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Myelination plays an important role in cognitive development
and in demyelinating diseases like multiple sclerosis (MS), where
failure of remyelination promotes permanent neuro-axonal dam-
age. Modification of cell surface receptors with branched N-gly-
cans coordinates cell growth and differentiation by controlling
glycoprotein clustering, signaling, and endocytosis. GlcNAc is a
rate-limiting metabolite for N-glycan branching. Here we report
that GlcNAc and N-glycan branching trigger oligodendrogenesis
from precursor cells by inhibiting platelet-derived growth factor
receptor-a cell endocytosis. Supplying oral GlcNAc to lactating
mice drives primarymyelination in newborn pups via secretion in
breast milk, whereas genetically blocking N-glycan branching
markedly inhibits primary myelination. In adult mice with toxin
(cuprizone)-induced demyelination, oral GlcNAc prevents neuro-
axonal damage by driving myelin repair. In MS patients, endoge-
nous serumGlcNAc levels inversely correlated with imagingmeas-
ures of demyelination and microstructural damage. Our data
identify N-glycan branching and GlcNAc as critical regulators of
primary myelination and myelin repair and suggest that oral
GlcNAcmay be neuroprotective in demyelinating diseases likeMS.

Myelination of axons by oligodendrocytes in the central
nervous system plays a critical role in normal cognitive devel-
opment and function and in demyelinating disease such asmul-
tiple sclerosis (MS) (1, 2). In addition to speeding conduction of
the action potential, myelination supports axon health and sur-
vival (3–5). In MS, remyelination of demyelinated axons by oli-
godendrocytes is often incomplete despite the presence of
abundant oligodendrocyte precursor cells (OPC) throughout
the brain (6–10). Themolecular mechanisms that block remye-
lination in MS are incompletely understood, and there is a lack

of therapies to promote myelin repair. Failure to adequately
remyelinate is influenced by the microenvironment of the MS
lesion, where reactive astrocytes, microglia, and macrophages
produce various inhibitory factors leading to disruption in OPC
differentiation, oligodendrocyte migration, process outgrowth,
and attachment to axons (11). Multiple studies have identified
molecules that limit OPC differentiation into myelin-produc-
ing cells including LINGO-1 (12), various extracellular matrix
proteins (13, 14), and myelin debris (15). Thus, increasing OPC
differentiation has become an important strategy for promot-
ing remyelination inMS and other demyelinating diseases (16).
Cell surface and secreted proteins are co- and post-transla-

tionally modified on Asn(N) by the addition of carbohydrates
(N-glycans) in the endoplasmic reticulum and subsequently re-
modeled in the Golgi. The degree of GlcNAc branching in
N-glycans promotes binding to galectins, a family of sugar-
binding proteins (Fig. S1A). Polyvalent galectin-glycoprotein
interactions at the cell surface form a macromolecular lattice
that simultaneously controls the movement, clustering, and/or
endocytosis of multiple receptors and transporters to control
signaling, cell growth, differentiation, and death (17–24). For
example, N-glycan branching controls epithelial cell growth by
regulating receptor tyrosine kinases endocytosis (17–20),
promotes glucose uptake in mesenchymal and pancreatic b
cells by inhibiting glucose transporter endocytosis (19, 25), and
reduces T-cell, B-cell, and neutrophil pro-inflammatory
responses by coregulating the clustering and/or endocytosis of
multiple glycoproteins (17, 21, 23, 27–29). These mechanisms
in turn impact cancer, type II diabetes, and autoimmunity (20).
For example, reductions in N-glycan branching are associated
with MS and promote both inflammatory demyelination and
neurodegeneration in mice, the latter by an unknown mecha-
nism (17, 30–36).
Given the diverse and pleiotropic effects ofN-glycan branch-

ing, identifying and manipulating regulatory mechanisms may
provide new insights into disease pathogenesis and opportuni-
ties for therapeutic intervention. In this regard, metabolism is a
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critical regulator of N-glycan branching by controlling avail-
ability of the sugar-nucleotide UDP-GlcNAc, the substrate
used by the Mgat family of N-glycan branching enzymes (19,
20, 24, 37, 38). UDP-GlcNAc is generated in the hexosamine
pathway de novo from glucose or by salvage from GlcNAc.
Extracellular GlcNAc enters cells through micropinocytosis,
with supplementation of cells or mice with GlcNAc inhibiting
pro-inflammatory T-cell responses and murine models of
inflammatory demyelination by enhancing N-glycan branching
(19, 31, 37, 38).
Targeted deletion of galectin-3, a ligand forN-glycan branch-

ing, leads to decreased production of oligodendrocytes, poor
myelination of axons, and reduced ability to remyelinate after
injury (39). In humans, loss-of-function mutations in PGM3, a
gene required to generate branched N-glycans from GlcNAc,
display reduced branching and severe CNS hypomyelination
(40). Platelet-derived growth factor–AA plays a critical role in
oligodendrogenesis (41), with its receptor (PDGFRa) expressed
in oligodendrocyte progenitor/precursor cells (42). In epithelial
cells, N-glycan branching deficiency reduces PDGFRa surface

expression by enhancing loss via endocytosis, leading to
reduced signaling (18). Thus, here we examine the hypothesis
that GlcNAc may provide an oral therapeutic to raise N-glycan
branching in OPCs, promote myelination, and reduce the
potential for neurodegeneration by initiating oligodendrocyte
differentiation via enhanced PDGFRa surface expression and
signaling in OPCs.

Results

GlcNAc and N-glycan branching trigger oligodendrogenesis
by inhibiting PDGFRa endocytosis

We examined oligodendrogenesis in vitro using mouse neu-
ral stem cells (NSC) derived from the medial ganglionic emi-
nence of E12.5 mouse embryos, where OPCs first appear.
GlcNAc treatment of NSCs for 48 h in growth media lacking ex-
ogenous differentiation cytokines (i.e. no PDGF-AA, T3, or
CNTF) significantly increased N-glycan branching and PDGFRa
surface expression (Fig. 1, A and B), the former assessed by L-
PHA (Phaseolus vulgaris leukoagglutinin) flow cytometry (17,

Figure 1. GlcNAc and N-glycan branching promotes oligodendrogenesis. A–D, flow cytometry of E12.5 NSCs from CD1 (B and C) or C57BL/6 (D) mice cul-
tured in growth media (FGF1 EGF)6 GlcNAc for 48 h. Cell surface binding levels of L-PHA and PDGFRa are measured as mean fluorescence intensity (MFI). E,
flow cytometry and immunofluorescence microscopy of E12.5 NSCs in differentiation media (FGF 1 PDGF-AA) from Mgat51/1, Mgat51/2, and Mgat52/2

C57BL/6 mice. Data are three technical replicates per group (A–E), representative of 3 (A–C) or two (D and E) experiments. p-values are by one-way ANOVA
with Sidak’s multiple comparison test. All error bars are standard error. *p, 0.05, **p, 0.01, ***p, 0.001, ****p, 0.0001.
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22). Consistent with increased PDGFRa surface expression,
GlcNAc also promoted pre-oligodendrocyte differentiation as
evidenced by augmented expression of oligodendrocyte tran-
scription factor (OLIG2) and increased numbers of O4- and
GalC-positive cells (Fig. 1, A–C and Fig. S1, B and C). Double
staining for PDGFRa and O4 revealed that GlcNAc promoted
development of pre-oligodendrocytes (PDGFRa1O41) with no
change in the number of OPCs (PDGFRa1O42) (Fig. 1D). Thus,
after only 2 days of culture, GlcNAc initiated oligodendrogenesis
fromNSCs despite the absence of exogenous differentiation cyto-
kines such as PDGF-AA. Remarkably, GlcNAc in growth media
was more potent than differentiation media containing exoge-
nous PDGF-AA at initiating oligodendrogenesis (Fig. S1D). Com-
bining GlcNAc with PDGF-AA also enhanced NSC differentia-
tion toO41 pre-oligodendrocytes (Fig. S1E).
To confirm a role forN-glycan branching in oligodendrogen-

esis, we first used kifunensine to inhibit N-glycan branching
(23) in NSC induced to differentiate by exogenous PDGF-AA.
Reducing branching in NSCs using kifunensine significantly
reduced PDGFRa surface expression and the number of O41

cells induced by PDGF-AA differentiation media (Fig. S1F). To
confirm this result genetically, we utilizedMgat52/2 and doxy-
cycline-inducible Mgat1f/f/tetO-cre/ROSA-rtTA mice (17, 22).
Mgat5 deletion mildly reduces N-glycan branching, whereas
Mgat1 deletion completely blocks N-glycan branching (Fig.
S1A). In vitro doxycycline treatment of NSC from Mgat1f/f/
tetO-cre/ROSA-rtTA mice readily induced deletion of Mgat1,
as measured by loss of L-PHA binding (Fig. S1G). Mgat5- and
Mgat1-deleted NSCs displayed decreased surface levels of
PDGFRa and were markedly reduced in their ability to differ-
entiate into O41 pre-oligodendrocytes in response to PDGF-
AA differentiation media (Fig. 1E and Fig. S1G). InMgat5 het-
erozygous NSCs, small reductions in N-glycan branching also
inhibited oligodendrocyte differentiation (Fig. 1E). Thus, subtle
changes in N-glycan branching can markedly impact oligoden-
drocyte differentiation fromNSC in vitro.

GlcNAc and N-glycan branching promote primary
myelination in mice

Next, we examined whether oral GlcNAc can cross the
blood-brain barrier to promote oligodendrocyte differentiation
andmyelination in vivo. Adult mice (n = 6) and lactating moth-
ers were provided with/without 13C-labeled GlcNAc ([U13C]
GlcNAc) (10) in their drinking water, and metabolites derived
from perfused brains were analyzed by liquid chromatogra-
phy–tandem mass spectrometry (LC–MS/MS). Although this
method does not resolve stereoisomers ofN-acetylhexosamines
(i.e. GlcNAc versus GalNAc), a reversible 4-epimerase equili-
brates UDP-GlcNAc and UDP-GalNAc in vivo (19). LC–MS/
MS identified UDP-[U13C]-N-acetylhexosamines (UDP-
[U13C]-HexNAc) in treated adult female mouse brains and in
the brains of their suckling pups (Fig. 2A). This demonstrates
that orally delivered GlcNAc is not only able to cross the blood-
brain barrier and be metabolized to UDP-GlcNAc by CNS cells
but is also secreted at sufficient levels in breast milk to raise
UDP-GlcNAc in the brains of suckling pups.

To assess whether oral GlcNAc promotes oligodendrogene-
sis in vivo in the absence of inflammation, we examined pri-
mary myelination in mice during the early perinatal period.We
provided GlcNAc or vehicle to pregnant/lactating female mice
from E12.5, postnatal day 3 (P3) or P5 through to P8. Indeed,
oral GlcNAc increased N-glycan branching in PDGFRa1 cells
and the number of pre-oligodendrocytes (PDGFRa1O41),
immature oligodendrocytes (PDGFRa2O41), and mature oli-
godendrocytes (MBP1), with little effect on the number of
OPCs (PDGFRa1O42) (Fig. 2B and Fig. S2A). The lack of
change in OPC number is consistent with our in vitro data (Fig.
1D) and suggests that GlcNAc promotes OPC self-renewal
and/or NSC differentiation to OPC, resulting in a stable num-
ber of OPCs. Consistent with increased oligodendrogenesis,
oral GlcNAc also increased primary myelination when pro-
vided to pups from P3-8, as assessed by increased levels of
staining for myelin basic protein (MBP) and myelin (as meas-
ured by FluoroMyelin) (Fig. 2C).
To confirm that N-glycan branching promotes myelination

in the absence of inflammation in vivo, we generated mice with
tamoxifen-inducible deletion ofMgat1 only in OPCs and oligo-
dendrocytes, namely Mgat1f/fPlp1-cre/ERTc1 mice. Because
proteolipid protein (PLP) promoter–driven Cre expression
only becomes restricted to the oligodendrocyte lineage (OPC
and oligodendrocyte) at P28 (43), we focused on adult mice.
OPCs continue to proliferate and generate significant new
myelin in adulthood, with myelination gradually doubling from
;2–10 months (44–46). Tamoxifen readily inducedMgat1 de-
letion in O41 oligodendrocytes but not O42 cells in vivo, as
determined by loss of L-PHA binding by flow cytometry (Fig.
S2B). Consistent with slow accumulation of new myelin from
OPCs during adulthood, 2 weeks following tamoxifen treat-
ment (Mgat1 deletion) adultMgat1f/fPlp1-cre/ERTc1 mice did
not display significant differences in brain levels of MBP or
myelin (FluoroMyelin) relative to tamoxifen-treated controls
(Fig. S2C). However, 8 weeks after initial tamoxifen treatment,
Mgat1 deletion resulted in significant reductions in levels of
MBP, myelin (FluoroMyelin), and number of total (Olig21) and
mature (Olig21CC11) oligodendrocytes, along with increased
numbers of immature (Olig21CC12) oligodendrocytes (Fig.
2D and Fig. S2D). To confirm that these results primarily arose
from a defect in new myelin formation from OPCs, rather
than a defect in mature oligodendrocytes, we generated
Mgat1f/fPdgfra-creER1 mice where tamoxifen induces dele-
tion of Mgat1 in OPCs but not mature oligodendrocytes.
Indeed, 8 weeks but not 2 weeks after tamoxifen treatment,
deletion of Mgat1 in OPCs significantly reduced levels of
MBP, myelin (FluoroMyelin), and number of total (Olig21)
and mature (Olig21CC11) oligodendrocytes along with
increased numbers of immature (Olig21CC12) oligodendro-
cytes (Fig. 2E and Fig. S2E). Tamoxifen has been reported to
promote myelination (47); however, Mgat1 deletion reduced
myelination despite potential positive effects of tamoxifen.
Together, these data demonstrate that GlcNAc and N-glycan
branching promote primary myelination in mice by driving
OPC differentiation.
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GlcNAc prevents damage to demyelinated axons by
promoting myelin repair

To explore whether GlcNAc can promote remyelination in
adult mice following myelin injury, we utilized the cuprizone
model of nonimmune induced demyelination/remyelination
onMgat51/2 and WT C57BL/6 mice. Cuprizone at 0.2% indu-
ces demyelination in the corpus callosumby 3 weeks, withmax-
imum demyelination at 5–6 weeks. Partial remyelination via
maturation of OPCs begins at the height of demyelination and
becomes complete ;3–5 weeks after cuprizone withdrawal.
Given this, we examined four different treatment regimens

(Fig. 3A). When GlcNAc was concurrently provided during the
final 3 weeks of a 6-week cuprizone (0.2%) exposure in WT
mice, GlcNAc prevented loss of motor function (as measured
using rotarod fall latency) while increasing MBP levels and
reducing axonal damage (as measured by reduced accumula-
tion of amyloid precursor protein (APP)) in the corpus cal-
losum (Fig. 3C). To address potential confounding effects of
GlcNAc on inhibiting demyelination by cuprizone during con-
current treatment, we initiated treatment of WT mice for 2
weeks orMgat51/2 mice for 1 or 4 weeks of GlcNAc only after
cuprizone was stopped (Fig. 3A). This revealed that GlcNAc

Figure 2. GlcNAc and N-glycan branching promote primarymyelination. A–C, newborn PL/J mice were given exogenous GlcNAc or [U13C]GlcNAc by pro-
viding their nursing mothers with GlcNAc or [U13C]GlcNAc at 1 mg/ml in drinking water from P3–P8. The pups and mothers were sacrificed at P8 and brains
were analyzed by LC–MS/MS for UDP-[U13C]HexNAc (A, n = 3 ,3 adult, n = 4,4 P8 pups), flow cytometry (B, n = 3 ,3) or immunofluorescence microscopy (C, n =
5,5) for the indicatedmarkers. L-PHA staining in (B) is gated on PDGFRa1 cells. Data in (C) is the average of fluorescence intensity of the area depicted in red of
three brain slices per mouse. One-sided t test. D and E, the indicated adult mice (10 weeks old) were treated with tamoxifen at weeks 0 and 4 and sacrificed at
week 8, and brains were analyzed by immunofluorescence microscopy for MBP, myelin (FluoroMyelin), Olig21, and CC11 cells (n = 5 (2 male, 3 female), 8 (6
male, 2 female) (D), and n = 5 (2 male, 3 female), 4 (2 male, 2 female) (E); one-sided t test). Each data point in the graphs represents average fluorescence or cell
counts of the highlighted area from three (D) or two (E) different brain slices permouse.
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enhanced levels of MBP, myelin (FluoroMyelin), and mature
oligodendrocytes (CC11Olig21) while reducing the amount of
degradedMBP (dMBP)/myelin degeneration within the corpus
callosum (Fig. 3, D–F). dMBP was detected by an antibody that
specifically recognizes areas of myelin degeneration (48). EM
analysis confirmed these results, revealing that GlcNAc

enhanced the number of myelinated axons and the degree of
myelination as measured by the g-ratio while also reducing
axon loss and the number of degenerating and dystrophic/
swollen axons (Fig. 3G and Fig. S3A). GlcNAc also enhanced
the number of paranodes, which increase with remyelination
(Fig. S3A) (49). Enhancement of myelination by GlcNAc

N-acetylglucosamine and myelination
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depends on time, because the increase in FluoroMyelin staining
in Mgat51/2 mice was ;2-fold greater with 4 weeks versus 1
week of GlcNAc treatment (Fig. 3, D and F). Importantly, the
subtle reductions in N-glycan branching induced in Mgat51/2

mice did not alter baseline levels of myelin, yet they reduced
remyelination following cuprizone-induced injury relative to
Mgat51/1 control mice (Fig. S3, B and C). Together, these data
indicate that GlcNAc and N-glycan branching promote myelin
repair and provide neuro-protection to axons following
demyelination.

A marker of serum GlcNAc inversely associates with imaging
markers of myelin-axon damage

To explore whether alterations in GlcNAc may impact mye-
lination status in MS patients, we used a cohort of 180 MS
patients to correlate endogenous serum HexNAc levels with
measures of white matter damage by MRI of the brain.
Increased T2w lesion volume and count on brain MRI are
measures of the extent and frequency of demyelination, respec-
tively. T2w lesion volume correlated with lower HexNAc serum
levels (Fig. 4A, p = 0.020), whereas T2w lesion count did not
(p = 0.387). Likewise, patients with contrast-enhancing lesions,
a marker of active inflammation inMS, had similar serumHex-
NAc levels to those without (p = 0.866), suggesting that
GlcNAc primarily affects the extent of permanent demyelin-
ation rather than initiation of inflammatory demyelination.
T1w/T2w ratio maps (50) reflect microstructural integrity of
myelin/axons in normal-appearing white matter (51) and corti-
cal gray matter (52, 53). With age and gender as covariates, low
serum HexNAc levels were strongly associated with lower
T1w/T2w ratios indicating microstructural damage of myelin/
axons in both normal-appearing white matter (r2 = 0.18, p =
2.253 1025) and gray matter (r2 = 0.23, p = 1.323 1026), (Fig.
4, B and C). Together, these data are consistent with our mouse
data and suggest that GlcNAcmay promote myelination inMS.

Discussion

Here we report a novel pathway for regulating oligodendro-
genesis, primary myelination, and myelin repair by N-glycan
branching and GlcNAc. Our data demonstrate that GlcNAc
and N-glycan branching are neuroprotective for demyelinated
axons by promoting oligodendrogenesis and myelination from
OPCs. The association of low endogenous GlcNAc with
increased myelin-axon microstructural damage in MS patients

suggests that this mechanism is relevant to pathogenesis of MS.
This hypothesis is consistent with recent data suggesting that
some MS patients are blocked in their ability to generate new
myelin from progenitors (9). Themechanisms that drive neuro-
degeneration in MS are poorly understood, and our data raise
the possibility that alterations in N-glycan branching and/or
GlcNAc availability may promote neurodegeneration by block-
ing remyelination. Indeed, we find that low levels of serum
GlcNAc in MS patients is associated with a progressive disease
course, clinical disability, and multiple neuroimaging measures
of neurodegeneration (unpublished data).
Providing oral GlcNAc to lactating female mice increased

primary myelination in nursing pups via delivery of GlcNAc in
breastmilk. In humans, GlcNAc is amajor component of breast
milk oligosaccharides (;1.5 to ;0.6 mg/ml from term to 13
weeks) (54) and can be released as a monosaccharide by infant
microbiota (55). Thus, breastfed newborns consume ;0.5–1.5
g of GlcNAc per day or;100–300 mg/kg/day for a 5-kg infant.
This is similar to the;160mg/kg/day dose that we observed to
promote myelination in adult mice. In contrast to human
breastmilk, GlcNAc is not a significant component of commer-
cial baby formula. Breastfed infants display increased myelina-
tion and cognitive function compared with formula-fed infants
(56, 57), but the mechanism is unknown. Our data suggest that
GlcNAc in human breast milk may be a major driver of this
effect.
GlcNAc and N-glycan branching markedly enhanced cell

surface expression of PDGFRa, a critical initiator of OPC dif-
ferentiation. However, GlcNAc and N-glycan branching likely
affect other cell surface receptors/transporters in OPCs to drive
myelination and promote axonal health. For example, cell motil-
ity is significantly enhanced by N-glycan branching via reduced
clustering of integrins (58, 59). Such activity in OPCs would
enhance their ability to traffic to sites of demyelination and pro-
mote myelin repair. N-glycan branching also stimulates glucose
transporter surface retention to enhance glucose uptake (19, 25).
Glucose transporter 1 (GLUT1) in oligodendrocytes promotes
axonal health and function by increasing transfer of lactate to
axons via increased glucose supply to the glycolytic pathway in
oligodendrocytes (60). Thus, part of the neuroprotective effect of
GlcNAc followingmyelin repair may be through enhanced trans-
port of glucose into oligodendrocytes.
GlcNAc and/orN-glycan branching also play important roles

in suppressing T cell– and B cell–mediated inflammatory de-
myelination (17, 28, 30–33, 35, 37, 38). In T cells, GlcNAc and

Figure 3. Oral GlcNAc promotes remyelination and limits axonal injury. A, the ability of GlcNAc to promote myelin repair in vivo was assessed using the
cuprizone model, with oral GlcNAc treatment (1 mg/ml in drinking water) during the last 3 weeks of a 6-week cuprizone exposure (I, active phase treatment)
or after 5 weeks of cuprizone treatment for 1, 2, or 4 weeks (II, III, and IV, recovery phase treatment). WT (I and III) or Mgat5 heterozygous (II and IV) C57BL/6
mice were used. B, area of the medial corpus callosum (CC) analyzed. C–F, shown is the latency to fall in an accelerated rotarod test and immunofluorescence
staining of the corpus callosum for MBP, degraded MBP (dMBP), APP, myelin (FluoroMyelin), and/or CC1/Olig2 from WT mice with active phase GlcNAc treat-
ment (C, n = 5,5, all male),Mgat5 heterozygous mice with recovery phase GlcNAc treatment for 1 week (D, n = 8 (5 male, 3 female), 7 (4 male, 3 female)), WT
mice with recovery phase GlcNAc treatment for 2 weeks (E, n = 11,14 for rotarod, n = 5,7 for immunofluorescence, all male), orMgat5 heterozygous mice with
active phase GlcNAc for 4 weeks (F, n = 6,6 with 4 male and 2 female per group). Data points represents average fluorescence from 3–4 different brain slices
per mouse. Rotarod p-values by 2-way ANOVA with Sidak’s multiple comparisons post-test. Immunofluorescence p-values by one-tailed t test. Scale bar = 50
mM. G, the CC of mice from the 4-week recovery phase treatment group in panel (F) were analyzed by EM (n = 3,3 with 2 male and 1 female per group). Repre-
sentative electronmicrographs in control and GlcNAc treatment groups are shown, scale bar = 1 mM. Filled and empty arrowheads indicate examples of myelin-
ated and unmyelinated dystrophic axons, respectively. Plot of g-ratio versus axon diameter (n = 214 and 222 axons) was counted blindly from two fields
(105mm2) per mouse (p-value comparing best fit curves from nonlinear regression, R2 is the goodness of fit for each group). Numbers of total axons, myelin-
ated axons, and dystrophic axons (axon diameter. 0.7 mM) were counted blindly in six fields (105mm2) permouse in each treatment group (n = 18, 18, p-value
by one-sided t test). All error bars are standard error.
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N-glycan branching suppress activation signaling via the T-cell
receptor (17, 21, 22), inhibit pro-inflammatory TH1 and TH17
differentiation (24, 38), and enhance anti-inflammatory T regu-
latory cell differentiation (24). B-cell depletion is a potent ther-
apy in MS, predominantly acting by suppressing innate antigen
presenting cell function rather than via antibody production
(61, 62). N-glycan branching in B cells reduces pro-inflamma-
tory innate signaling via toll-like receptors and inhibits antigen
presenting cell activity, yet it promotes adaptive responses

through the B-cell receptor (28). Thus, oral GlcNAc is
uniquely positioned as a therapeutic to reverse three major
targets driving MS pathogenesis, namely pro-inflammatory
T-cell responses, pro-inflammatory innate B-cell activity,
and myelin repair. No current MS therapy has such diverse
mechanisms of action.
Concentrations of GlcNAc required to raise N-glycan

branching in vivo are markedly lower than those required for in
vitro activity (37, 38). This is largely driven by GlcNAc entering
cells by macropinocytosis, and therefore both time and rate of
membrane turnover can influence concentrations of GlcNAc
required to raiseN-glycan branching (37, 38). Thus, short-term
in vitro experiments require high concentrations to raise intra-
cellular GlcNAc levels quickly, whereas primary cells remain
viable. In contrast, cells can be exposed to GlcNAc over a lon-
ger time period in vivo, allowing lower concentrations to be
effective at raisingN-glycan branching. The rate of macropino-
cytosis may also bemuch higher in vivo compared with in vitro.
GlcNAc is also known to be highly safe in humans. In addi-

tion to breastfed infants consuming significant quantities, large
intravenous doses of GlcNAc (20 g and 100 g) in humans dem-
onstrated no toxicity issues and no alterations in blood glucose
or insulin (63, 64). Moreover, treatment with insulin had no
effect on the serum t1/2 of GlcNAc (63). Oral GlcNAc (3–6 g/
day) has also been used in 12 children with inflammatory bowel
disease for ;2 years without reported toxicities and/or side
effects (65). In rats, chronic systematic toxicological studies at
doses of 2323–2545 mg/kg/day for up to 114 weeks found no
toxicity (66, 67). Coupled with availability as a dietary supple-
ment, oral GlcNAc may provide a potent, inexpensive, and safe
therapy for MS. Large double-blind placebo-controlled trials
are warranted to investigate this hypothesis.

Experimental procedures

Mouse brain and neural stem cell isolation and analysis

Mice were bred and utilized as approved by the University of
California, Irvine Institutional Animal Care and Use Commit-
tee. Dorsal forebrain cortical tissue was dissected from the
medial ganglionic eminence at embryonic day 12.5 (E12.5) of
CD1 mice (Charles River Laboratories) or Mgat52/2 C57BL/6
mice and their WT littermates and placed in dissection buffer:
PBS, 0.6% glucose, 50 units/ml Pen/Strep. Tissue frommultiple
embryos within the same litter were pooled, and a subsequent
culture from a single litter was considered a biological repeat.
The tissue was dissociated using 0.05% trypsin-EDTA at 37 °C
for 10 min, followed by treatment with soybean trypsin inhibi-
tor (Life Technologies). Dissociated cells were resuspended in
proliferation medium containing DMEM, 13 B27, 13 N2, 1
mM sodium pyruvate, 2 mM L-glutamine, 1 mM N-acetylcys-
teine, 20 ng/ml epidermal growth factor (EGF) (PeproTech), 10
ng/ml basic fibroblast growth factor (bFGF) (PeproTech), and 2
mg/ml heparin, seeded at 150,000 cells/ml (nontissue culture–
treated plastic plates), and grown as nonadherent spheres. Cell
cultures were passaged approximately every 3 days using
enzyme-free NeuroCult Chemical Dissociation Kit (mouse)
(Stemcell Technologies). The cultures were passaged at least
once prior to experimental use. For experiments, passaged cells

Figure 4. Serum HexNAc correlates with markers of myelin-axon micro-
structural damage inMS patients. A–C, association of serum HexNAc levels
with MRI measures of myelin-axon microstructural damage in a cohort of n =
180MS patients. T2w lesion volume (A) and T1w/T2w ratio in normal-appear-
ing white matter (NAWM, B) and gray matter (GM, C) is shown. Coefficient B,
standard error (S.E.), and R2 are from linear regression models correcting for
age and sex (in B and C). Black lines in regression models represent coeffi-
cients from noncorrected models, gray areas show the 95% confidence inter-
val. Value in nM are serumHexNAc levels.
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were cultured in proliferation media (bFGF and EGF) or differ-
entiation media (bFGF (10 ng/ml) and PDGF-AA (10 ng/ml);
Life Technologies) for 48 h with or without the presence of
GlcNAc (Ultimate Glucosamine, Wellesley Therapeutics) or
kifunensine (GlycoSyn). Neurospheres were dispersed using
the enzyme-free NeuroCult kit before being analyzed by flow
cytometry using one or more of the following antibodies: anti-
CD140a/PDGF-RA PE conjugate (1:200, A15785, Molecular
Probes), anti-O4 Alexa Fluor 488 conjugated (1:200,
FAB1326G, R&D Systems), anti-GalC Alexa Fluor 647 (1:200,
MAB342-AF647, Millipore), and anti-Olig2 (1:200, AB9610,
Millipore) with anti-rabbit Alexa Fluor 488 (1:200, Thermo
Fisher Scientific).

GlcNAc treatment of mouse pups

GlcNAc (1 mg/ml) in drinking water was provided to preg-
nant PL/J mothers or mothers who recently delivered pups and
were nursing their young. After the treatment period, pups
were anesthetized with isoflurane and cardiac-perfused with
PBS. Pup and fetal brains were removed and homogenized by
trituration using glass pipettes in PBS with 5% FBS. The cells
were then stained with antibodies and analyzed by flow cytom-
etry using antibodies described above. For immunofluores-
cence analysis of pup brains, pups were quickly decapitated,
and brains were harvested and fixed in 4% paraformaldehyde
overnight.

[U13C]GlcNAc treatment of mice

[U13C]GlcNAc was purchased from Omicron Biochemicals
and put in the drinking water at 1 mg/ml of female mice aged 8
weeks for 3 days. Fresh solution of [U13C]GlcNAc in drinking
water was provided each day. After 3 days, mice were anesthe-
tized with isoflurane and underwent cardiac perfusion with 50
ml of PBS. Brains were harvested and snap frozen in liquid
nitrogen. Tissues were cut into 0.04-g pieces and crushed
mechanically before undergoing extraction as described below
(“Targeted LC–MS/MS”). Levels of UDP-[U13C]GlcNAc were
measured by LC–MS/MS analysis as described below (“Tar-
geted LC–MS/MS”).

Tamoxifen-induced deletion of Mgat1

Mgat1f/fPlp1-cre/ERTc1 and Mgat1f/fPdgfra-creER1 were
generated by crossing our Mgat1f/f mice with Plp1-cre/ERTc1

and Pdgfra-creER1 lines fromThe Jackson Laboratory. Tamox-
ifen was dissolved in corn oil overnight at 37 °C at a concentra-
tion of 20 mg/ml.Mgat1f/fPlp1-cre/ERTc1 andMgat1f/fPdgfra-
creER1 mice (mean age P71.24, S.D. 1.393) and their control
Mgat1f/f littermates were injected intraperitoneally with ta-
moxifen (75 mg/kg) daily for 3 days starting on day 0 and sacri-
ficed at 2 weeks or retreated with tamoxifen and sacrificed at 8
weeks. Mice were sacrificed following anesthesia and cardiac
perfusion with PBS. Brains examined by flow cytometry were
first homogenized by trituration using glass pipettes in PBS
with 5% FBS. Brains examined for myelin content were drop-
fixed in 4% paraformaldehyde overnight.

Cuprizone-induced demyelination

Cuprizone at 0.2% induces demyelination in the corpus cal-
losum by 3 weeks, with maximum demyelination at 5–6 weeks
(68). 8-week-old C57BL/6 mice purchased from The Jackson
Laboratory or 8-week-old Mgat51/2 C57BL/6 mice were
treated with 0.2% cuprizone (Sigma-Aldrich) mixed into milled
rodent chow for 6 weeks for the active phase treatment and 5
weeks for the recovery treatment. During active phase treat-
ment, GlcNAc (1 mg/ml) in drinking water or just drinking
water (control) was provided for the last 3 weeks of cuprizone
treatment. For the recovery phase treatment, GlcNAc in drink-
ing water or control was provided after cuprizone treatment
had been stopped. Mice were anesthetized and underwent car-
diac perfusionwith 4% paraformaldehyde in PBS or 4% parafor-
maldehyde plus 0.5% glutaraldehyde in sodium cacodylate
buffer for immunofluorescence or electron microscopic analy-
sis, respectively. Brains were then fixed overnight in perfusion
solution.

Accelerated rotarod

One day prior to cuprizone treatment, mice were trained on
the rotarod by allowing them to run three 5-min trials at a con-
stant 30 rotations per minute (RPM). Mice then underwent
weekly testing during cuprizone and GlcNAc treatment on an
accelerating rotarod starting at 4 rpm and increasing to 40 rpm
over 5 min. Latency for mice to fall was recorded. If a mouse
was not running on the rotarod by holding on for three turns,
this was considered a fall. For the active phase treatment, one
trial was run every week. For the recovery phase treatment,
three trials were run for each mouse each week and latencies
were averaged. As expected with cuprizone treatment, per-
formance degraded as treatment progressed. Mice whose per-
formance did not drop below a predetermined threshold (200
s) were not used in analysis.

Immunofluorescence analysis

For NSC immunofluorescence, whole neurospheres were
seeded onto laminin-coated coverslips (Neuvitro) in prolifera-
tion medium. After 24 h, proliferation medium was removed
and replaced with differentiation medium (same components
as proliferation medium but excluding EGF, bFGF, and hepa-
rin) to induce differentiation. For analysis of mouse brains,
brains were incubated in 30% sucrose for at least 72 h, embed-
ded in optimal cutting temperature compound (Tissue-Tek),
frozen for at least 48 h at280 °C, and then cut at 40 microns on
a cryostat. Multiple sections from 21 bregma to 22.5 bregma
were then stained with antibodies for MBP (1:100; MAB386,
Millipore), Olig2 (1:200; AB9610, Millipore), CC1 (1:100;
OP90, Millipore), degraded MBP (48) (1:200, AB5864, Milli-
pore), and APP (1:200; clone 22C11). After overnight incuba-
tion with primary antibody, tissues were washed and incubated
with secondary antibodies: goat anti-rat Alexa Fluor 488 (1:200,
Thermo Fisher Scientific), and goat anti-rabbit TxRd (1:200,
Thermo Fisher Scientific). APP is a marker for neuro-axonal
damage (69–71), whereas co-staining for CC1 and Olig2 are
markers of mature oligodendrocytes (72, 73). To examine the
amount of myelin, slices were incubated in FluoroMyelin
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(1:300; F34651, Thermo Fisher Scientific) for 45 min. Images
were acquired on a Keyence fluorescence microscope. Mean
fluorescence intensity of themedial corpus callosumwas meas-
ured using ImageJ.

EM

Three mice from each treatment group (control and
GlcNAc) were selected randomly for EM analysis (before other
investigations were performed). Portions of these brains from 0
to21 bregma were rinsed in 0.1 M cacodylate buffer overnight
and again for 15 min the next day. 23 1–mmblocks of the cor-
pus callosumwere dissected out and postfixed with 1% osmium
tetroxide in 0.1 M cacodylate buffer for 1 h, rinsed in double dis-
tilled H2O, dehydrated in increasing serial dilutions of ethanol
(70%, 85%, 95%, and 100%3 2) for 10 min each, put in propyl-
ene oxide (intermediate solvent) for 23 10 min, incubated in
propylene oxide/Spurr’s resin (1:1 mix) for 1 h, and then incu-
bated in Spurr’s resin overnight. The blocks were put in a fresh
change of resin in flat embedding molds the next day and poly-
merized overnight at 60 °C. The blocks were sectioned at 1 mm
using a Leica Ultracut UCT ultramicrotome. Floating sections
were stained in toluidine blue (1% toluidine blue and 2% so-
dium borate in double distilled H2O) at 60 °C for 3 min.,
mounted on slides, and cover-slipped. Ultrathin sections were
sectioned at 70 nm using a Leica Ultracut UCT ultramicro-
tome. Sections were mounted on 150 mesh copper grids,
stained with uranyl acetate and lead citrate, and viewed using a
JEOL 1400 electron microscope. Images were captured using a
Gatan digital camera. A blinded rater analyzed images by calcu-
lating the g-ratio (ratio of the diameter of the axon excluding
the myelin sheath divided by the axon diameter including the
myelin sheath) and counting the number of total axons, myelin-
ated axons, dystrophic axons (defined as axon diameter . 0.7
mm), degenerating axons, and paranodes. Degenerating axons
were identified as axonal swellings containing more than five
clustered dark mitochondria and lysosomes. Paranodes were
identified as axons with close proximity of the axolemma with
the inner membrane of the myelin sheath with a surrounding
cytoplasmic portion of oligodendrocyte.

MS patient cohort

MS patients were recruited from the neuroimmunology clin-
ical trial unit at the NeuroCure Clinical Research Center, Char-
ité - Universitätsmedizin Berlin (Table S1). Inclusion criteria
were based on the 2010 revisedMcDonald criteria, stable immu-
nomodulatory therapy (relapsing-remitting MS) or no treatment
(primary progressive MS and secondary progressive MS). Exclu-
sion criteria were acute relapse and/or corticosteroids within 6
months prior to inclusion. Disease course was determined under
strict adherence to the 1996 Lublin criteria (74). Blood draws
were fasting. The study was approved by the local ethics commit-
tee of Berlin (Landesamt für Gesundheit und Soziales (LAGeSo)).
All study participants gave written informed consent. Studies
were conducted in conformity with the 1964 Declaration of Hel-
sinki in its currently applicable version.

MRI

MRI was performed at 1.5 Tesla using three-dimensional
T1-weighted magnetization prepared rapid acquisition and
multiple gradient echo sequences (MPRAGE; T1w) and axial
T2-weighted (T2w) sequences. Images were acquired on a So-
nata MRI (Siemens Medical Systems, Erlangen, Germany) with
TE 4.38 ms, TR 2,110 ms, TI 1.1 ms, flip angle 15° and isotropic
resolutions 1 mm3 for T1w, andMultiecho TSE with TE 81 ms,
TR 5,780 ms, 150° flip angle, resolution 0.5 3 0.5 3 3 mm, no
gap for T2w, or on an Avanto MRI (Siemens Medical Systems,
Erlangen, Germany) with TE 3.09 ms, TR 1,900 ms, TI 1.1 ms,
flip angle 15° and isotropic resolutions 1 mm3 for T1w, and 3D
TSEwith TE 175ms, TR 3,000 ms, flip angle 120°, isotropic res-
olutions 1 mm3 for T2w. Conventional spin-echo T1-weighted
images (TR 1060 ms, TE 14 ms, 3-mm slice thickness, no gap,
and 44 contiguous axial slices) were obtained before and 5min af-
ter injection of 0.1 mmol/kg gadolinium-diethylenetriamine pen-
taacetic acid (Magnevist, Bayer-Schering, Berlin, Germany).
T2w lesion segmentation was performed as previously

described (75) using a semi-automated procedure including
image co-registration using FLIRT (FMRIB Software Library,
Oxford, UK) and inhomogeneity correction as embedded into
the MedX v3.4.3 software package (Sensor Systems Inc., Ster-
ling, VA, USA). Bulk white matter lesion load and lesion count
of T2w scans were routinely measured usingMedX.
For calculation of T1w/T2w ratio maps, MPRAGE, FLAIR,

and T2w scans were reoriented to standard space, bias field
corrected, and cropped to a robust field of view using FSL 5.0.9
(76). TheMPRAGE and FLAIR scans were then linearly co-reg-
istered to T2w using FSL FLIRT and then registered to Mon-
treal Neurological Institute space and brain extracted using the
Brain Extraction Toolbox (76). T2w lesions were then auto-
matically segmented by applying the lesion prediction algo-
rithm to FLAIR scans, implemented in the Lesion Segmenta-
tion Toolbox version 2.0.15 (77) for Statistical Parametric
Mapping (SPM). Gray matter, white matter, and brain masks
were then extracted from the MPRAGE. The lesion mask was
subtracted from these masks to remove any lesion effects. The
T1w/T2w ratio was created by dividing the processed
MPRAGE scans by the processed T2w scans. Median T1w/
T2w ratios were extracted from the normal-appearing white
matter, gray matter, and brainmasks.

Targeted LC–MS/MS

Serum samples for metabolomics analysis were prepared as
described previously (78). Briefly, 50 ml of serum (stored at
280 °C) and 200 ml of ice-cold extraction solvent (40% acetoni-
trile: 40% methanol: 20% H2O) were vortexed for 2 min, then
shaken in an Eppendorf shaker (Thermomixer R) at 1400 rpm,
4 °C for 1 h and centrifuged at 4 °C for 10min at;18,0003 g in
an Eppendorf microfuge. Supernatants were transferred to a
clean tube and evaporated in a Speedvac (Acid-Resistant Cen-
triVap Vacuum Concentrators, Labconco). Dried samples were
stored at 280 °C. The samples were resuspended in 100 ml of
water containing the Internal Standards D7-Glucose at 0.2 mg/
ml and H-tyrosine at 0.02 mg/ml. The samples were resolved
by LC–MS/MS in negative mode at the optimum polarity in
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Multiple reaction monitoring (MRM) mode on an electrospray
ionization triple-quadrupole mass spectrometer (AB Sciex
4000 QTRAP, Toronto, Ontario, Canada). MultiQuant soft-
ware (AB Sciex, Version 2.1) was used for peak analysis and
manual peak confirmation. The results, expressed as area ratio
(area of analyte/area of internal standard), were exported to
Excel and analyzed with MetaboAnalyst 3.0. Standard curves
were prepared by adding increasing concentrations of GlcNAc
or N-acetyl-D-[UL-13C6]glucosamine ([UL13C6]GlcNAc) (Omi-
cron Biochemicals, Indiana) to a 50-ml aliquot of control serum.
This way we were able to create a calibration curve for HexNAc
serum levels, obtaining absolute values rather than relative con-
centrations. Analysts were blinded in regard to sample origin
(healthy control orMS).

Statistical analysis

Statistical analyses for the in vitro and animal experiments
were done with Graphpad Prism by t tests, with analysis of var-
iance (ANOVA) with Sidak’s post-test correction, or by compar-
ing best-fit curves from nonlinear regression (Y = Bmax*X/(Kd1
X) as described in the relevant figure legends. Statistical analyses
for the clinical part were performed with R Project version 3.5.3.
Correlation between serum HexNAc levels and lesion measure-
ments were analyzed using nonparametric Spearman’s Rho anal-
yses. Correlations between HexNAc levels and T1w/T2w-ration
measurements were analyzed using linear regressionmodels with
HexNAc levels as an independent variable.

Data availability

All data are contained within themanuscript.
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