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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

The SARS-CoV-2 virus pandemic (COVID-19) is causing disruptions to energy, finance, tourism, and trade industries all around the world. 
These disruptions are the result of quarantining and lockdowns that cause reductions in production and consumptions. This change in production 
and consumption rates has environmental consequences. This study investigates the environmental effects of COVID-19 lockdown in the United 
States by Input-Output Life Cycle Assessment (IO-LCA) approach. The analysis is based on extraction of economic data in the US. The simulated 
results are based on different durations and strategies of lockdown measures. Among all industrial categories, utilities, which include power 
generation and supply, water supply, and natural gas supply sectors, saw the most significant reductions by approximately 110 kt CO2-eq in the 
first quarter and 265 kt CO2-eq in the second quarter of 2020. The assessed reductions were the results of both direct emission reductions caused 
by the shutdown of certain industries and also indirect emission reductions from upstream industries. The proposed methodology provides an 
effective guideline to predict the greenhouse gases emissions, which can be used as a prediction method for different regions in the world. 
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1. Introduction 

Severe acute respiratory syndrome coronavirus 2 [1], which was first 
reported in Wuhan, China in late 2019 [2], caused the global infectious 
disease, COVID-19 [3]. The United States (US) reported the first case 
on January 20, 2020 in Washington State [4]. The World Health 
Organization named COVID-19 as a pandemic on March 11, 2020 
with more than 118,000 confirmed cases in 114 countries, and 4,291 
deaths [5]. Countries reacted to the outbreak by limiting the movement 
of people with different measures all around the world. Approximately 
3 billion people asked to stay at home [6]. The COVID-19 pandemic 
caused estimated global consumption loss of $3.8 trillion, job losses 
equivalent to 147 million full-time positions, and loss of $2.1 trillion 
in wages and salaries [7]. However, decreases in production and 
change in consumption habits cause notable change on greenhouse 
gases emission. 

Several studies investigated mitigation of atmospheric pollution 
during the COVID-19 outbreak all around the world [8-12]. However, 

the majority of the studies are local and based on measurements of 
specific air quality compounds. Satellite images from the Centre for 
Research on Energy and Clean Air (CREA), NASA, and the European 
Space Agency (ESA), show a major decline in Nitrogen dioxide (NO₂) 
emissions over recent months [13]. This can be the direct results of 
reduction of operating factories and the use of vehicles. A recent study 
assessed decline in PM2.5 (11.3%) and NO2 (25.5%) during the 
pandemic in the US [14]. Satellite data showed a similar 30% 
reduction in NO2 during the month of March in the urban northeastern 
US [15]. Similar studies have been conducted all around the world. 
Bao et al. [8] showed that on average, the air quality index decreased 
by 7.80% in China due to lockdown term. Also, SO2, PM2.5, PM10, 
NO2, and CO decreased by 6.76%, 5.93%, 13.66%, 24.67%, and 
4.58%, respectively as an average of 44 cities in China. Rugani et al. 
[10] estimated a decrease in the carbon footprint burden by 20% 
compared with 2015-2019 in Italy. The satellite imagery is helpful to 
analyze the atmospheric pollutants [16]; however, this methodology is 
not helpful to investigate Greenhouse Gas (GHG) reductions due to 
their long-term storage in atmosphere [17]. In addition, recent studies 

 

Available online at www.sciencedirect.com 

ScienceDirect 
Procedia CIRP 00 (2022) 000–000 

  
     www.elsevier.com/locate/procedia 
   

 

 

2212-8271 © 2022 The Authors. Published by ELSEVIER B.V. 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the scientific committee of the 29th CIRP Life Cycle Engineering Conference 

29th CIRP Life Cycle Engineering Conference 

The Impacts on Greenhouse Gases Emission during the COVID-19 
lockdown in the US: An Economic Input-Output Life Cycle Assessment 

Nur H. Oraka, Khaled Alshehrib, Xiaoju Chenb* 
aMarmara University, Istanbul, 34722, Turkey 

bCarnegie Mellon University, Pittsburgh, 15213, United States 

* Corresponding author. Tel.: +1 (412)268-6116. E-mail address: xiaojuc@andrew.cmu.edu 

Abstract 

The SARS-CoV-2 virus pandemic (COVID-19) is causing disruptions to energy, finance, tourism, and trade industries all around the world. 
These disruptions are the result of quarantining and lockdowns that cause reductions in production and consumptions. This change in production 
and consumption rates has environmental consequences. This study investigates the environmental effects of COVID-19 lockdown in the United 
States by Input-Output Life Cycle Assessment (IO-LCA) approach. The analysis is based on extraction of economic data in the US. The simulated 
results are based on different durations and strategies of lockdown measures. Among all industrial categories, utilities, which include power 
generation and supply, water supply, and natural gas supply sectors, saw the most significant reductions by approximately 110 kt CO2-eq in the 
first quarter and 265 kt CO2-eq in the second quarter of 2020. The assessed reductions were the results of both direct emission reductions caused 
by the shutdown of certain industries and also indirect emission reductions from upstream industries. The proposed methodology provides an 
effective guideline to predict the greenhouse gases emissions, which can be used as a prediction method for different regions in the world. 
 
© 2022 The Authors. Published by ELSEVIER B.V.  
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the scientific committee of the 29th CIRP Life Cycle Engineering Conference 

 Keywords: SARS-CoV-2; COVID-19 pandemic; IO-LCA; GHGs; environment 
 

1. Introduction 

Severe acute respiratory syndrome coronavirus 2 [1], which was first 
reported in Wuhan, China in late 2019 [2], caused the global infectious 
disease, COVID-19 [3]. The United States (US) reported the first case 
on January 20, 2020 in Washington State [4]. The World Health 
Organization named COVID-19 as a pandemic on March 11, 2020 
with more than 118,000 confirmed cases in 114 countries, and 4,291 
deaths [5]. Countries reacted to the outbreak by limiting the movement 
of people with different measures all around the world. Approximately 
3 billion people asked to stay at home [6]. The COVID-19 pandemic 
caused estimated global consumption loss of $3.8 trillion, job losses 
equivalent to 147 million full-time positions, and loss of $2.1 trillion 
in wages and salaries [7]. However, decreases in production and 
change in consumption habits cause notable change on greenhouse 
gases emission. 

Several studies investigated mitigation of atmospheric pollution 
during the COVID-19 outbreak all around the world [8-12]. However, 

the majority of the studies are local and based on measurements of 
specific air quality compounds. Satellite images from the Centre for 
Research on Energy and Clean Air (CREA), NASA, and the European 
Space Agency (ESA), show a major decline in Nitrogen dioxide (NO₂) 
emissions over recent months [13]. This can be the direct results of 
reduction of operating factories and the use of vehicles. A recent study 
assessed decline in PM2.5 (11.3%) and NO2 (25.5%) during the 
pandemic in the US [14]. Satellite data showed a similar 30% 
reduction in NO2 during the month of March in the urban northeastern 
US [15]. Similar studies have been conducted all around the world. 
Bao et al. [8] showed that on average, the air quality index decreased 
by 7.80% in China due to lockdown term. Also, SO2, PM2.5, PM10, 
NO2, and CO decreased by 6.76%, 5.93%, 13.66%, 24.67%, and 
4.58%, respectively as an average of 44 cities in China. Rugani et al. 
[10] estimated a decrease in the carbon footprint burden by 20% 
compared with 2015-2019 in Italy. The satellite imagery is helpful to 
analyze the atmospheric pollutants [16]; however, this methodology is 
not helpful to investigate Greenhouse Gas (GHG) reductions due to 
their long-term storage in atmosphere [17]. In addition, recent studies 



26 Nur H. Orak  et al. / Procedia CIRP 105 (2022) 25–30
2 Author name / Procedia CIRP 00 (2022) 000–000 

focused on understanding the overall impacts due to the lockdown but 
did not address impacts due to the life cycle of industrial productions 
[8, 10, 15].   

Life Cycle Assessment (LCA) method was developed to evaluate the 
environmental impacts of a product’s or a process’ full life cycle, 
including raw material extraction, manufacturing, use phase, and end-
of-life [18]. LCA is a useful and popular method to estimate the 
impacts through the life cycle of different products or industries. For 
one product or process, performing an LCA study is relatively 
straightforward; however, when many industries are involved, 
especially when they are interconnected, the scope becomes complex 
and the evaluation of impacts becomes time-consuming. To deal with 
complex scopes, researchers from Carnegie Mellon University 
introduced Input-Output LCA (IO-LCA) [19-21]. The IO-LCA model 
adapted the input-Output theory developed by the Nobel Prize Winner 
Laureate Wassily Leontief. The theory helped to analyze the 
relationships between consumption and production in the economy 
[22]. Based on the theory, the IO-LCA method uses economic 
exchange values to estimate the environmental emissions and the 
required materials and energy resources associated with the goods and 
services produced and traded by countries. The objective of this study 
is to investigate the environmental impacts of the change in US 
economics due to COVID-19 lockdown with an IO-LCA method. 

2. Methods 

In an IO-LCA model, an A matrix is used to include exchange 
information between all industries in a predefined system. The system 
is often a country’s or a region’s whole economy.  Equation 1 
represents the basic formula to estimate environmental impacts in IO-
LCA models [19]. Matrix A shows the exchanges between industries 
within the system; matrix R shows the information regarding 
environmental effects from each industry in the system. Each entry in 
the R matrix represents the quantified environmental effect (e.g. total 
CO2) caused by the production of one functional unit of goods or 
services from the industry shown in the corresponding entry of the A 
matrix. Formula  (𝐼𝐼 − 𝐴𝐴)−1 is called Leontief inverse, it is used to 
calculate total required output considering all the exchanges. When 
developing an IO-LCA model, the model developers define the 
system, gather information and data to build these matrices and 
incorporate this information into the model. When using an IO-LCA 
model, users can only define the y vector, which represents the 
production of one or more industries. The model calculates vector B, 
which represents the total environmental impacts of the production 
from the industry. These impacts include both the direct impacts from 
the industry under study as well as the upstream industries on the 
whole supply chain. 

𝐵𝐵 = 𝑅𝑅(𝐼𝐼 − 𝐴𝐴)−1𝑦𝑦                                                                            (1) 

Because of its clear system boundary and ability to capture both direct 
and indirect environmental impacts, IO-LCA models are widely used 
in estimating overall environmental impacts due to changes in 
industrial outputs. Lenzen et al. [7] conducted a multi-regional input-
output analysis and estimated a 2.5 metric gigaton reduction in 
greenhouse gasses, as well as significant reductions for other air 
pollutants, including PM2.5, SO2, and NOx gases. Popularly used US 
based IO-LCA models include EIO-LCA developed by the Green 
Design Institute of Carnegie Mellon University [23] and US 
Environmentally-Extended Input-Output (US-EEIO) model 
developed by US EPA [24]. A few studies have focused on input-
output analyses by using national input-output tables for estimating 
the potential economic impacts of the COVID-19 in China and Japan 
[25]. However, to our knowledge, there is no study on quantifying the 
environmental impacts of the pandemic by IO-LCA. The aim of this 
study is to provide a comprehensive estimate of how the pandemic in 
the US affect the GHGs. The proposed methodology can be 

implemented on other regions. It is crucial to understand the causes 
and effects of potential impacts to provide useful information on 
carbon footprint of lockdown measures. 

In this study, we used a modified USEEIO model [24] as our IO-LCA 
model. The data for the A matrix was estimated based on the US 
Bureau of Economic Analysis (BEA)’s input-output tables and we 
adapted the methodologies provided by US-EEIO model to estimate 
the values in the A matrix. The raw data for the estimation is from the 
2012 commodity by industry (C x I) model provided by US BEA.  

The values in the GHGs R matrix were estimated based on the 
allocation method provided by the USEEIO. Overall, there were 405 
industrial sectors in the model and four environmental effects 
including total GHGs emissions.  

The total economic output values for the sectors in the USEEIO model 
were estimated based on data for 21 US industrial categories provided 
by US BEA’s quarterly Gross Domestic Product [27]. 405 industrial 
sectors were aggregated to 21 industrial categories for the model. The 
available information is up to the second quarter of 2020 chained to 
the 2012 dollar value. Table 1 shows the results of real GDP changes 
for the 21 industrial categories in quarter 1 and quarter 2 of 2020.  

To calculate the total emission changes during the first or second 
quarter, we first found the economic changes due to activity switches 
for all US industries. These changes were based on the differences in 
total economic output values between 2020 Quarter 1 (or Quarter 2) 
and 2019 Quarter 1 (or Quarter 2) for each industry (Table 1). Then, 
the economic data for 91 sub-categories were allocated to 405 IO 
sectors by each sector’s total economic output share within its 
industrial category. The economic output shares were calculated from 
data provided by US BEA’s 2012 Use Table (2020). There were 
quarterly economic data for 405 IO sectors after the two rounds of 
allocations.  

To calculate the total emissions from all industries, the economic 
changes for each quarter for all 405 sectors were defined as values in 
the y vector in Equation 1. The results in the B vector represent the 
changes of GHGs emissions due to the change of economic activities. 
We also separately calculated the effects to all other industrial 
categories due to the changes of one industrial category. This was 
performed by defining a y vector that shows the changes of sectors in 
only one of the 21 industrial categories and separate B values into 
individual industrial categories.  

In the US, to restrict the spread of the disease, each state enforced 
lockdown during different time intervals. During the lockdown, the 
US saw a decrease in transportation, along with reducing power 
generation and industry operations. We see the main economic impact 
in the second quarter for the majority of industrial categories (Table 
1). The economic data for the third quarter is not available yet, so the 
scope of this study is limited for the first half of 2020.  

Table 1 shows that beginning of pandemic term impacted 
accommodation and food services; Arts, entertainment, and 
recreation; and wholesale trade industries negatively in the first 
quarter. On the other hand, there was a positive change for a few 
industries in the same quarter; agriculture, forestry, fishing and 
hunting; utilities, and information. The real impact becomes more 
significant in the second quarter especially for arts, entertainment, and 
recreation (60%); accommodation and food services (45%); other 
services (21%); transportation and warehousing (domestic) (22%); 
mining, quarrying, and oil and gas extraction (19%); health care and 
social assistance (16%); durable goods manufacturing (14%); and 
wholesale trade (14%). We explored the results of the economic 
changes in both quarters and compared with the previous year.  
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Table 1. Economic impacts of COVID-19, economic difference between 2020 
and 2019 in billions of chained 2012 dollars 

Industrial Categories Abbrevi
a-tion 

Q1 
(2020 

Q1 
and 

2019 
Q1) 

Q2 
(2020 

Q2 
and 

2019 
Q2) 

Q1 
2020 
and 
Q1 

2019 
diff. 

Q2 
2020 
and 
Q2 

2019 
diff 

Agriculture, forestry, 
fishing and hunting Agr 31 -3 13.2% -1% 

Mining, quarrying, 
and oil and gas 

extraction 
Mining -11 -100 -2.2% -19% 

Utilities (include 
electricity generation , 

water supply and 
natural gas 

distribution ) 

Utilities 20 1 7.0% 0% 

Construction Const 10 -39 1.5% -6% 

Durable goods 
manufacturing 

(Manufacturing) 
Durable -14 -178 -1.1% -14% 

Nondurable goods 
manufacturing 

(Manufacturing) 

N-
durable 48 -25 5.2% -3% 

Wholesale trade Wholes
ale -65 -156 -5.6% -14% 

Retail trade Retail -5 -105 -0.5% -9% 

Transportation and 
warehousing 
(domestic) 

Transpt 5 -122 0.9% -22% 

Information Info 79 44 6.7% 4% 

Finance and insurance Finance -25 2 -2.1% 0% 

Real estate and rental 
and leasing 

Real 
estate 44 -36 1.8% -1% 

Professional, 
scientific, and 

technical services 

Prof-
serv 50 -93 3.3% -6% 

Management of 
companies and 

enterprises 
Mangt 8 -9 1.9% -2% 

Administrative and 
support and waste 
management and 

remediation services 

Admin 0 -89 0.1% -15% 

Educational services Edu 7 -17 3.2% -8% 

Health care and social 
assistance Health -16 -237 -1.1% -16% 

Arts, entertainment, 
and recreation Arts -12 -120 -5.8% -60% 

Accommodation and 
food services Accom -30 -232 -5.8% -45% 

Other services (except 
government and 

government 
enterprises) 

Other -9 -79 -2.4% -21% 

Government and 
government 
enterprises 

Gov 38 -78 1.7% -4% 

3. Results and Discussion 

The economic slowdown resulted in reduction of GHGs emissions for 
the first half of 2020. Figure 1 shows the change in total GHGs 
emissions in the first and second quarter of 2020 compared to 2019 
for 20 industrial categories (Management of companies and 
enterprises category was combined with Professional, scientific, and 
technical services category due to their similarity). The total GHGs 
values were calculated by converting the substances CO2, N2O and 
CH4 to the impact unit kt CO2-eq using the Global Warming impact 
characterization factors provide by IPCC 2016 (100-year) [29]. The 
overall emissions fell by 9% during the COVID-19 lockdown, which 
was close to the forecast of the International Energy Agency [28]. We 
listed the results under 20 industrial categories in Table 2. In the first 
quarter, we observed the major reduction from Utilities by 109.8 kt 
CO2-eq. We saw a change in the order of heavily affected sectors in 
the second quarter when main lockdown measures were applied. There 
was a drastic GHGs emission reduction from Utilities by 265 kt CO2-
eq, while 65.6 kt CO2-eq. from the mining, quarrying, and oil and gas 
extraction. Another major change in total GHGs occurred as a result 
of decrease in agriculture, forestry, fishing, and hunting. In the first 
quarter, emissions increased by 70.5 kt CO2-eq, on the other hand, it 
fell by while 41.5 kt CO2-eq in the second quarter. This change was a 
result of strict lockdown measures and slowdown in manufacturing in 
between April and June of 2020. Another important decline was from 
transportation and warehousing; we did not see the main impact in 
the first quarter, while the total GHG decreased by 101.6 kt CO2-eq in 
the second quarter. The industrial allocation for each GHGs compound 
for both quarters of 2020 is outlined in Fig. 1.   

Utilities (42% of the total greenhouse gas emission reduction in the 
second quarter) – This industrial category includes Electric Power 
Generation, Transmission, and Distribution; Natural Gas Distribution; 
Water, Sewage, and Other Systems. There was a dramatic shift from 
2019 to 2020 in the total GHGs emissions. We saw significant increase 
in the first quarter (109.8 kt CO2-eq), that was possibly due to normal 
increase and first reaction to the pandemic. We saw the main effect of 
the lockdown measures in Q2 by reduction of 265.3 kt CO2-eq. Fig. 1 
shows the allocation of greenhouse gasses for each industrial category. 
The main compound was CO2 with 106.5 kt out of 109.8 kt CO2-eq 
total GHGs in the first quarter, while this reverse emission increased 
to 259.7 kt out of 265.3 kt CO2-eq.  

Mining, quarrying, and oil and gas extraction (10% of the total 
greenhouse gas emission reduction in the second quarter) – There was 
a minor increase in the first quarter by 1.9 kt CO2-eq in the total GHGs 
emissions, this change decreased 65.6 kt CO2-eq in the second quarter. 
The main gas was CO2 by 39.7 kt in the second quarter. 

 Transportation and warehousing (16% of the total greenhouse gas 
emission reduction in the second quarter) – There is no significant 
decrease in the first quarter. In the second quarter, transportation 
activities significantly decreased due to lockdown, which resulted in 
101.6 kt CO2-eq decrease in total GHGs. The historical data showed 
that this industrial category generated the largest share of greenhouse 
gas emissions. The GHGs emissions from transportation and 
warehousing primarily came from burning fossil fuel for vehicles. 
Unlike other industrial categories, we saw an important amount of 
CH4 in the second quarter since the largest share of the fuel used for 
transportation and warehousing was petroleum based. Note that 
transportation GHGs from international transportations were not 
included in the data. In Q2, with certain interntional travel bans, the 
emissions from international travels can be expected to have a 
decrease.  

Agriculture, forestry, fishing and hunting (7% of the total greenhouse 
gas emission reduction in the second quarter) – The main emissions in 
this industrial category came from livestock (e.g. cows), agricultural 
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focused on understanding the overall impacts due to the lockdown but 
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[8, 10, 15].   

Life Cycle Assessment (LCA) method was developed to evaluate the 
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including raw material extraction, manufacturing, use phase, and end-
of-life [18]. LCA is a useful and popular method to estimate the 
impacts through the life cycle of different products or industries. For 
one product or process, performing an LCA study is relatively 
straightforward; however, when many industries are involved, 
especially when they are interconnected, the scope becomes complex 
and the evaluation of impacts becomes time-consuming. To deal with 
complex scopes, researchers from Carnegie Mellon University 
introduced Input-Output LCA (IO-LCA) [19-21]. The IO-LCA model 
adapted the input-Output theory developed by the Nobel Prize Winner 
Laureate Wassily Leontief. The theory helped to analyze the 
relationships between consumption and production in the economy 
[22]. Based on the theory, the IO-LCA method uses economic 
exchange values to estimate the environmental emissions and the 
required materials and energy resources associated with the goods and 
services produced and traded by countries. The objective of this study 
is to investigate the environmental impacts of the change in US 
economics due to COVID-19 lockdown with an IO-LCA method. 

2. Methods 

In an IO-LCA model, an A matrix is used to include exchange 
information between all industries in a predefined system. The system 
is often a country’s or a region’s whole economy.  Equation 1 
represents the basic formula to estimate environmental impacts in IO-
LCA models [19]. Matrix A shows the exchanges between industries 
within the system; matrix R shows the information regarding 
environmental effects from each industry in the system. Each entry in 
the R matrix represents the quantified environmental effect (e.g. total 
CO2) caused by the production of one functional unit of goods or 
services from the industry shown in the corresponding entry of the A 
matrix. Formula  (𝐼𝐼 − 𝐴𝐴)−1 is called Leontief inverse, it is used to 
calculate total required output considering all the exchanges. When 
developing an IO-LCA model, the model developers define the 
system, gather information and data to build these matrices and 
incorporate this information into the model. When using an IO-LCA 
model, users can only define the y vector, which represents the 
production of one or more industries. The model calculates vector B, 
which represents the total environmental impacts of the production 
from the industry. These impacts include both the direct impacts from 
the industry under study as well as the upstream industries on the 
whole supply chain. 

𝐵𝐵 = 𝑅𝑅(𝐼𝐼 − 𝐴𝐴)−1𝑦𝑦                                                                            (1) 

Because of its clear system boundary and ability to capture both direct 
and indirect environmental impacts, IO-LCA models are widely used 
in estimating overall environmental impacts due to changes in 
industrial outputs. Lenzen et al. [7] conducted a multi-regional input-
output analysis and estimated a 2.5 metric gigaton reduction in 
greenhouse gasses, as well as significant reductions for other air 
pollutants, including PM2.5, SO2, and NOx gases. Popularly used US 
based IO-LCA models include EIO-LCA developed by the Green 
Design Institute of Carnegie Mellon University [23] and US 
Environmentally-Extended Input-Output (US-EEIO) model 
developed by US EPA [24]. A few studies have focused on input-
output analyses by using national input-output tables for estimating 
the potential economic impacts of the COVID-19 in China and Japan 
[25]. However, to our knowledge, there is no study on quantifying the 
environmental impacts of the pandemic by IO-LCA. The aim of this 
study is to provide a comprehensive estimate of how the pandemic in 
the US affect the GHGs. The proposed methodology can be 

implemented on other regions. It is crucial to understand the causes 
and effects of potential impacts to provide useful information on 
carbon footprint of lockdown measures. 

In this study, we used a modified USEEIO model [24] as our IO-LCA 
model. The data for the A matrix was estimated based on the US 
Bureau of Economic Analysis (BEA)’s input-output tables and we 
adapted the methodologies provided by US-EEIO model to estimate 
the values in the A matrix. The raw data for the estimation is from the 
2012 commodity by industry (C x I) model provided by US BEA.  

The values in the GHGs R matrix were estimated based on the 
allocation method provided by the USEEIO. Overall, there were 405 
industrial sectors in the model and four environmental effects 
including total GHGs emissions.  

The total economic output values for the sectors in the USEEIO model 
were estimated based on data for 21 US industrial categories provided 
by US BEA’s quarterly Gross Domestic Product [27]. 405 industrial 
sectors were aggregated to 21 industrial categories for the model. The 
available information is up to the second quarter of 2020 chained to 
the 2012 dollar value. Table 1 shows the results of real GDP changes 
for the 21 industrial categories in quarter 1 and quarter 2 of 2020.  

To calculate the total emission changes during the first or second 
quarter, we first found the economic changes due to activity switches 
for all US industries. These changes were based on the differences in 
total economic output values between 2020 Quarter 1 (or Quarter 2) 
and 2019 Quarter 1 (or Quarter 2) for each industry (Table 1). Then, 
the economic data for 91 sub-categories were allocated to 405 IO 
sectors by each sector’s total economic output share within its 
industrial category. The economic output shares were calculated from 
data provided by US BEA’s 2012 Use Table (2020). There were 
quarterly economic data for 405 IO sectors after the two rounds of 
allocations.  

To calculate the total emissions from all industries, the economic 
changes for each quarter for all 405 sectors were defined as values in 
the y vector in Equation 1. The results in the B vector represent the 
changes of GHGs emissions due to the change of economic activities. 
We also separately calculated the effects to all other industrial 
categories due to the changes of one industrial category. This was 
performed by defining a y vector that shows the changes of sectors in 
only one of the 21 industrial categories and separate B values into 
individual industrial categories.  

In the US, to restrict the spread of the disease, each state enforced 
lockdown during different time intervals. During the lockdown, the 
US saw a decrease in transportation, along with reducing power 
generation and industry operations. We see the main economic impact 
in the second quarter for the majority of industrial categories (Table 
1). The economic data for the third quarter is not available yet, so the 
scope of this study is limited for the first half of 2020.  

Table 1 shows that beginning of pandemic term impacted 
accommodation and food services; Arts, entertainment, and 
recreation; and wholesale trade industries negatively in the first 
quarter. On the other hand, there was a positive change for a few 
industries in the same quarter; agriculture, forestry, fishing and 
hunting; utilities, and information. The real impact becomes more 
significant in the second quarter especially for arts, entertainment, and 
recreation (60%); accommodation and food services (45%); other 
services (21%); transportation and warehousing (domestic) (22%); 
mining, quarrying, and oil and gas extraction (19%); health care and 
social assistance (16%); durable goods manufacturing (14%); and 
wholesale trade (14%). We explored the results of the economic 
changes in both quarters and compared with the previous year.  
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Table 1. Economic impacts of COVID-19, economic difference between 2020 
and 2019 in billions of chained 2012 dollars 

Industrial Categories Abbrevi
a-tion 

Q1 
(2020 

Q1 
and 

2019 
Q1) 

Q2 
(2020 

Q2 
and 

2019 
Q2) 

Q1 
2020 
and 
Q1 

2019 
diff. 

Q2 
2020 
and 
Q2 

2019 
diff 

Agriculture, forestry, 
fishing and hunting Agr 31 -3 13.2% -1% 

Mining, quarrying, 
and oil and gas 

extraction 
Mining -11 -100 -2.2% -19% 

Utilities (include 
electricity generation , 

water supply and 
natural gas 

distribution ) 

Utilities 20 1 7.0% 0% 

Construction Const 10 -39 1.5% -6% 

Durable goods 
manufacturing 

(Manufacturing) 
Durable -14 -178 -1.1% -14% 

Nondurable goods 
manufacturing 

(Manufacturing) 

N-
durable 48 -25 5.2% -3% 

Wholesale trade Wholes
ale -65 -156 -5.6% -14% 

Retail trade Retail -5 -105 -0.5% -9% 

Transportation and 
warehousing 
(domestic) 

Transpt 5 -122 0.9% -22% 

Information Info 79 44 6.7% 4% 

Finance and insurance Finance -25 2 -2.1% 0% 

Real estate and rental 
and leasing 

Real 
estate 44 -36 1.8% -1% 

Professional, 
scientific, and 

technical services 

Prof-
serv 50 -93 3.3% -6% 

Management of 
companies and 

enterprises 
Mangt 8 -9 1.9% -2% 

Administrative and 
support and waste 
management and 

remediation services 

Admin 0 -89 0.1% -15% 

Educational services Edu 7 -17 3.2% -8% 

Health care and social 
assistance Health -16 -237 -1.1% -16% 

Arts, entertainment, 
and recreation Arts -12 -120 -5.8% -60% 

Accommodation and 
food services Accom -30 -232 -5.8% -45% 

Other services (except 
government and 

government 
enterprises) 

Other -9 -79 -2.4% -21% 

Government and 
government 
enterprises 

Gov 38 -78 1.7% -4% 

3. Results and Discussion 

The economic slowdown resulted in reduction of GHGs emissions for 
the first half of 2020. Figure 1 shows the change in total GHGs 
emissions in the first and second quarter of 2020 compared to 2019 
for 20 industrial categories (Management of companies and 
enterprises category was combined with Professional, scientific, and 
technical services category due to their similarity). The total GHGs 
values were calculated by converting the substances CO2, N2O and 
CH4 to the impact unit kt CO2-eq using the Global Warming impact 
characterization factors provide by IPCC 2016 (100-year) [29]. The 
overall emissions fell by 9% during the COVID-19 lockdown, which 
was close to the forecast of the International Energy Agency [28]. We 
listed the results under 20 industrial categories in Table 2. In the first 
quarter, we observed the major reduction from Utilities by 109.8 kt 
CO2-eq. We saw a change in the order of heavily affected sectors in 
the second quarter when main lockdown measures were applied. There 
was a drastic GHGs emission reduction from Utilities by 265 kt CO2-
eq, while 65.6 kt CO2-eq. from the mining, quarrying, and oil and gas 
extraction. Another major change in total GHGs occurred as a result 
of decrease in agriculture, forestry, fishing, and hunting. In the first 
quarter, emissions increased by 70.5 kt CO2-eq, on the other hand, it 
fell by while 41.5 kt CO2-eq in the second quarter. This change was a 
result of strict lockdown measures and slowdown in manufacturing in 
between April and June of 2020. Another important decline was from 
transportation and warehousing; we did not see the main impact in 
the first quarter, while the total GHG decreased by 101.6 kt CO2-eq in 
the second quarter. The industrial allocation for each GHGs compound 
for both quarters of 2020 is outlined in Fig. 1.   

Utilities (42% of the total greenhouse gas emission reduction in the 
second quarter) – This industrial category includes Electric Power 
Generation, Transmission, and Distribution; Natural Gas Distribution; 
Water, Sewage, and Other Systems. There was a dramatic shift from 
2019 to 2020 in the total GHGs emissions. We saw significant increase 
in the first quarter (109.8 kt CO2-eq), that was possibly due to normal 
increase and first reaction to the pandemic. We saw the main effect of 
the lockdown measures in Q2 by reduction of 265.3 kt CO2-eq. Fig. 1 
shows the allocation of greenhouse gasses for each industrial category. 
The main compound was CO2 with 106.5 kt out of 109.8 kt CO2-eq 
total GHGs in the first quarter, while this reverse emission increased 
to 259.7 kt out of 265.3 kt CO2-eq.  

Mining, quarrying, and oil and gas extraction (10% of the total 
greenhouse gas emission reduction in the second quarter) – There was 
a minor increase in the first quarter by 1.9 kt CO2-eq in the total GHGs 
emissions, this change decreased 65.6 kt CO2-eq in the second quarter. 
The main gas was CO2 by 39.7 kt in the second quarter. 

 Transportation and warehousing (16% of the total greenhouse gas 
emission reduction in the second quarter) – There is no significant 
decrease in the first quarter. In the second quarter, transportation 
activities significantly decreased due to lockdown, which resulted in 
101.6 kt CO2-eq decrease in total GHGs. The historical data showed 
that this industrial category generated the largest share of greenhouse 
gas emissions. The GHGs emissions from transportation and 
warehousing primarily came from burning fossil fuel for vehicles. 
Unlike other industrial categories, we saw an important amount of 
CH4 in the second quarter since the largest share of the fuel used for 
transportation and warehousing was petroleum based. Note that 
transportation GHGs from international transportations were not 
included in the data. In Q2, with certain interntional travel bans, the 
emissions from international travels can be expected to have a 
decrease.  

Agriculture, forestry, fishing and hunting (7% of the total greenhouse 
gas emission reduction in the second quarter) – The main emissions in 
this industrial category came from livestock (e.g. cows), agricultural 
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soils, and rice production. We saw an increase of 13.8 kt CO2 and 7.9 
kt CO2-eq of CH4 out of total 70.5 kt CO2-eq in the first quarter. The 
impact of economic slowdown observed in the second quarter with the 
new restrictions; 8.5 kt CO2-eq from CO2 emissions out of 41.5 kt 
CO2-eq in total. Due to the nature of the sector, unlike other sectors 
CO2 was not the major GHGs for agricultural industries. 

Nondurable goods manufacturing (8% of the total greenhouse gas 
emission reduction in the second quarter) – In the first quarter, we saw 
an increase of the total GHGs (18.7 kt CO2-eq), on the other hand, we 
saw the impact of the lockdown by a sharp decrease of the total GHGs, 
52.3 kt CO2-eq.  

Durable goods manufacturing (8% of the total greenhouse gas 
emission reduction in the second quarter) – In the first quarter there 
was a small increase by 0.1 kt CO2-eq in the total emissions. However, 
in the second quarter, we saw a similar trend as Nondurable goods 
manufacturing, the impacts became more visible with 50.4 kt CO2-eq 
decline.  

Construction (1% of the total greenhouse gas emission reduction in 
the second quarter) – In the first quarter, we saw a moderate loss of 
business, in the second quarter, the risk of production downtown rose 
due to lack of personnel. As a result, we saw a 8.2 kt CO2-eq decline 
in the total emissions.  

Administrative and support and waste management and remediation 
services (3% of the total greenhouse gas emission reduction in the 
second quarter) – The impact of the COVID-19 lockdown measures 
were relatively small in the first quarter, however, the main impact 
was significant in the following quarter with a 17.4 kt CO2-eq sharp 
decrease of the total GHGs. We did not observe any reverse emission 
from information category in the first quarter. This result was expected 

due to the lockdown measures in the selected time interval. Similarly, 
we saw a slight decrease from wholesale trade; finance and insurance; 
arts, entertainment and recreation; accommodation and food 
services; and other services; educational services; and health care 
and social assistance categories in the second quarter.  

Fig. 2 shows the relative sensitivity of each industrial category in each 
quarter based on the change from the previous year’s same quarter. 
These values are the results of the total GHGs emissions in kg CO2-eq 
from individual industrial categories. Each column represents the 
effects from the change of the column industrial category to other 
industrial categories (rows). For example, Fig. 1 shows the change of 
mining category (Column 2) caused 1.8 kt CO2-eq GHGs reduction 
from the utilities category. We highlighted the values to show the 
greatest decreases (green) and the greatest increases (red). To evaluate 
the values in each row, we defined a y vector that only changes the 
sectors in the column industry. This means that each column only 
shows the impacts from its column category, not the changes of the 
whole economy. For the first quarter, there were still increases in 
GHGs emissions because most of the industries were still open. 
Whereas in the second quarter, all industrial categories saw GHGs 
emission reductions because all of the industries were facing 
economic losses. The results also showed that change in one category 
can result in significant changes in other categories. For example, the 
increase in economic activities in agriculture, forestry, fishing, and 
hunting resulted in significant GHGs emission increases in utilities. 

Another example is the emission decrease in utilities due to the 
economic change in accommodation and food services in both Q1 and 
Q2. These results showed that because industries were highly 
connected and depended on each other, there could be significant 
indirect emissions due to the change of one industry. Therefore, 
although the direct economic values see an increase for unitlity sectors 
in both Q1 and Q2, the GHGs emissions had certain reductions due to 

Fig. 1. Estimated total and allocated Greenhouse Gas Emissions from twenty (20) different industrial categories during the first quarter (Q1) and 
second quarter (Q2) of 2020 compared to 2019 (ktCO2-eq). The values “0” show there is no emission from that category. 

 



 Nur H. Orak  et al. / Procedia CIRP 105 (2022) 25–30 294 Author name / Procedia CIRP 00 (2022) 000–000 

soils, and rice production. We saw an increase of 13.8 kt CO2 and 7.9 
kt CO2-eq of CH4 out of total 70.5 kt CO2-eq in the first quarter. The 
impact of economic slowdown observed in the second quarter with the 
new restrictions; 8.5 kt CO2-eq from CO2 emissions out of 41.5 kt 
CO2-eq in total. Due to the nature of the sector, unlike other sectors 
CO2 was not the major GHGs for agricultural industries. 

Nondurable goods manufacturing (8% of the total greenhouse gas 
emission reduction in the second quarter) – In the first quarter, we saw 
an increase of the total GHGs (18.7 kt CO2-eq), on the other hand, we 
saw the impact of the lockdown by a sharp decrease of the total GHGs, 
52.3 kt CO2-eq.  

Durable goods manufacturing (8% of the total greenhouse gas 
emission reduction in the second quarter) – In the first quarter there 
was a small increase by 0.1 kt CO2-eq in the total emissions. However, 
in the second quarter, we saw a similar trend as Nondurable goods 
manufacturing, the impacts became more visible with 50.4 kt CO2-eq 
decline.  

Construction (1% of the total greenhouse gas emission reduction in 
the second quarter) – In the first quarter, we saw a moderate loss of 
business, in the second quarter, the risk of production downtown rose 
due to lack of personnel. As a result, we saw a 8.2 kt CO2-eq decline 
in the total emissions.  

Administrative and support and waste management and remediation 
services (3% of the total greenhouse gas emission reduction in the 
second quarter) – The impact of the COVID-19 lockdown measures 
were relatively small in the first quarter, however, the main impact 
was significant in the following quarter with a 17.4 kt CO2-eq sharp 
decrease of the total GHGs. We did not observe any reverse emission 
from information category in the first quarter. This result was expected 

due to the lockdown measures in the selected time interval. Similarly, 
we saw a slight decrease from wholesale trade; finance and insurance; 
arts, entertainment and recreation; accommodation and food 
services; and other services; educational services; and health care 
and social assistance categories in the second quarter.  

Fig. 2 shows the relative sensitivity of each industrial category in each 
quarter based on the change from the previous year’s same quarter. 
These values are the results of the total GHGs emissions in kg CO2-eq 
from individual industrial categories. Each column represents the 
effects from the change of the column industrial category to other 
industrial categories (rows). For example, Fig. 1 shows the change of 
mining category (Column 2) caused 1.8 kt CO2-eq GHGs reduction 
from the utilities category. We highlighted the values to show the 
greatest decreases (green) and the greatest increases (red). To evaluate 
the values in each row, we defined a y vector that only changes the 
sectors in the column industry. This means that each column only 
shows the impacts from its column category, not the changes of the 
whole economy. For the first quarter, there were still increases in 
GHGs emissions because most of the industries were still open. 
Whereas in the second quarter, all industrial categories saw GHGs 
emission reductions because all of the industries were facing 
economic losses. The results also showed that change in one category 
can result in significant changes in other categories. For example, the 
increase in economic activities in agriculture, forestry, fishing, and 
hunting resulted in significant GHGs emission increases in utilities. 

Another example is the emission decrease in utilities due to the 
economic change in accommodation and food services in both Q1 and 
Q2. These results showed that because industries were highly 
connected and depended on each other, there could be significant 
indirect emissions due to the change of one industry. Therefore, 
although the direct economic values see an increase for unitlity sectors 
in both Q1 and Q2, the GHGs emissions had certain reductions due to 

Fig. 1. Estimated total and allocated Greenhouse Gas Emissions from twenty (20) different industrial categories during the first quarter (Q1) and 
second quarter (Q2) of 2020 compared to 2019 (ktCO2-eq). The values “0” show there is no emission from that category. 
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indirect utitlity usage. The results also incidated that Utilities, durable 
goods and non-durable goods manufacturing and transportation 
categories were most sensitive to the changes from other categories, 
due to their unique important role in the whole economy.     
The main objective of this study is to investigate the reductions in 
overall GHGs emissions due to slow down in economy. This result 
will be updated when there are publicly available data for the second 
half of 2020. We did not predict the overall GHGs for 2020.  

There are two main limitations of the predicted results. The first 
important limitation comes with the IO-LCA model, which has 
inherent uncertainty due to the nature the model [30]. In general, there 
are three main sources of uncertainty in IO-LCA models: parameter 
uncertainty, scenario uncertainty, and model uncertainty [31]. In this 
study, the main uncertainty is related to the model, which is caused by 
spatial differences and model assumptions. We used highly 
aggregated US economic data for the analysis; detailed economic 
changes due to regional differences were not considered. Second, the 
economic outputs for the second half of 2020 are not available yet. 
This can be improved when economic data are publicly available. We 
believe the methodology used in this research can be applied when 
better data are available. In addition, the lockdown measures varied 
state to state, therefore, another limitation is predicting the overall 
results for the whole country instead of using economic data for each 
state.  

This study also has several strengths. Comparison to empirical studies, 
this study shows a novel approach to predict the overall impacts of the 

pandemic lockdown measure and also industrial change, which 
provides useful long-term information for decision makers. This is the 
first study, to our knowledge, to quantify the impacts on GHGs 
emissions during the pandemic by EIO-LCA.  

4. Conclusion 

This study provides a comprehensive estimation of GHGs effects due 
to the COVID-19 outbreak lockdown in the US. The results showed 
that overall, the total GHGs emissions from all US industries reduced 
by almost 10% since March 2020 compared to associated quarters of 
2019. These reductions were the results of both direct emission 
reductions that caused by the shutdown of certain industries and also 
indirect emission reductions from upstream industries. Among all 
industrial categories, utilities, which include power generation and 
supply, water supply, and natural gas supply sectors saw the most 
significant reductions. This was because they served as the most 
important upstream sectors for almost all sectors in the whole 
economy. Despite the limitations due to unavailable data, the method 
we discussed in this paper can be used to estimate both direct and 
indirect emissions or energy consumptions due to further economic 
changes. The proposed methodology can be implemented on other 
regions.  

  

Fig. 2. Relative sensitivity of industrial categories for the first (Q1) and second (Q2) quarter (kg CO2-eq). (These are the results of the effects from 
industrial categories. Each column represents the effects from the change of the column to other categories (rows). The greatest decreases are highlighted 

in green and the greatest increases are highlighted in red. 
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