl (GelMA)
hydrogels closely resemble some essential properties of native
ECM and can be microfabricated using different methodologies
(Yue et al., 2015). In recent studies, ECM hydrogels derived from
decellularized tissues have been used to provide a supportive
microenvironment capable of long-term culture of islets or
directing cell growth (Giobbe et al., 2019; Jiang et al., 2019).
Nevertheless, natural hydrogels suffer from some drawbacks
such as relatively poor mechanical properties, limited long-
term stability, and batch-to-batch variability. Typical synthetic
hydrogels include polyethylene glycol (PEG) and its derivatives
[e.g., PEG-diacrylate (PEG-DA)], polylactic acid (PLA),
poly(lactic-co-glycolic acid) (PLGA), and poly(ε-caprolactone)
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(PCL). Synthetic and hybrid hydrogels are more tunable to
provide desired mechanical properties and degradation rates.

Since the materials for chip fabrication mentioned above,
such as PDMS and plastics, are unfavorable for cell attachment,
hydrogels are often coated on the channel surfaces or
integrated into OOC devices (Annabi et al., 2013; Zhang
X. et al., 2016). By incorporating a collagen scaffold that
mimics the human intestinal villi, the microfluidic gut-on-a-
chip could provide cells with both 3D tissue structure and
fluidic shear to induce further improvement in gut functions
(Kim et al., 2014; Shim et al., 2017). A hydrogel microlayer
consisting of type I collagen and Matrigel has been used in
a lung airway-on-a-chip, replacing the semipermeable, PDMS
membrane, allowing for the co-culture of epithelial cells
and smooth muscle cells (Humayun et al., 2018). Hydrogels
can also act as diffusion barriers which separate cells while
permitting the soluble factors, such as nutrients, proteins,
and signaling molecules exchange (Figure 1D) (Adriani et al.,
2017). Compared with other artificial membranes used in
OOC models, hydrogel barriers allow close cell association
by making direct cell–cell contact between multiple cell types
possible (Tibbe et al., 2018). Thanks to the progress in 3D
(bio)printing technology, cell-laden hydrogels scaffolds can
be rapidly created with spatial heterogeneity in predefined
patterns (Miri et al., 2018; Moroni et al., 2018). Methods for
the fabrication of hydrogel-based microfluidic chips are being
developed. By stereolithographic high-resolution printing of
PEG-DA, microfluidic chips with biofunctionalized complex
3D perfusion networks can be rapidly fabricated (Zhang and
Larsen, 2017). Combining casting and bonding processes, Nie
et al. (2018) fabricated a hydrogel-based vessel-on-a-chip of
gelatin and GelMA.

Another frequently employed strategy for cell-based assays
using hydrogels is to generate cell-encapsulated hydrogel
droplets or hydrogel microfibers, especially through microfluidic
approaches. On-chip production, storage, sorting and high-
resolution imaging of hydrogel droplet has been achieved (Aubry
et al., 2015). The generated microgels, including multicellular
microspheres and microcapsules, create microenvironments for
cell growth and proliferation (Figure 1E) (Headen et al., 2014;
Alessandri et al., 2016; Chen Q. et al., 2016). By adjusting flow
conditions in the microfluidic devices, various microfibers with
morphological and compositional diversity can be generated as
platforms for cell coculture (Figure 1F) (Yu et al., 2016; Xu et al.,
2017; Liu et al., 2018; Xie et al., 2018).

The development of “smart” responsive hydrogels
adapting to external stimuli has found its applications
in OOC. Light-responsive hydrogels are of particular
interest because of their capability of contact-free remote
manipulation and the inherent space-time control capabilities
of light stimulation (Li et al., 2019). Softening or stiffening
hydrogels can be achieved by sequential photodegradation
and photoinitiated crosslinking reactions, which is useful to
design dynamic cell microenvironments (Rosales et al., 2017).
Based on photodegradable hydrogels, 3D vascular networks
within hydrogels can be altered dynamically, permitting user-
defined 4D control even in the presence of live cells (Figure 1G)

(Arakawa et al., 2017). In addition to applications related
to cell culture, nanocomposite hydrogels crosslinking
with metal or metal-oxide nanoparticles, and hydrogels of
conducting polymers, such as poly(3,4-ethylenedioxythiophene):
poly(styrene sulfonate) (PEDOT:PSS) based hydrogels, have
biocompatibility, desired electrical and mechanical properties,
and can be used to make sensors integrated in OOC platforms
(Gaharwar et al., 2014; Park et al., 2015; Lu et al., 2019).

Organic-Inorganic Hybrid Materials
Organic–inorganic hybrid materials offer the advantages of
the organic content and the inorganic matrix. By combining
inorganic clay nanoparticles with polymer matrix, clay-polymer
nanocomposites has the ability to marry important biomaterial
parameters such as porosity or self-organization with mechanical
strength and toughness. Enhancements in cell adhesion,
proliferation, and differentiation in response to clay nanoparticles
have been observed in investigation into clay-cell interactions,
suggesting the potential for the generation of multifunctional
scaffolds for tissue engineering (Dawson and Oreffo, 2013).
A UV-curable hybrid ceramic polymer Ormocomp is inherently
biocompatible supporting cell adhesion without any additional
coating and has been utilized as scaffolds for cell culture
(Scheiwe et al., 2015; Järvinen et al., 2020). Ormocomp
has excellent transparency for VIS and near UV down to
350 nm. In a recent study, round concave cross-sectional shaped
microchannels of Ormocomp were fabricated via single step
lithography to improve the sensitivity of fluorescence imaging
(Bonabi et al., 2017). Novel organic-inorganic hybrid materials
can potentially be used in the fabrication of OOC devices
(Mechref et al., 2016a,b).

SUMMARY AND OUTLOOK

The OOC technology has been utilized in biomedical fields
and has displayed great potential to speed up and simplify
fundamental physiological and pathophysiological researches.
The choice of chip materials is the first and crucial step for
a successful OOC application. PDMS and plastics have been
utilized as substrate materials for the majority of OOC platforms.
Hydrogel materials are particularly suitable for mimicking native
ECMs, and are often combined with other substrate materials to
form hybrid chips. Many materials suitable for 3D (bio)printing
technologies have been developed, providing a convenient
method for prototyping complex chip structures. In particular,
novel multi-material bioprinting technologies facilitate the
fabrication of cell-laden constructs that highly similar to the
biological tissues. These advances in materials and fabrication
technologies have promoted the development of OOCs.

However, limitations and challenges exist. The hydrogel
simulated microenvironments still differ from the native ECM
microenvironments in stiffness, permeability and biochemical
components. Moreover, the native microenvironment is diverse
and may dynamically change during the stages of growth. It
is important to design materials that can mimic the real ECM
microenvironments as well as simple but precise methods to
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regulate the properties. In addition, the design of most OOC
devices typically requires the assembly of hybrid materials.
Novel materials together with fabrication methods covering both
biological and engineering aspects can be a great challenge and
an active area of research.
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