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The dynamic nature of the SIV population during disease progression in the SIV/macaque
model of AIDS and the factors responsible for its behavior have not been documented, largely
owing to the lack of sufficient spatial and temporal sampling of both viral and host data from
SIV-infected animals. In this study, we detail Bayesian coalescent inference of the changing
collective intra-host viral effective population size (Ne) from various tissues over the course of
infection and its relationship with what we demonstrate is a continuously changing immune
cell repertoire within the blood. Although the relative contribution of these factors varied
among hosts and time points, the adaptive immune response best explained the overall
periodic dynamic behavior of the effective virus population. Data exposing the nature of the
relationship between the virus and immune cell populations revealed the plausibility of an eco-
evolutionary mathematical model, which was able to mimic the large-scale oscillations in Ne

through virus escape from relatively few, early immunodominant responses, followed by
slower escape from several subdominant and weakened immune populations. The results of
this study suggest that SIV diversity within the untreated host is governed by a predator-prey
relationship, wherein differing phases of infection are the result of adaptation in response to
varying immune responses. Previous investigations into viral population dynamics using
sequence data have focused on single estimates of the effective viral population size (Ne) or
point estimates over sparse sampling data to provide insight into the precise impact of
immune selection on virus adaptive behavior. Herein, we describe the use of the coalescent
phylogenetic frame- work to estimate the relative changes in Ne over time in order to quantify
the relationship with empirical data on the dynamic immune composition of the host. This
relationship has allowed us to expand on earlier simulations to build a predator-prey model
that explains the deterministic behavior of the virus over the course of disease progression.
We show that sequential viral adaptation can occur in response to phases of varying immune
pressure, providing a broader picture of the viral response throughout the entire course of
progression to AIDS.
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INTRODUCTION

For RNA viruses such as human immunodeficiency virus (HIV)
and its pathogenic simian relative (SIV), high mutation rates and
short generation time are the constant fuel for rapid evolutionary
change (1). The long-term fate of these changes, both among and
within infected hosts (2), depends on the interplay of several
population-level processes, such as genetic drift, selective forces
from the environment, migration, and recombination (3). Evo-
lutionary theory predicts that, for large populations, mutations
occur frequently and their fate within the population is
ultimately decided by the largely deterministic action(s) of
natural selection. In contrast, in small populations, mutations
are produced more rarely, with their fixation largely dependent
on chance, stochastic events (genetic drift) (4). Determining
which population genetic process (selection or drift) is the
major driving force of viral population dynamics is critical to
understanding the likelihood of immune escape and drug
resistance in response to natural and synthetic antiviral
defenses. Moreover, for viruses like HIV and SIV that persist
for long periods of time, knowledge of this interplay is just as
important during later stages of infection as it is at the time
of transmission.

Experimental estimates of the height of the totalHIVpopulation
size (N) within the host - 107 108 HIV RNA-positive cells (5) - are
consistent with a large population evolving in a deterministic
fashion. However, one could imagine a few scenarios in which the
truly effective size (Ne) of the virus population is smaller than the
total - i.e., not all productively infected cells produce virus that can
reach a target cell in the vicinity; notably, a large fraction of theHIV
genetic population has also shown to be defective, or incapable of
replication, within the host owing to error-prone processes during
viral replication inside the cell (6). Ne can be estimated using a
variety of population genetic approaches. For example, large
changes in allele frequencies typically yield the smallest estimates
of population size, and relatively small changes yield the largest
population sizes (7). Similarly, the frequency of the nonrandom
association of alleles at different loci tends to be higher in smaller
population sizes. The study of allele frequency changes has led to
relatively large estimates ofNe (>10

4) for HIV and thus support for
deterministic influences on the replicating population (7, 8).
Additional analysis of allele frequency changes over the course of
15 years showed clear patterns ofmajor allelic shifts, or turnover, in
the population, the relatively low rate of which (every 1, 000 days
versus the short generation time of 1-2 days) is consistent with a
large replicating population and deterministic processes (7). The
rate of HIV population turnover using differing regions of the
genome has also been estimated to be as frequent as 2.5 months (9)
and to occur as early as acute infection (10).

An alternative, and perhaps more popular, approach to
estimating Ne using viral sequence data has been the time-
varying coalescent model, which examines the temporal
distribution of internal nodes, or coalescent events, within a
reconstructed phylogeny dat- ing back to the time of the most
recent common ancestral sequence (11). Genetic diversity
provided from the sequence data and inferred coalescent tree can
Frontiers in Immunology | www.frontiersin.org 2
be used to estimateNe at intervals along the time-scaled phylogeny,
including periods during which sampling is unattainable, by
assuming that the estimated time to a coalescent event within the
tree for two sequences is proportional to the population size. This
approach has produced conflicting results regarding both Ne

estimates and thus the impact of selection on the population (7,
12–15). However, the seemingly paradoxical heavy influence of
selection on a small population has been reconciled by da Silva (16)
using a model of known HIV-specific parameters that affect
population size (e.g., mutation rate, generation time), but also
immune selection pressure targeting a large number of HIV
epitopes (5) simultaneously. The HIV population present at
initial infection (as low as 1 virion) is a result of the bottleneck
associated with transmission (17). The evolution of this extremely
small population might be expected to be influenced more by
stochastic forces, limiting the diversity required to respond to
environmental change. Yet, the virus is able to adapt quickly,
expanding to peak viral load size within 21 28 days post-infection,
owing likely to linked selection (18). In the absence of therapy,
persistence of the virus, long after initial infection, eventually leads
to immunosuppression through an evolutionary arms race between
the pathogen and constantly stimulated immune cell populations
(19). Estimating relative changes in viral Ne over the full course of
infection thus offer the potential to test relationship of outside
factors and selection pressures on evolutionary and population
dynamic (phylodynamic) trajectories (20, 21). The use of the
coalescent framework applied to seasonal influenza (influenza A)
to quantify population dynamics, for example, established that Ne

oscillatesover time (in concertwith regional outbreaks) as a result of
the interplay between reassortment and periodic selective sweeps
(22, 23). This oscillatory pattern is characterized by a ladder-like
temporal distribution of taxa within the phylogeny, with temporal
clusters separated by single, or few, lineages, representing extensive
population turnover, such as was described by (7), as well as others
(20, 24–27) for HIV and SIV (28) in the absence of therapy. The
replacement of previous populations with the expansion of new
lineages over the course of HIV/SIV infection suggests a
continuation of highly adaptive behavior observed by (16), and
similar to influenza A, in response to strong immune selective
pressure. So while point estimates of genetic diversity from
convenience sampling in HIV-infected individuals are often used
to generate overall estimate ofNe and assess the impact of selection,
a more realistic scenario of progressive immune responses requires
a time-varying viral population dynamic andmay be best described
using relative changes in Ne over time.

Frequent sampling of the viral population increases the
accuracy of phylodynamic inferences, as with any time-
varying model, which can be provided with the use of an animal
model of infection. However, the temporal structure is not the only
potentially contributing factor to population dynamics. Given the
systemic nature of HIV/SIV infection (29, 30), convenience
sampling in HIV-infected individuals often limits longitudinal
studies to the peripheral blood, neglecting infected tissues that can
significantly contribute as a source of virus circulating in the
bloodstream [e.g. (7, 31)], or act as a restrictive barrier of viral
genetic exchange [reviewed in (3)]. Independent evolutionary
October 2021 | Volume 12 | Article 709962
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processes in individual, highly restrictive tissues provide the
opportunity for rapid changes in allele frequencies during lim-
ited, short-term migration events (32). Given that individual
tissues also harbor distinct immune cell compositions, viral
population dynamics in the more commonly sampled blood
need not accurately reflect the dynamic selective regime and
evolutionary behavior of virus in remaining infected tissues (33).
We, therefore, sought to explore SIV phylodynamics using viral
RNA sequences sampled from a broader array of infected tissues at
several time points over the course of disease progression in the
macaque model of HIV infection. Using a much larger, more
representative sample of the virus population within the host, we
anticipated a larger estimate for the maximum effective population
size than previously reported, with a dynamic pattern in Ne over
time distinct from that of the peripheral blood.

Though each tissue can harbor a distinct cellular repertoire, a
highly systemic immune response and frequent exchange of virus
among several largely infected tissues (34) would produce similar
population turnover, and thus oscillating Ne, in response to
immune selection pressure. Population size oscillations in nature
are often significant indicators of a deterministic predator-prey
relationship, wherein two populations are in a continuous,
alternating cycle of co-dependent growth and decline unless
perturbed by an outside force (35, 36). Predator-prey dynamic
models, where virus-infected cells are seen as prey and CD8+ T
cells as predators, have been systematically investigated in the
classic work of Nowak (37, 38). Moreover, it is well known that, in
SIV infected macaques, transient artificial depletion of CD8+ T
cells and natural killer cells (predatory sources of selection
pressure) results in marked increase in viremia, which is again
suppressed with the reappearance of SIV-specific CD8+ T cells
(39). In a study involving tissues sampled from SIV-infected CD8+
T cells depleted macaques, near exponential growth of the SIV
population (prey) prior to rapid progression to AIDS has also been
described (40). Besides purely ecological predator-prey cycles, an
oscillatory pattern in Ne over time may also be expected in
untreated HIV- and SIV-infected hosts as a response to the
progressive series of immune responses (41–43), at least until
the host immune system is nearly depleted and/or exhausted (44).

In what follows, we analyzed an extensive viral and immune
dataset collected longitudinally from an immune-intact, SIV-
infected macaque model of HIV infection over the entire course
of disease progression. The relationship between SIV and
primarily contributing immune population measures was then
modeled to better understand the driving factor(s) in viral
evolution and population dynamics in the absence of therapy.
RESULTS

Viral envelope gp120 genetic sequences amplified from genomic
RNA sampled over time from five distinct anatomical locations -
plasma, bone marrow, lungs, and two isolated cell types within the
blood (CD4+ T lymphocytes and monocytes) - were used to
estimate the overall within-host, as well as tissue-specific, viral Ne

in each of eight macaques. Although we are aware that in HIV-
Frontiers in Immunology | www.frontiersin.org 3
infected patients the gp40 region does contain sites where mutations
can lead to viral escape, we decided to focus on gp120 because,
besides including known immunodominant epitopes as well as the
CD4 binding domain, it also displays the highest phylogenetic
signal, which is optimal for intra-host evolutionary studies in the
SIV macaque model (45). Regression analyses and mathematical
modeling were used to describe the relationships between Ne and
the diverse repertoire of immune cell responses, represented by
quantitative data on population size, over the course of
disease progression.

Incorporation of Sequences From Various
Anatomical Locations Results in Highly
Dynamic Total Intra-Host SIV Effective
Population Size
Viral sequence data from each anatomical location were
combined for phylogenetic in- ference and estimation of the
collective, or “total,” effective population size (Ne) for each
macaque. Although often 2-3 distinct lineages were observed
for each macaque phylogeny, dating back as early as the pre-
transmission interval (46) (Figures 1 and S1), each of these
lineages appeared to be temporally structured, giving rise to
multiple population turnover events in the estimated within-host
viral effective population size (Ne) (Figures 2A and S2) and a
periodicity demonstrated by auto-correlation (Figure S3). Peak
Ne values ranged from the previously observed estimate in the
blood [103 (7, 8, 13–15, 49)] to as high as 107; however, collective
Ne values were consistently about one order of magnitude greater
than that of plasma and/or PBMCs, supporting the hypothesis
that a more representative sampling of the population was
required to increase estimates of within-host Ne.

Three to four distinct peaks in Ne were observed, with mean
time of peak Ne across animals corresponding closely to sampling
time (Figure 2A). When we looked for potential correlation
between Ne and sampling time, in each animal, an almost
perfect, highly significant correlation was found for five out of
eight animals (Table S1), while the remaining three had not
significant correlation (p>0.05) with coefficients ranging between
0.07 and 0.87. Therefore, we cannot exclude that, at least in some
animals, Ne estimates may be the result of a strong association
between Ne and sampling times. Even more frequent sampling
between existing time points is needed to determine if the number
of peaks is underestimated. However, there is a trade-off between
spatial and temporal sampling in animal models, as in- creased
frequency of sampling across the tissues described in this study
presents issues such as the confounding factor of immune stress
resulting from slightly more invasive sampling (e.g., bonemarrow)
on disease progression, as well as cost. Given the similar mutation
rate and generation times of HIV and SIV, as well as the average
3.3-month turnover time de- scribed in (9), we thought an
increased sampling frequency strategy, relative to the current, an
unnecessary risk. Furthermore, as described below, Ne estimates
correlate in turn with oscillation in immune cell populations,
which were measured independently through a much greater
sampling density, strengthening our confidence in their
biological meaningfulness.
October 2021 | Volume 12 | Article 709962
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We assume a significant impact of the existing immune
pressures on the viral population, and thus, the observed
sequential inflections in Ne can be explained by the selective
force(s) acting to reduce significantly 1) the size of the
population through active cell killing or 2) the genetic diversity
owing to fixation of adaptive allele(s), or both. Viral load
measured in the blood, which typically acts as a proxy for the
size of the total virus population, did not exhibit auto-correlation
(Figure S4) indicative of time-scale periodicity, while the auto-
correlation of Ne for all macaques was significant for a sequence
of approximately equally spaced time lags. Therefore, we can
infer that troughs in Ne represent reduced genetic diversity in the
population, and the time between each trough represents the
population turnover time. For these animals, the mean intervals
of turnover time increased with disease progression (38, 70, 126,
and 171 days post-infection [dpi]) (Figure 2A). In contrast to the
first two turnover time periods, characterized by virtually no
variation in the length of the period between macaques, 81% of
Frontiers in Immunology | www.frontiersin.org 4
variation in length of the third and fourth periods could be
explained by the peak Ne estimate between population turnover
(Figure 2B). This result suggests that the forces governing viral
evolutionary dynamicsduring the early stage (100days) of infection
differ from those during the late stage, either qualitatively (e.g.,
innate versus adaptive immune response) or quantitatively (e.g.,
intensity of targeted immune selection), or both, for which
additional immunological data and viral dynamic modeling
were recruited.

Periodic Change in SIV Intra-Host Effective
Population Size Over Time Strongly
Correlates With Immune Cell
Population Dynamics
As the decay of polymorphism can also occur purely through the
process of genetic drift (4), we sought to more quantitatively
define the relationship of Ne with selection pressure through the
longitudinal measurement of individual peripheral blood
FIGURE 1 | Maximum clade credibility (MCC) trees for combined and individual sampled tissue locations from SIV-infected macaque N09. The gp120 MCC tree for
macaque N09 was reconstructed using the Bayesian coalescent framework in BEAST v1.8 (47, 48) using all sampled tissues over time (x- axis). Branches are
colored according to sampling origin (legend at right), with internal branches designated according to the highest posterior probability state using ancestral state
reconstruction (2). MCC trees for remaining animals can be found in Supplementary Material.
October 2021 | Volume 12 | Article 709962
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immune cell population sizes. Whereas viral sequences were
obtained longitudinally at four-five time points during infection,
blood samples containing immune population data could be taken
easily at higher frequencies, ranging from 20-30 time points,
depending on time of progression to SAIDS. Immune cells
isolated from the peripheral blood at each of these time points
were differentiated bymarkers specific toT cells, natural killer (NK)
cells, monocytes, and B cells using fluorescence-activated cell
sorting (see Methods). We allowed for a time lag between each
pair of viral and immune data to account for natural phase shifts in
reciprocal responses to respective population changes (presumably
as a result of their prey-predator and evolutionary interactions) and
adjust for uncertainty in estimates of the timing of Ne inflections.
The optimal time lag for each cell population was first chosen to
maximize the correlation coefficient withNe in each animal (Table
S2). Notably for most animals, the adaptive immune response
populations (B and CD8+ cells) had significant periodic cross-
correlation corresponding to their time-series lagging behind viral
Ne (denoted as negative time lag) by approximately 1/4 to 1/2 of the
average period of oscillation (Figures 3, S7 and Table S2).

In order to measure the strength of each cell population as a
predictor of viral Ne across macaques, consistency criteria for the
optimal time lag were chosen so that the lag produced the same
direction of correlation (positive or negative) and of lag (e.g.,
peak in Ne consistently following that of the cell population) for
that cell population across all animals. The direction of
correlation and time lag were fixed for each cell type across
macaques to maximize average correlation over all macaques. In
other words, assuming similar mechanisms of response across all
animals, extensive variation in the lag between animals would
not be expected. Note that certain cell types, e.g. CD8+ cells, had
reduced effects on viral Ne when employing the consistency
condition due to differing sign of maximal correlation and
Frontiers in Immunology | www.frontiersin.org 5
corresponding time lag among all macaques, even though large
cross-correlations were observed for several macaques. A
random effects linear model was then used to quantify the
strength of cell population data as predictors of viral Ne (see
Methods) over the entire span of disease progression across the
macaque cohort. The correlation matrix from the effects model
was first used to identify multicollinearity among the predictor
variables (Figure 4A). A strong linear relationship between CD8+
T cells and the remaining cell populations, particularly CD4+
T cells (coefficient = 0.54), suggested an influence of this cell
population on the variance of the remaining regression
coefficients; CD8+ T cells were consequently removed from the
model, revealing a statistically significant positive correlation ofNe

with the B cell population and negative correlation with NK cells
and CD4+ T cells (Figure 4B). The strong positive correlation at
negative time lags for B cells suggests again a co-evolutionary
relationship with the virus, whereas the negative relationship for
NK and CD4+ T cells is evidence of the known cell loss with
increasing viral diversity that follows increasing viral replication.
On the other hand, a statistically significant relationship with total
monocytes was not observed.

As a growing body of evidence has supported distinct roles for
sub-populations of major immune cell types (50), CD4+ and
CD8+ T cells were further sorted into naive (N), central memory
(CM), and effector memory (EM) cells, and monocytes into
classical (CD14+CD16-), intermediate (CD14+CD16+), and
non-classical (CD14-CD16+) sub-populations. Among CD8
sub-populations, EMCD8 exhibited the most significant cross-
correlation (mean cc=0.48 and p-value=0.00322), whereas naive
cells were slightly more cross-correlated with Ne (mean cc=0.39)
than other CD4+ sub-populations. Despite lack of significant
correlation of the total monocyte cell population across all
animals using the linear model, monocyte sub-populations
A B

FIGURE 2 | Changes in viral effective population size (Ne) over the course of disease progression. (A) Ne averaged over all macaques used in study. Median Ne and
high posterior density (HPD) intervals were inferred for each macaque gp120 sequence alignment using the Bayesian coalescent framework in BEAST v1.8 (47, 48)
for all sampled tissue locations over time (x-axis). Ne (black), HPD (yellow), and time between lowest Ne points (turnover time, grey intervals), were averaged across all
macaques. Viral sampling times are represented by black, dashed vertical lines. represent 1 standard deviation from mean time interval. Time prior to infection (day 0
post-infection) represents the pre-transmission interval. (B) Relationship between turnover time and corresponding peak Ne. The relationship of the length of the
turnover time periods (ΔT, y-axis) and log values of the peak Ne (x-axis) within each turnover period was assessed using linear regression. As only one animal (N01)
experienced a fourth turnover, corresponding values were included in the analysis of the third period. Each period is designated by a different shape and/or fill, and
each point represents a single animal.
October 2021 | Volume 12 | Article 709962
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were also analyzed (Table S2), as one or more contributing cell
populations may be masked by an unrelated sub-population if
the size of the latter is much larger. Indeed, correlation statistics
for intermediate (mean cc=0.502, p=0.0015) and non-classical
(mean cc=0.522, p=0.0022) monocytes (both CD16+) (Figures
S5, S6), the minor sub-populations, were more significant than
for classical (mean cc=0.324, p=0.104) monocytes (CD16-). A
significant positive correlation was particularly observed for the
fastest (300 dpi) progressing macaques, corroborating previous
Frontiers in Immunology | www.frontiersin.org 6
studies revealing a positive relationship between CD16+
monocyte population size with indicators of rapid disease
progression - increased VL (51, 52) and reduced CD4+ T-cell
count (51).

Although the relationship of immune cell population counts
and Ne in each animal appears strong, it is important to consider
the contribution of exchange of virus between tissues and cell
populations to the overall Ne, as differing levels of exchange
among a structured population can have significant effects on Ne
FIGURE 3 | Cross-correlation of combined Ne and total CD8 cells for each macaque, along with time-lagged plots at most significant phase-shift. Upper plots show
correlation between Ne(t) and CD8(t + t), where t is time lag, along with dashed lines giving giving positive and negative correlation thresholds of significance (p value =
0.05). Lower plots show time-series, at the phase lag t corresponding to most 550 days post-infection(dpi), the criteria for which included: significant correlation, of Ne(t)
(red) and CD8(t + t) (black if positive correlation or blue if negative correlation).
A B

FIGURE 4 | Correlation matrix (A) and correlation coefficient estimates (B) for each main cell population with viral Ne using a linear random effects model. ***P-value<0.001.
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estimates (32). The number of transitions, or “jumps” between
reconstructed tissue/cell origins within the Bayesian
phylogenetic tree distribution (see Methods) was used as a
proxy for migration, or exchange, events (53), revealing
transient migration events, consistent with Feder et al. (2017)
(33). A negative correlation (average correlation r=-0.304,
p=0.0665) for each animal, with the exception of N02, was
observed between Ne and the number of jumps (Figure S8).
Despite this relationship, significant overall meta-population
structure within the maximum likelihood phylogeny was not
observed, based on the inability to reject the hypothesis of a
panmictic population when uncertainty in tree reconstruction
was taken into account (refer to Table S3 for macaques N01 and
N03 and Rife Magalis et al. (2017) (28) for remaining macaques).
In the absence of a purely structured population (i.e., no
migration between any of five locations), lung macrophages
and/or central nervous system (CNS)-derived virus were
considered compartmentalized from remaining tissues in few
macaques (28), suggesting that limited migration is still present
and that these tissues may be driving the migration signal
correlated with the population dynamics.

A Two-Stage SIV Evolutionary Timeline
Can Be Explained by Differing Immune
Cell Population Dynamics
Because not every immune cell population is active at a given
time during HIV infection (41–43), the strongest correlating cell
population might be expected to differ during various disease
stages. We next assessed the relationship of individual cell
populations with viral Ne during the two temporal stages
described above (Figure 2) - the first stage corresponding to
the first two invariable turnover periods, the second stage to the
last two turnover periods, whose variability in length could be
described by the magnitude of the corresponding peak Ne. For
each macaque, cross-correlation with cell populations was
assessed during the first stage (Table S4) - the time interval
ranging from infection to the second trough of viral Ne (108 dpi),
and the second stage (Table S5) - the remaining time
until sacrifice. During the first temporal stage, NK cells
and intermediate (CD14+CD16+) and non-classical (CD14-
CD16+) monocyte populations were the strongest correlating
cell types, signaling the influence of the innate immune response
during early infection. In particular, the relationship between NK
cells and Ne exhibited an average correlation coefficient of r =
0.58 at optimal time lag (average p = 0.02), whereas intermediate
and non-classical monocytes resulted in coefficients of r = 0.59
and r = 0.68, respectively (average p = 0.01 for both correlations).
CD8+ T cells also strongly correlated with Ne during the first
stage at optimal time lag (r = 0.48, p = 0.03 on average),
demonstrating the strength of the early CD8 response.

During the second stage, comprised of the third and fourth
SIV population decay periods, B cells, CD4+ T cells, and CD8+
T cells were the strongest correlating cell types with viral Ne

(Table S5), signaling the influence of the adaptive immune
response during chronic and end-stage infection. This finding
is readily reconciled with increasing variance in time of peak Ne
Frontiers in Immunology | www.frontiersin.org 7
across animals (Figure 2), possibly owing to host-specific
differences in the virus specificity of the adaptive response. In
particular, the relationship of B cells with SIV Ne exhibited an
average correlation coefficient r = 0.65 at optimal time lag
(average p = 7 10−5), suggesting a co-evolutionary relationship
driven, at least in part, by the emergence of antibody escape
mutants in the envelope gene, whereas CD4+ and CD8+ T cells
resulted in coefficients of r = 0.7 and r = 0.66, respectively
(average p = 1 × 10−4 and p = 2 × 10−5, respectively).

Individual SIV-Infected Tissues and Cell
Populations Are Characterized by Distinct
Viral Population Dynamics
Virus sequenced in each sampled anatomical location were
hypothesized to exhibit different population dynamic patterns
from that of the total within-host population because these
tissues and/or cells harbor smaller populations as compared to
the entire host (and thus more of a role of genetic drift).
Moreover, despite systemic regulation by CD8 cells and the
potential for parallel evolution (54), each tissue may also be
characterized by tissue-specific immune selection constraints.
Consistent with these expectations, viral sub-population
dynamics were highly tissue- and even macaque-specific
(Figure S2). In the majority of macaques, plasma virus did
exhibit significant periodicity, with peaks coinciding with that
of total Ne (mean cc=0.63 at mean lag = -9.7 days), the exception
being macaques N05 and N10, suggesting plasma virus may be a
reliable source of information as to the presence of population
turnover and/or selection-driven events but not of the timing or
strength of these events, as noted above. Though similar in
timing to overall Ne, plasma was not the only tissue location to
exhibit an oscillating signal, suggesting other tissues contribute
to the overall Ne pattern and may experience similar, or systemic,
selective pressures, as described above. However, the
contributing tissue(s) was/were not the same across all
macaques. For example, BAL Ne was highly oscillatory in N12
(Figure 2A) but exhibited a pattern representative of logistic
growth in N04. Macaque-specific tissue contributions may speak
to inter-host differences in the localized balance of systemic and
tissue-specific immune responses. Diving deeper, virus derived
from sorted peripheral monocyte and T-cell populations can
exhibit drasti- cally different population dynamics (Figure S2B),
indicating differences in the evolutionary trajectory even within
the same compartment (i.e., blood) (55–57). However, the
comparative roles of genetic drift, local immune pressure, and
infectivity have not been analyzed quantitatively for these
smaller populations.

In general, Ne derived from the individual tissues displayed
less of an oscillatory signal than the total Ne. Although individual
sampled tissue and cell Nes exhibited strong cross- correlations
with the immune cell population sizes, the power of inferring a
relationship among the time series was diminished compared
with the collective Ne due to the relative decrease in large-scale
periodicity. For example, in Figure 5, a striking time-lagged
association between the viral Ne and B-cell populations of N01
can be seen particularly when totaling over the sub-populations,
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indicative of continual prey-predator co-evolutionary interaction
that may be expected under antibody driven selection. Overall,
we performed wavelet cross-spectrum (WCS) analysis between
Ne from each individual sampling location and the immune cell
time series (Table S6), a measure of the coherence of Ne and the
immune cell subsets at different timescales and stages of
infection. The maximal amplitude of WCS was significantly
larger for the total Ne as compared to individual sampling
locations, indicating a more robust periodic relationship for
total Ne and the immune cell counts.
Eco-Evolutionary Model Simulations
Recapitulate Cross-Correlated Oscillations
in Ne and Immune Populations
We next considered a mathematical model for the eco-
evolutionary dynamics of virus and immune populations in
order to simulate the oscillations in viral Ne and cross-
correlations with distinct immune responses. Several previous
works have modeled the evolution and in- teraction of multiple
virus and immune response variants during HIV infection [e.g.,
Gusanov et al. (58) and van Deutekom et al. (59)]; however,
simulations of large-scale fluctuations in viral diversity,
underlying the dynamic Ne observed in this study, have not yet
been explored. The simulation model employed herein closely
resembles that of da Silva (16), wherein estimates of immune-
mediated cell death and patterns of fixation by viral escape
Frontiers in Immunology | www.frontiersin.org 8
mutants were used to simulate the effect of immune selection
on Ne, capturing the observed viral population dynamics during
the early stage of infection. Similar to the consecutive fall and rise
of Ne observed in this study, the virus population during
transmission from one host to another undergoes a drastic
bottleneck (single transmitted genome) followed by rapid
adaptation and subsequent expansion of the population during
this early stage. We expand on this simulation model, describing
a more dynamical system to account for oscillating patterns in
viral and immune data. We build this model using a system of
ordinary differential equations (see Methods), wherein viral
variants are distinguished by a “binary sequence” of length L =
n + k consisting of n epitopes each recognized by an (epitope-)
specific immune response (taken to be CD8+ T-cells here), and k
neutral loci not under selection pressure. The viruses infect a
common target cell population (CD4+ T-cells) for replication
and can undergo point mutations at each locus with some
uniform probability rate. For neutralization of virus and clonal
proliferation, the immune responses recognize their cognate
epitope at (epitope-)specific mass-action rates, which also
depend on the level of CD4+ T-cell help. A viral strain is
either completely susceptible (0) or has evolved complete
resistance (1) to immune recognition at a specific epitope,
which incurs a fitness cost for the virus.

The model description so far yields our base model (see
Figure 6), a special case of the general system consisting of m
virus strains and n immune responses analyzed in (60). This
FIGURE 5 | Cross-correlation of viral effective population size (Ne), combined (All) and in different tissues, and B cell time-series for macaque N01. The top panel displays
cross-correlation, and trajectories of combined Ne with (unshifted and “optimally” time-lagged, respectively) B-cell population. The middle and lower panels contains
analogous cross-correlations and time-lagged plots corresponding to distinct tissue Ne, in particular Plasma (gray), BAL (blue), BM (green), CD3 (purple), CD14 (orange).
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model with simulated random mutation is sufficient for
producing cross-correlated cycles in Ne and an adaptive (e.g.,
CD8) population (see Supplementary Information). In Addition,
we extended the base model to recapitulate the oscillating decline
in CD4 cells and rapid viral increase after immune escape (see
Figure 7), characteristic of onset of AIDS and disease progression
in some of the macaques in our study. In particular, our extended
model accounts for a declining host immune system through
pyroptosis, whereby non-permissive infected cells induce an
inflammatory cascade, exacerbated by chronic immune
presence, leading to excess CD4 cell death, which feeds back
into the immune response by reducing an included term for CD4
help of immune response activation. Also, in accordance with the
sampled immune cells in our experiments, we add a general
innate immune compartment which targets all viral strains but is
weaker than the adaptive response. Our detailed model
description, along with additional simulations and discussion of
alternative parameter/modeling choices, is contained in
Supplementary Information and Methods.

The model depicts a heterogeneous viral population
interacting with several immune responses that differ in
strength determined by their immunodominance hierarchy, a
key factor in driving viral evolution so that different
combinations of multiple epitope escapes in the viral
population rise and fall (60, 61). The model can, thus, be
considered a hybrid of the Red Queen model (62), describing
co-evolution of competing species, and the classical predator-
prey model (35, 36), wherein these species are not competing but
rather locked in a cycle of growth response based on species
interaction. In order to measure Ne in simulations, we utilize the
relationship p = 2NeE, where E is the mutation probability rate
per locus and p is genetic diversity averaged over all loci (see
Methods). The qualitative pattern of sequential periods of large-
scale oscillations in Ne can be reproduced in the model, as
illustrated with the example trajectory shown in Figure 7. The
large amplitude fluctuations in Ne reflect immune escapes as a
dominant adaptive immune population (e.g., CD8) exerts
pressure on the virus, driving diversification at this epitope
until the resistant allele fixates, and the particular immune
response decays. The process then repeats with the rise of a
Frontiers in Immunology | www.frontiersin.org 9
new population targeting a subdominant epitope. Viral load
remains relatively constant during the chronic stage and does
not match large-scale oscillatory behavior of Ne (Figure S9),
consistent with data. Furthermore, the CD4 T-cells steadily
decline in concert with the total adaptive (CD8) immune
population, until a weakened immune system no longer can
control the prevalent multi-epitope resistant virus strains, and
viral load rapidly grows in the last stage of infection.

An immunodominance hierarchy with successively weaker
immune response, along with the overall diminishing CD4 help
and increasing viral diversity, recapitulates increasing
amplitude and period of oscillations in Ne. Assuming measure
of virus in the blood represents the overall behavior of the
census population in the host, oscillations in Ne may not
necessarily reflect changes in census population size as much
as they do patterns in viral diversification.If escape at a single
locus is the predominant population genetic change occurring
in the viral population, local peaks of the adaptive immune
population and Ne are generally aligned since the time of
maximal diversity at the locus (reflecting 50% prevalence of
epitope mutation) is coincidental with the maximum immune
cell count targeting the epitope. Clonal interference can shift
the Ne peak since mutant fixation is delayed because of
competition among viral strains along different lineages, as
observed in Figures 7B, S9, S10 and has been shown in other
work [e.g. (63)]. The presence of concurrent exploration of
several mutational pathways can explain larger phase lags of
peak Ne with respect to peak immune cell count observed in our
data. Furthermore increased diversity and clonal interference
may factor into the larger amplitude of Ne as infection
progresses. Indeed, there is some evidence in the data of
larger phase lags between peak Ne and CD8 during the
second infection stage. Thus, our modeling suggests virus
escape of relatively few early immunodominant responses,
followed by slower escape of several subdominant and
weakened immune populations with higher viral Ne and
competition among mutants. The model output is sensitive to
parameters such as number of loci/epitopes and strength of
immune responses, as also found in (16), and further explored in
Supplementary Information and upcoming work. The complexity
FIGURE 6 | Diagram of mathematical model in the case of n = 2 epitopes and k = 1 neutral loci.
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and host-dependence of several distinct immune responses, and
viral epitopes and neutral loci, are likely to result in larger
magnitude and variability inNe, and phase lags in cross-correlation.
DISCUSSION

As infrequent, and spatially restricted, sampling is available from
human hosts, studies of HIV population and evolutionary
Frontiers in Immunology | www.frontiersin.org 10
dynamics are limited to one or few time points, often with a
focus on the blood and/or the time prior to chronic infection (59,
61, 64). Viral evolutionary patterns over time and space,
however, can be highly informative as to the size and structure
of the replicating viral population, or effective population (Ne),
and how the virus is able to respond via adaptation to natural
and synthetic antiviral defenses. Whereas previous studies in the
context of HIV infection have relied on a single estimate of Ne or
limited point estimates across sparse sampling to distinguish
A B

C D

E F

FIGURE 7 | Model simulations recapitulate cross-correlated oscillations of Ne and total CD8+ T-cells, sequential epitope escapes with viral diversity cycles of
increasing amplitude, pre- cipitating a declining immune system and rapid viral growth at end-time, similar to AIDS progression. Representative simulation of multi-
epitope virus-immune model (1) with viral mutation (see Figure 6) displaying trajectories of: (A) viral effective population size Ne, calculated by proportionality rela-
tionship with average loci genetic diversity (see Methods), and total CD8+ T-cells, (B) cross-correlation of Ne and total CD8+ T-cells, (C) viral load (sum of all viral
strain concentrations) and (D) allele distribution at each of n = 7 epitopes and k = 5 neutral loci, (E) total CD8+ T-cells, alongside target CD4+ T-cells, and (F) time-
series of specific CD8 population for each epitope. The n = 7 epitopes are ordered according to an immunodominance heierarchy with identical immune strengths
for epitopes f = 3, 4 and f = 5, 6, 7 with r1 = 1.05, r2 = 0.95, r3 = r4 = 0.84, r5 = r6 = r7 = 0.66 (10−4). Clonal interference and accumulating viral diversity leads to
more phase lag, larger period and amplitude in last two peaks of Ne and total CD8+ T-cell time-series. Eventual escape from all epitopes coinciding with combined
immune system decline leads to rapid viral growth at end-time. All other model parameter descriptions and values are listed in Table S7.
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between the deterministic or stochastic evolutionary forces at
work, we turned to higher-resolution sampling in an animal
model to estimate relative changes in Ne over time. Importantly,
these data have allowed for a phylodynamic study, incorporating
empirical immunological data, of the contribution of host
immunological factors in shaping viral population dynamics
and disease progression. Previous studies, based on HIV
sequences from peripheral blood of patients longitudinally
sampled during early infection, have inferred larger intra-host
viral Ne (as high as 107) values (7, 8) than the ones reported here
for the SIV/macaque model. Such studies have provided support
for the view of deterministic influences driving the virus
population replicating within the host. Such a discrepancy, is
not unexpected, as estimates of the true magnitude of Ne are
complicated in the presence of strong selection (8, 65). However,
it is the reconstruction of Ne highly periodic behavior, rather
than its absolute magnitude, and its significant relationship with
the similarly immune cell population dynamics that is crucial. In
fact, the relationship of Ne with immune data described herein
can be considered an additional, strong line of evidence in
support of deterministic viral behavior. Earlier work by da
Silva (16) described similarly rapid adaptive behavior using
estimates of Ne during the first 100 days of infection, which
was ascribed to an initially strong CD8 response to multiple (5)
target epitopes simultaneously. da Silva was able to successfully
capture the observed viral diversity with a waning CD8 response,
defined by the rate of infected cell killing. The decline in the CD8
response is consistent with what we observed empirically using
cell counts as a proxy for response, as well as with the simulation
model parameters required to produce the Ne behavior observed
in this study. Expansion of the sequence data to the entire course
of disease progression and inclusion of empirical immunological
data revealed the continuing, periodic nature of the adaptive
behavior observed by da Silva.

Though a strong correlation exists between the viral and cell
population data, several intrinsic viral population variables offer
an explanation for this highly dynamic Ne, including variation in
generation time or reproductive success; fluctuations in genetic
composition; and/or variation in gene flow. Whereas gene flow,
or migration, data estimated from the phylogeny suggest time-
varying migration rates among a subset of tissues that potentially
contribute to the estimation of Ne, statistical analysis of the
potential for spatial structure using the sequence data did not
reject a panmictic, or highly mixed, population. The absence of
significant overall compartmentalization of tissues but presence
of time-varying transition rates among tissues in the phylogeny
can be explained by both real and artefactual migration across
tissues. In the latter scenario, shorter branch lengths due to
strong selective pressure could result in a greater number of
transitions between tissues along branches during the respective
time intervals owing to the greater number of observable nodes.
In the former scenario, selective sweeps imposed by immune
cells capable of effectively acting systemically could lead to
simultaneous subpopulation extinction followed by
recolonization of adaptive strains (local bottleneck) (66). A
subset of tissues (i.e., the similarly dynamic tissues) might
Frontiers in Immunology | www.frontiersin.org 11
undergo viral population extinction whilst others (the relatively
stable tissues) promote migration of infected cells in response to
immune selective pressure (relatively stable tissues). Indeed,
similar timing in Ne reduction was observed among more than
one tissue coinciding with total Ne, although the collection of
contributing tissues varied according to time and individual
subject. During the time of recolonization and a return to
reduced migration rates, the temporary divergence of the
subset of affected tissues would explain the reduced Ne in the
blood as compared with the collective Ne. The temporary nature
of this founder effect and small number of affected tissues could
mask the compartmentalization signal during the test for
panmixia among all sequences and tissues.

The simulation of genetic data with both time- and space-
dependent rates of migration and episodic selective sweeps could
aid in distinguishing true from artefactual gene flow. While
structured coalescent models incorporating variation in gene
flow rates exist (67, 68), sufficient statistical and computational
power are needed to allow for variation across both space and
time. Moreover, as these models are Bayesian in nature, prior
probabilities describing a priori knowledge of migration rates
involving each tissue is key. There exists limited empirical data
as to anatomical migration patterns, even at the level of
connectivity of circulatory systems and cellular movement
involving these systems, although a recent study has quantified
viral replication and migration rate in the brain (69). Once these
data do become available, perhaps a coalescent model
incorporating parallel evolution across compartments (i.e.,
owing to a systemic adaptive response) would not be far behind.
As evidenced in this study, this model may be further complicated
by varying sources of evolutionary constraint during differing
stages of infection. The innate immune system (particularly NK
cells and CD16+ monocytes) and the immunodominant adaptive
CD8 and B cells appear to correlate with a rapid, yet predictableNe

fluctuation during early infection. However, following this early
stage, the time required to reduce SIV Ne, potentially representing
time to adaptation (66), is linked to, and may depend on, both the
strength of the adaptive immune response and the level of viral
genetic diversity accumulated at the time of this response.

Predator-prey interactions acting to drive changes in allele
frequencies and sequential adaptive responses have been
reported (70, 71) and are highly relevant to the study of intra-
host HIV populations. Different from the classical paradigm of
the predator oscillations being a quarter period ahead (positive
time lag) of prey population cycles, the observed neg- ative time
lag may reflect a predator-prey system with strong evolutionary
and competitive features, as found with our mathematical model
and also evidenced in other work examining impacts of clonal
interference on immune escape (63, 72). Importantly, the
strength of the CD8-virus signal also indicates a continued
interaction over the full course of disease progression,
characteristic of episodic viral adaptation to CD8+ and B cell
responses specific to viral variants within each new rebounding
population, even though no correlation has been found between
CD8+ T cell response magnitude and escape rate (58). In
particular, across all animals, the first peaks of Ne and CD8+
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cells line up, which can be explained by both peak viral load
and escape of strong immunodominant response occurring
around this time (10), whereas a consistent negative time lag
appears between subsequent Ne and CD8, matching our
model simulations.

Our findings of large-scale temporal periodicity in intra-
host SIV Ne and connection with immune cell population
activity thus provide a fresh perspective on HIV population
dynamics, incorporating multiple predator-prey interactions
driven by eco-evolutionary feedback between the virus and
immune response. A note of caution, however, needs to be
emphasized given the highly significant correlation we detected
between Ne estimates and sampling times in five of the eight
animals included in the study. We cannot exclude that, at least
in some animals, Ne estimates may be an artifact of such a
strong association. Nevertheless, Ne estimates in each animal do
correlate, in turn, with oscillation in immune cell populations,
which were measured independently through a much greater
sampling density, thus strengthening our confidence in their
biological meaningfulness that reflects a predator-prey
dynamic. Moreover, it is important to remember the
limitations of current methods to estimate Ne. Methods based
on linkage disequilibrium or coalescent estimators that
explicitly model selection can provide point estimates but are
not capable of analyzing longitudinal data and would have
missed Ne dynamic behavior over time. On the other hand, the
coalescent framework in BEAST that we used does capture Ne

oscillation dynamic but potentially underestimates the
magnitude of Ne peaks, which is an acceptable trad-off given
the scope of the present work.

The variability described in this study is of particular interest for
future work, as differing cross-correlation strengths and associated
time lags point to host- and immune cell-specific factors that
determine a network of interactive forces. Additional modeling
can help to dissect these factors, for example, by incorporating
distinct mechanisms involved in B- and T-cell responses, or
inclusion of compartment-specific (as opposed to simply blood)
immune concentrations. Analyses of the frequency and diversity of
individual sites and their position relative to known CD8-targeted
epitopes are also currently underway.

Though the results are readily explained by a predator-prey
system, further studies on experimental inhibition of specific
immune responses during the approximate turnover periods later
in infection (Figure 2A) are necessary to test this hypothesis,
particularly in the context of viral recombination and antiretroviral
therapy (ARV). Recombination increases the genetic complexity,
potentially accelerating adaptation and diversification of the viral
population. ARV itself may bemodeled as a new predator that alters
the ability of the virus to reach Ne levels sufficient for prolonged
survival, and the emergence of novel viral populations in late-stage
infection described in our study. Yet, knowledge of the time-
dependent strength (and magnitude) of viral and immune
responses in the absence of ARV may provide an opportunity for
the development of a treatment strategy designed to evolve as would
the natural, effective immune predator(s) with the end goal of
prey extinction.
Frontiers in Immunology | www.frontiersin.org 12
MATERIALS AND METHODS

Study Population
Eight (N01-N05, N09, N10, N12) Indian rhesus macaques (Macaca
mulatta) were infected intravenously with the viral swarm
SIVmac251 (1 ng SIV p27) (73). All animals were euthanized at the
onset of simian autoimmune deficiency syndrome (SAIDS) at ~200-
550 days post-infection(dpi), the criteria for which included:
1) weight loss > 15% body weight in 2 weeks or > 30% body weight
in 2 months, 2) documented opportunistic infection, 3) persistent
anorexia > 3 days without explicable cause, 4) severe intractable
diarrhea, progressive neurological signs, or significant cardiac and/or
pulmonary signs, as previously described (74). Pathological diagnosis
was determined post mortem by a veterinary pathologist. Diagnoses
forN02,N04,N05,N09,N10, andN12havebeenreportedpreviously
(75), whereas diagnoses for N01 and N03 can be found in Table S8.

Ethical Guidelines
Animals were housed at the New England Primate Research
Center, according to the standards of the American Association
for Accreditation of Laboratory Animal Care and IACUC
protocol #04802. Treatment of all animals was in accordance
with the Guide for the Care and Use of Laboratory Animals of
the Institute of Laboratory Animal Resources (76). Further
detailed information on the handling and supervisional
guidelines for the animal cohort can be found in Lamers et al.
(2015) (45). All possible measures were taken to minimize
discomfort of the animals, and the guidelines for humane
euthanasia of rhesus macaques were followed.

Sample Collection and Sequencing
Plasma and PBMCs, unelicited bronchoalveolar lavage fluid (BAL)
macrophages, and bone marrow (BM) aspirates were collected at
four time points - 21 dpi, 90 dpi, 180 dpi, and necropsy.
Cryopreserved PBMCs were quickly thawed in a 37°C water
bath before being transferred to a 50ml conical tube containing
40ml RPMI with 20% FBS pre-warmed at 37°C. Cells were washed
twice and transferred to a FACS tube and stained for 15minutes at
room temperature with an antibody cocktail consisting of anti-
CD14-Pacific Blue (clone M5E2), anti-CD3-Alexa Fluor 700
(clone SP34-2), anti-CD20-Cy7-APC (clone B27) and anti-
CD16-Cy7-PE (clone 3G8) (all from BD Pharmingen, San Jose,
CA), anti-HLA-DR- ECD (clone L243, Beckman Coulter, Miami,
FL), and Live/Dead Aqua (Invitrogen, Eugene, OR). All antibodies
were titrated to determine optimal concentrations. Antibody-
capture beads (CompBeads, BD Biosciences) were used for
single-color compensation controls for each reagent used in the
study, with the exception of cells being used for anti-CD3 and
Live/Dead Aqua. After staining, cells were washed once, filtered
and resuspended in 1ml PBS. The BD FACSAria cytometer (BD
Biosciences, San Jose, CA) was set up with a pressure of 20 psi and
a 100-um nozzle was used. Instrument calibration was checked
daily by use of rainbow fluorescent particles (BD Biosciences).
After acquiring unstained and single-color control samples to
calculate the compensation matrix, we acquired 1 x 106 events in
order to set up the sorting gating strategy. CD14+ monocyte
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population were gated first based on FSC and SSC parameters,
after which we excluded 1) dead cells by gating out Aqua+ cells
and 2) unwanted cells by gating out CD3+ and CD20+ cells and
then gated on HLA-DR+ cells. From the HLA-DR+ population, a
dot plot of CD14 vs. CD16 was used to make a sorting gate, which
included all monocytes except the CD14- CD16- subset. For CD3+
T-lymphocyte sorting, FSC and SSC parameters were used to gate
lymphocytes, dead cells were excluded by using Aqua staining, and
CD14+ cells were also excluded. Following this procedure, the
CD3+ T-lymphocytes were gated based on CD3 expression and
negativity for CD16. Post-sort purity were checked for each
sample, and both CD14+ and CD3+ sorted subpopulations were
> 98% pure. After cell sorting, the highly pure cell populations
were washed with PBS twice and all liquid was aspirated. Cells
were then stored as dry pellets at 80°C.

Viral genomic RNA was extracted from the longitudinal
samples, as well as from the meninges and brain tissue sections at
necropsy, as described previously (40, 45, 75, 77). Viral RNA
envelope (env) glycoprotein gp120 sequences were obtained using
a modified single genome sequencing protocol based on previously
publishedmethods (78) for all samples. envwas selected for its high
phylogenetic informativeness (79), allowing us to perform
phylodynamic inferences at the level of the host (28, 80), as well
as for individual infected tissues and cell populations (Table S9).
Furthermore, env is the primary target for the humoral host
immune response, and is subject to extensive selective pressures
(41), as the encodedprotein is responsible forbindingandentry into
host cells and is thus highly exposed upon budding (21). Env gp120
RNA sequences were aligned as previously described (40), and
approximately 20 gp120 sequences per tissue per time point were
obtained after removal of potential recombinants. Detailed
information regarding sample collection, sequencing protocols,
and the sequence alignment procedure have been reported
previously (75, 77). Sequence data for the majority of macaques
and the inoculating viral swarm have been used for previous
analyses (40, 45, 75) and all are accessible in GenBank (accession
number designations are found inTable S10). Sequence alignments
can be found in https ://github.com/brmagal is/SIV_
Phylodynamics/Population_Size/DATA.

Bayesian Phylogenetic Inference
We note that the Bayesian phylodynamic analysis described herein
was performed using the coalescent framework with relaxed
molecular clock calibration and a number of simplifying
assumptions, including the absence of significant gene-wide
selection and meta-population structure, and a constant census
viral population size. It is important to note that, while selection and
varying census population size are not included as parametric
constraints on the reconstruction of past population events within
this framework, these phenomena can still be inferred indirectly, as
they impact the evolutionary history and thus the contribution of
past lineages to subsequent generations of virus, on which inference
of effective population size is dependent. Since population structure
can otherwise confound population dynamic inferences, we have
incorporated downstream analysis of the relationship of effective
population size with a commonmeasure of the extent of population
structure over time. Recombination is also a significant source of
Frontiers in Immunology | www.frontiersin.org 13
geneticdiversity in an infected individual, andwouldbeof interest in
the estimation of viralNe. However, recombinant sequences cannot
be resolved in a phylogenetic tree, posing significant problems for
estimation of evolutionary parameters surrounding the
recombination event. While network tree reconstruction tools
exist for the inclusion of recombinant sequences (i.e., as a child of
two parents instead of one), methods of reliable estimation of
population dynamics using these network topologies do not yet
exist. Therefore, sequences identified as putative recombinants
[methodology described in Lamers et al. (81)] were removed from
the alignments. Macaque-specific gp120 sequence alignments for
macaquesN02-N05,N09,N10, andN12were reportedpreviously to
contain sufficientphylogenetic and temporal resolution forBayesian
genealogical tree reconstruction with molecular clock calibration of
internal tree nodes (28, 80). Similar results were observed for N01
and N03 macaque-specific alignments, which were not previously
published, as well as individual tissues for eachmacaque (Table S9).
Briefly, internal nodes of an initial maximum likelihood (ML) tree
were determined to be well supported based on a maximum
threshold of 10% unresolved quartet trees using likelihood
mapping (82), and taxa showed evidence of increasing divergence
from themost recent common ancestor of all sequences (sequenced
inoculating viral swarm), as indicated by positive slope using linear
regression analysis (83).

Bayesian tree reconstruction for each macaque alignment
(including alignments for individual tissues within each
macaque) was performed using BEAST v1.8.2 (47, 48) within
the University of Florida’s high performance computing
platform, assuming an uncorrelated re- laxed molecular clock
model of evolutionary rate variation across branches (84) and
Bayesian Skyride (non-parametric) demographic prior (85).
Skyride is derived from the skyline-based family of coalescent
Ne estimators, which act piece-wise to divide the time between
the present and the root of each tree (within a distribution of
likely trees) into segments during which the effective population
size is defined as the inverse of the probability that each pair of
lineages during that time share a common ancestor (i.e.,
coalesce), as described originally by Pybus et al. (11). Detailed
prior information can be found in the representative xml also in
GitHub. Effective Markov chain Monte Carlo (MCMC) sampling
(14) for all Bayesian analyses was assessed by calculating the
effective sample size (ESS) for each estimated parameter. ESS values
> 200, calculated inTracer (86), were considered suitable indicators
of effective sampling. Estimated viral effective population sizes for
each macaque can also be found in the github repository.
Anatomical trait evolution was also inferred using an MCMC
approach, and the number of transitions between discrete states,
otherwise known as Markov jumps, between discrete states (i.e.,
cellular origin of sequence isolation) along branches of the treewere
counted as previously described (53).
Meta-Population Structure Analysis
The presence of tissue-specific meta-population structure was
previously inferred for ML trees (rooted using SIVMAC239
reference sequence) belonging to macaques N02-N05, N09, N10,
and N12 using two phylogeny-based methods - measures of tree
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correlation coefficient (TCC) and Simmonds Association Index
(SAI) (28). Similar resultswereobserved forN01andN03 (TableS3).

Time-Series Correlation Analysis
Cross-correlations of the distinct immune cell populations with the
viral effective population size (Ne) time-series were computed in
each macaque. For each macaque, the genomic data sampled from
distinct within-host sites was used to compute combined, or total,
and distinct tissue viralNe time-series (utilizing BEAST software as
described in previous section). The different immune cell
populations were sampled (see above) at a distinct set of time
points that are not equally spaced and less frequent compared to the
time points at which Ne is computed. In order to facilitate cross-
correlation analysis between Ne and the immune cell populations,
the immune cell data was linearly interpolated onto the Ne time
points which were evenly spaced. The viral Ne trajectories were
smooth with some oscillatory signals. The extent of periodicity
differed among tissues andmacaques, but the oscillations tended to
have large average period (time between consecutive peaks), with
three to four definitive peaks for the total estimated Ne.
Autocorrelation of the total Ne plots was performed to verify
periodicity. The immune cell data are noisier than Ne, however
large period oscillations can still be visually detected in the time-
series and their corresponding autocorrelation plots.

The cross-correlation of two stochastic processes X and Y,
rXY, as a function of time lag, t, is given by

rXY (t) =
E½(Xt − mX)(Yt+r − mY )�

(sXsY )
,

whereEdenotes expectedvalue (calculated as sample covariance
above), sX, sY are the sample variances, and µX, µY are the sample
variances, and μX,μY are the samplemeans. The “optimal” time lag
of most significant correlation and corresponding time-shifted
overlapping plots were investigated in order to detect relationship
between viralNe and host immune population time-series datasets.
Cross-correlation significance was assessed by a Student’s t-
distribution based test, commonly utilized for Pearson’s
correlation coefficient. Due to the inherent noise, we performed
some pre-whitening (filtering) of the immune cell data and
calculated the cross-correlations. However, the smoothness of the
viral Ne did not necessitate the pre-whitening, and calculation of
optimal time lags appeared more visually accurate with the
unfiltered data. Thus, the cross-correlation analysis with the
unfiltered datasets was utilized. Additionally, we checked cross-
correlation calculations with the viralNe data interpolated on to the
immune cell data time points (containing less observation points).
However this appeared less accurate in termsof the optimal time lag
than the calculations with the other interpolation on to the more
evenly spaced and more frequent viral Ne time points.

A linear random effects model using the lme4 package in R (87)
was used to evaluate the relationship of time-lagged cell population
counts with viral Ne across the cohort of macaques used in this
study. Consistency criteria for the optimal time lag were chosen so
that the lag produced the same direction of correlation (positive or
negative) and of lag (e.g., peak in Ne consistently following that of
the cell population) for that cell population across all animals.
Frontiers in Immunology | www.frontiersin.org 14
Correlation directionality for eachcell populationwas chosenbased
on maximizing average correlation over all macaques, with the
optimal time lag chosen as the time at which the greatest
significance in cross-correlation with Ne was achieved.

We also performed wavelet spectral analysis to determine
wavelet power and cross spectrum (WCS) and coherence of Ne

and the immune cell subsets at different timescales and stages of
infection, as inBigot et al. (88).WeutilizedcomplexMortletwavelet
transform to smooth the time-series andcomputed the amplitudeof
WCSof the transformed time-series. The results largely concurwith
observations from cross-correlation and autocorrelation analysis
for total Ne, along with showing the particular intra-host time
intervals and scales at which significant periodic relationships
between different immune cell counts and Ne. Additionally, the
WCS amplitude for the individual tissue Ne (with the distinct
immune cell populations) was compared to total Ne. Table S6
contains values of thisWCS amplitude for eachNe and immune cell
population, averaged across time in the different time-series and
averaged acrossmacaque for each immune populations. Additional
wavelet spectral analysis output is available upon request.

Mathematical Modeling
We consider the following extension of a general virus-immune
dynamics model analyzed in Browne et al. (2018) (60), which
includes a population of target cells (X), m competing virus strains
(Yi denotes strain i infected cells), and n variants of adaptive immune
response (Zj), along with an innate immune response (W):

dX
dt = b − cX − Xo

m

i=1
biYi 1 + h0 W +o

n

j=1
Zj

 ! !
,

dYi
dt = biYiX − diYi − Yio

n

j=1
rijZj − rYiW ,   i = 1,…,m

dZj

dt = qj(1 + c0X)Zjo
m

i=1
rijYi − mjZj,   j = 1,…n

dW
dt = qr(1 + c0X)Wo

m

i=1
Yi − mW :

(1)

Here we are assuming that virus load (the abundance of
virions) is proportional to the amount of (productively) infected
cells. This assumption has frequently been made for HIV since
the dynamic of free virions occurs on a much faster time scale
than the other variables. The function f (X) = b-cX represents the
net growth rate of the uninfected cell popula- tion. The
parameter bi is the infection rate and di is the decay rate for
infected cells infected with virus strain i. The parameter µj
denotes the decay rate of the immune response pop- ulation j.
We assume immune killing and activation rates are mass-action,
representative of these events occurring as immune response
cells recognize epitopes on the surface of in- fected cells. The
parameter rij describes the killing/interaction rate of immune
population Zj on a strain-i infected cell, whereas qjrij describes
the corresponding activation rate for Zj (proportional to
interaction rate rij). Additional terms included in the model are
the parameter h0 representing pyroptosis of CD4-cells dependent
on chronic immune activation and cell infection, similar to
October 2021 | Volume 12 | Article 709962
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Wang et al. (89), and c0 allowing for a factor of CD4 help in
the immune response, and we explain the mechanisms
motivating these additional terms involving h0 and c0
further below.

We suppose there are m = 2n+k possible viral mutant strains
distinguished by infection rate bi and the binary string i 0, 1 n+k

determining susceptibility (0) or resistance (1) against each of n
epitopes or determining allele of k neutral loci. Inherent to the
modeling framework is the viral fitness landscape, specifying the
infection rate for each viral strain based on thefitness costs incurred
for epitope resistance mutations encoded in the binary sequences.
Similar to the methods in van Deutekom et al. (59), we simulate
mutations of the L = n + k loci by drawing from a binomial
distribution. We consider the following measure of genetic
diversity. The probability p that two randomly sampled viruses
differ in their allele at a particular locus, P, is given by p = 2p (1 p)
where p is the frequency of the “0 allele” in the population at locusP.
According to coalescent theory (90), averaging over a large number
L of loci, p = 1

LS
L
‘=1p‘,gives the relationshipp= 2NeE, whereE is the

mutation rate probability for each loci. With this relationship of
effective population size,Ne, and diversity, p, we computeNe, along
with the cross-correlation with total immune response for each
model simulation.

The number of epitopes simultaneously targeted by the immune
system has been estimated from previous analyses of sequence data
from all ormost viral genes, which found escapemutations of up to
five epitopes spreading to fixation simultaneously (91–93). Asquith
et al. (94) and da Silva (16) have argued in favor of a potentially
larger number owing to sampling-mediated underestimation. Due
to computational limitations, we chose to consider n = 7 epitopes
(with a maximum of 3 epitopes simultaneously fixating) and k = 5
neutral loci (Figure 7). The relatively small number of locimay tend
to reduce Ne compared with the actual observed data. We assume
each epitope mutation imparts equal independent multiplicative
fitness costs, i.e. if (i1… in) represents the epitope sequence of strain
i, then bi = b0(1 − k )i1+⋯+in , which corresponds to a positive
epistasis that promotes a sequential nested immune escape
trajectory (60). Furthermore in this example simulation, we
prescribe a fixed immunodominance hierarchy with equal
immune strength for epitopes 3 and 4, and epitopes 5,6,7, which
allows us to illustrate the impact of clonal interference onphase lags
between viralNe and the immune population. The initial condition
for the virus is set to be a mix of wild-type strains (all epitopes are
susceptible), where the last neutral locus (locus P = n + k = 12) is
varied so that 50% of its “1-allele” is in the initial viral swarm (see
Figure 7C). All parameters and further model description, along
with robustness check for cross-correlated oscillations of Ne and
immune response under different fitness landscapes and parameter
assumptions in the base model without pyroptosis, CD4 help or
innate immunity [h0 = c0 = 0, W = 0 in system (1)]], are given in
Supplementary Information.

To further explain our immunological assumptions, we first
note that pyroptosis is the mechanism whereby non-
permissive CD4 infection triggers the caspase-1 pathway,
inducing pyroptosis, which can secrete inflammatory
cytokines such as IL-1. These cytokines establish a chronic
Frontiers in Immunology | www.frontiersin.org 15
inflammation state and attract more CD4+ T cells to the
inflamed sites, resulting in more infection and cell death.
Thus, pyroptosis generates a vicious cycle in which dying
CD4+ T cells secrete inflammatory signals that attract more
CD4+ T cells to be infected and die. The process is exacerbated
by chronic immune act ivat ion, hence inclusion of
concentration of total immune response in the “pyroptosis
factor” h0 for non-permissive CD4 infection rate. There is both
experimental (=[Doitsh et al. (95)] and modeling [Wang et al.
(89)] support for this mechanism driving AIDS progression.
Furthermore, we note that although differentiating between
non-specific and specific T-cells can make the model more
complete, given that the model is already very complex, we
choose to consider the overall CD4 population, along with
(HIV-)specific CD8 cells. The (non-specific and specific) CD4
population (indirectly and directly) orchestrates overall
immune response, hence the helper T-cell term c0X. While
Betts et al. (96), Wilson et al. (97), and Ogg et al. (98) report
that 8-50% of CD8 cells are HIV-specific during acute
infection, we did not evaluate viral specificity of the immune
cells isolated from the peripheral blood in this study.
Considering the dynamic nature of this immune cell
population and correlation with viral Ne, we model an
adaptive immune population that emerges with differing
specificity with each peak, or increase, in immune population
size. However, we incorporate changes in only the strength of
immune response in our model. Ogg et al. (98) have shown that
the proportion of HIV- specific CD8 cells decreases with
initiation antiretroviral therapy (ART). Hence, while we are
unaware of changing proportions for the CD8+ and B cell
population in the absence of ART, it is certainly possible that
dynamic proportions over time can contribute to viral
adaptation and should be considered in a similar model
following the collection of data on temporal variation in
these values.
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