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Objective: To establish a diagnostic model by combining imaging features with enhanced
CT texture analysis to differentiate pancreatic serous cystadenomas (SCNs) from
pancreatic mucinous cystadenomas (MCNs).

Materials and Methods: Fifty-seven and 43 patients with pathology-confirmed SCNs
and MCNs, respectively, from one center were analyzed and divided into a training cohort
(n = 72) and an internal validation cohort (n = 28). An external validation cohort (n = 28)
from another center was allocated. Demographic and radiological information were
collected. The least absolute shrinkage and selection operator (LASSO) and recursive
feature elimination linear support vector machine (RFE_LinearSVC) were implemented to
select significant features. Multivariable logistic regression algorithms were conducted for
model construction. Receiver operating characteristic (ROC) curves for the models were
evaluated, and their prediction efficiency was quantified by the area under the curve
(AUC), 95% confidence interval (95% CI), sensitivity and specificity.

Results: Following multivariable logistic regression analysis, the AUC was 0.932 and
0.887, the sensitivity was 87.5% and 90%, and the specificity was 82.4% and 84.6% with
the training and validation cohorts, respectively, for the model combining radiological
features and CT texture features. For the model based on radiological features alone, the
AUC was 0.84 and 0.91, the sensitivity was 75% and 66.7%, and the specificity was
82.4% and 77% with the training and validation cohorts, respectively.
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Conclusion: This study showed that a logistic model combining radiological features and
CT texture features is more effective in distinguishing SCNs from MCNs of the pancreas
than a model based on radiological features alone.
Keywords: pancreatic neoplasms, serous cystadenoma, mucinous cystadenoma, texture analysis, tomography
INTRODUCTION

Pancreatic serous cystic neoplasms (SCNs) originate from cuboidal
epithelial cells full of glycogen-rich components, and are the only
benign tumors of the pancreas, accounting for 10-16%ofpancreatic
cystic neoplasms (1, 2). The detection of SCNs is increasing, owing
to the more widespread use of abdominal imaging (3); typically,
however, SCNs only constitutes approximately 30% of all SCNs,
presenting with a microcystic appearance with a star-like fibrous
central scar with orwithout calcifications (4). Furthermore, as there
is a chanceful spectrum of performances for SCNs in radiology, up
to 60%of SCNpatients performed surgerywith uncertain diagnosis
(5); atypical SCNsmaymisdiagnosedasmucinous cystic neoplasms
(MCNs) or intraductal papillary mucinous neoplasms (IPMNs),
which have the potential for malignancy, so misdiagnosis can lead
to unnecessary surgery (6–8).

There is no consensus regarding the management of SCNs in
terms offollow-up and surgery (9, 10). Symptoms, initial tumor size
and growth rate are always taken into consideration when
determining whether surgery should be performed (11–13). Some
studies recommend surgery for SCNs measuring >4 cm regardless
of the symptoms due to its rapid growth rate and high risk of
symptoms onset (12), while others suggest resection only for SCNs
with associated symptoms (10). SCNs are very safe and develop an
indolent nature after long-term follow-up, while MCNs should be
treated with surgery once a diagnosis is made (14).

Imaging examinations such as CT and MRI, are a mainstay in
distinguishing SCNs and MCNs; however, their performance
remains unsatisfactory. The accuracy in discriminating certain
types of pancreatic cystic neoplasms is between 40-95% for MRI
and between 10-81% for CT (10). Texture analysis is a popular
technique for quantitatively assessing the heterogeneity of tissues
through the extraction, analysis, and interpretation of radiological
features and has been widely used in the treatment of pancreatic
lesions, such as differential diagnosis, tumor grading, and prognosis
prediction (15–18). Several studies related to the discrimination of
SCNs and MCNs or that differentiate SCNs from other pancreatic
cystic lesions (PCLs) using radiomics have been published (15, 19–
24). However, these studies are limited by the use of single center
data and small sample sizes, so multicenter studies with larger
sample are urgently needed to clarify the role of radiomics. Hence,
our study included the largest sample size to date and is the first to
as; MCNs, Mucinous cystadenomas;
neoplasms; PCLs, Pancreatic cystic
d selection operator; RFE_LinearSVC,
ort vector machine; ROC, Receiver
r the curve; CI, Confidence interval;
class correlation coefficient; SD,
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incorporate outside data to validate the performance of selected
features. Then, we combined imaging features and enhanced CT
texture analysis to distinguish SCNs fromMCNs.
MATERIALS AND METHODS

Patient Population
Ethical approval for this study was approved by the Second
Affiliated Hospital of Zhejiang University School of Medicine
and Zhejiang Cancer Hospital, and the requirement for informed
consent was waived. We retrospectively collected patients
diagnosed with pathologically confirmed SCNs (n = 57) or
MCNs (n = 43) from the Second Affiliated Hospital of
Zhejiang University School of Medicine from January 1, 2010
to October 30, 2019. A cohort to be used solely for external
validation was collected from Zhejiang Cancer Hospital from
January 1, 2009 to February 20, 2021 (SCN = 19, MCN = 9).

The inclusion criteria were as follows: (1) abdominal contrast-
enhanced CT scan performed within 2 months before the
operation; and (2) lesion diagnosis confirmed by surgery or
biopsy. The exclusion criteria were as follows: (1) incomplete
imaging or clinical information; (2) a lesion too small (≤ 5 mm)
to draw a region of interest (ROI); and (3) poor image quality or
contamination of the ROI by artifacts, preventing analysis.

Image Acquisition
All patients fasted from solid food for approximately 4-6 hours
before the examinations. The CT scans were performed with the
following equipment: Siemens Somatom definition AS 64、
Perspective (Siemens Medical Systems), TOSHIBA Aquilion 320
(TOSHIBA Medical Systems Corporation), and Optima CT680
Series (GE Medical Systems). The imaging parameters were as
follows: kVp/effective mA = 120 Kv/160-250 mAs, slice
thickness = 5 mm; and field of view = 320-380 mm. A plain
scan was performed, followed by intravenous injection of nonionic
contrast medium (Omnipaque 300 g/l; GE Healthcare; iopromide;
Ultravist 370, Bayer Schering Pharma, 120 mL) at a rate of 3 mL/s.
Images were obtained in the arterial phase (23-25 s), portal venous
phase (40 s) and equilibrium phase (70 s).

Image Analysis
The imaging features were evaluated by two radiologists (3 and 5
years of experience in pancreatic imaging) who were unaware of
the pathology of the lesions. Any arguments were settled by
consulting with a third radiologist with 31 years of experience in
pancreatic imaging. Demographic data, such as sex, age,
symptoms, and tumor markers, were collected. The following
radiologic features were included: maximum diameter, location,
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central scar, calcification (on the cyst wall or septum vs on the
central scar or noncyst wall), the presence of small cysts
(extracapsular cystic sign: a small cyst outside the main cyst;
intracapsular cystic sign: a small cyst inside the main cyst), cystic
wall thickening (≥3 mm), and tumor morphology (single cyst or
multiple cysts) (Figure 1).

Feature Extraction
CT texture features were extracted from the portal venous phase
using MaZda software (version 4.6, www.eletel.p.lodz.pl/
programy/mazda) (25). Before extraction, all images were
processed with standardized grayscale levels to reduce the
impact of changes in imaging contrast and brightness. ROIs
were drawn in the maximum diameter of the lesion by consensus
of the two evaluating radiologists. The intraclass correlation
coefficient (ICC) was calculated to assess the stability and
reproducibility of the extracted features. Ten patients (5 SCNs
and 5 MCNs) were selected randomly, and the ROI was drawn
again two months later by two radiologists. An ICC value of at
least 0.9 was considered as stable (26).

Feature Selection
The group of 100 patients from center 1 was randomly divided
into a training cohort and an internal validation cohort at a 7:3
ratio, while patients from center 2 were used to construct an
external validation cohort (n = 28). The workflow is illustrated
in Figure 2.

A two-stepmethod was performed for texture features selection.
The training dataset was used to select the texture features.

The least absolute shrinkage and selection operator (LASSO)
algorithmminimizes the residual sum of squares, sets a bound on
the sum of the absolute values of the coefficients, and can be used
for reducing the dimensions of high-dimensional data (27).
Thus, LASSO was implemented by 10-fold cross-validation for
Frontiers in Oncology | www.frontiersin.org 3
feature reduction, and the minimum l value was calculated to
determine the number of selected features. According to the
weighted logistic regression coefficient corresponding to each
selected feature, the linear mathematical formula contained the
score of the radiomics label for each patient was obtained. The
formula is listed as follows:

Radiomics _ score = w0 + w1x1 + :::wnxn

where wn denotes to the respective coefficients and xn denotes the
selected features.

The selected features were analyzed by Student’s t-test or the
Mann-Whitney U test to eliminate features without significant
differences, and then a recursive feature-elimination linear
support vector machine (RFE_LinearSVC) was used for further
feature selection. RFE_LinearSVC is a powerful method for
identifying predictive factors accurately and has consistently
outperforms other algorithms in feature selection (28). The
internal and external validation cohorts were adopted to verify
the performance of the selected features in distinguishing SCNs
from MCNs.

Statistical Analysis
Continuous variables were presented as the median (25-75%), and
differences between them were assessed using the Mann-Whitney
U test. Categorical variables were expressed as frequencies (%),
using Chi test. Multivariable logistic regression with 5-fold cross-
validation was conducted for training both the mixed model
(radiological features combined with extracted texture features)
and the radiological model to identify independent factors and
establish diagnostic models. The corresponding receiver operating
characteristic (ROC) curves were evaluated, and the prediction
efficiency of the two models was quantified by the area under the
curve (AUC), the 95% confidence interval (95% CI), sensitivity
and specificity.
FIGURE 1 | Differences in the characteristics of SCNs and MCNs. (A) shows a macrocystic SCN in the head of the pancreas, and a small cyst can be seen outside
the mother cyst (white arrow), called the extracapsular cystic sign. (B) shows an SCN presenting as a central scar with dotted calcification, which is typical of this
kind of neoplasm. (C) presents an SCN with multiple cysts that is difficult to diagnose. (D) shows a septal wall inside an MCN, which forms a small cyst called the
intracapsular cystic sign. (E) depicts an MCN with calcification on the septal wall. (F) shows an MCN with a single cyst and a smooth contour.
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Clinical and imaging data were analyzed using SPSS 23.0
software, and p < 0.05 was considered as statistically significant. R
3.6.1 software with “glmnet”, “Matrix”, “foreach” and”ggplot2”
packages was used to implement the LASSO algorithm. The
YITU AI Enabler was applied to implement the RFE_LinearSVC
algorithm, and build models were built using python pyradiomics
(version 3.0.1) and the scikit-learn (version 0.22) package.
RESULTS

General Clinical Information and Imaging
Features Among SCNs and MCNs
The demographic data of the participants and their imaging
features are summarized in Table 1. SCNs were more frequently
observed among older women than MCNs (median age of 54 vs
47 years, p < 0.05). The vast majority of MCNs were found in
Frontiers in Oncology | www.frontiersin.org 4
women (90.7%) and were located in the body/tail (86%), while
SCNs could occur anywhere in the pancreas equally (p < 0.05).
The diameter of the SCNs was generally smaller than that of the
MCNs (38.3 mm vs 53.1 mm, p = 0.009), and SCNs were often
characterized by characteristic central scars, which could have
calcifications, while the calcifications of MCNs often occurred on
the cyst wall or septum (p < 0.05). The most characteristic
manifestation of MCNs was the intracapsular cystic sign, while
the extracapsular cystic sign was more frequent among SCNs.
MCNs were more prone to thickening of the cyst wall (14% vs
1.8%, p=0.024) than SCNs. Finally, there was no significant
difference between SCNs and MCNs in terms of symptoms,
tumor markers, or tumor morphology (p > 0.05).

Feature Extraction and Selection
A total of 271 texture features were extracted: 9 histogram
features, 220 gray-level cooccurrence matrix (GLCM) features,
FIGURE 2 | Workflow of the research. The workflow can be divided into four parts: image acquisition, texture feature extraction, texture feature selection
and model construction.
December 2021 | Volume 11 | Article 745001
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5 gradient features, 5 autoregressive model-based features, 20
run-length matrix features and 12 wavelet features. The ICC
value was 0.952 for all features, which was considered stable.

Twenty-three texture featureswere extracted by theminimuml
value of 0.0106, which was determined through 10-fold cross-
validation method using the LASSO algorithm (Figure 3). The
linear formula contained the score of the radiomics label for each
patient was listed in SupplementaryMaterial 1. After removing 10
irrelevant statistical variables, 13 texture features were eventually
included in the RFE_LinearSVC algorithm as follows: Skewness, S
(2,2)DifVarnc, S(2,-2)InvDfMom, S(5,5)InvDfMom, S(4,4)
SumEntrp, S(5,5)SumAverg, S(5,5)SumVarnc, Vertl_GLevNonU,
45dgr_GLevNonU,GrNonZeros, Teta1,Teta2, andTeta4. The heat
map is shown in Supplementary Material Figure 1. Finally, 5
features (Skewness, GrNonZeros, S(2,-2)InvDfMom, S(5,5)
InvDfMom, and S(5,5)SumVarnc) were selected with
RFE_LinearSVC, and the corresponding decision curve is
depicted in Figure 4. For the training group, the AUC was 0.934
(95% CI: 0.848-0.980), sensitivity was 90%, and specificity was
76.7%. For the internal and external validation cohorts, the AUCs
were 0.855 (95% CI: 0.679-0.956) and 0.892 (95% CI: 0.716-0.977),
the sensitivity was 82.4% and 94.7%, and the specificity was 69.2%
and 77.8%, respectively (Figure 5).

Multivariable Logistic Regression Models
A multivariable logistic regression model combining radiological
features and selected texture features was established to
differentiate SCNs from MCNs. The AUC was 0.932 (95% CI:
0.845-0.978) and 0.887 (95% CI: 0.0.718-0.973), the sensitivity
Frontiers in Oncology | www.frontiersin.org 5
was 87.5% and 90%, and the specificity was 82.4% and 84.6%
with the training and validation cohorts, respectively. Another
model based on radiological features alone was also constructed.
The AUC was 0.84 (95% CI: 0.732-0.916) and 0.91 (95% CI:
0.747-0.983), the sensitivity was 75% and 66.7%, and the
specificity was 82.4% and 77% with the training and validation
cohorts, respectively (Figure 6).
DISCUSSION

Radiomics appeared to be superior to conventional clinical and
radiologic approaches in differentiating the type of PCLs, while
the combination of radiomic features and clinical or imaging
features may possibly optimize the predictive accuracy of the
model (24). Our most compelling result was that we successfully
built multiple logistic regression models to differentiate SCNs
from MCNs. The logistic model combining radiological features
and enhanced CT texture features had an excellent performance,
with an AUC of 0.932, compared with the model built with
imaging features only, with an AUC of 0.84.

Imaging performance is the most intuitive approach for
distinguishing SCNs from MCNs. SCNs can appear in any part
of the pancreas, while the vast majority of MCNs (>90%) occur
in the body or tail of the pancreas. Since SCNs have always been
misdiagnosed as MCNs or other malignant lesions, several
special radiologic features have been summarized to help make
an accurate diagnosis, such as the typical honeycomb sign (4),
petal sign (29), lobulation sign (30) and extracapsular cystic sign
(31). External lobulations appear more frequently in SCNs than
in MCNs, and the extracapsular cystic sign also suggests an SCN,
while the intracapsular cystic sign is a typical presentation of
MCNs, which corresponds to other studies (4, 30, 31).

Although radiological manifestations enable an accurate
diagnosis in characteristic cases or provide higher priority to
less typical cases, SCNs, especially oligocystic types, are difficult
to differentiate from MCNs (7, 32). MCNs present as mildly
septate, large cystic neoplasms with smooth unilocular contours,
and their cystic wall can be thick and enhanced and accompanied
by dotted or arcuate calcifications (33). Surgery should be
performed when certain MCN diagnoses are made because
these lesions have malignant potential (10). Our study
successfully established a diagnostic model based on imaging
features. After training the model through logistic regression, the
resulting AUC values were 0.84 and 0.91 with the training and
validation groups, respectively, suggesting good discriminability
when distinguishing SCNs from MCNs. Lee et al. (32) described
the MRI features of SCNs and MCNs and found that oligocystic
SCNs tended to be smaller lesions with a lobulated (85.7%)
contour and multiple clustered cystic configurations. Manfredi R
et al. (7) included 57 patients with SCNs and 26 patients with
MCNs in the body-tail of the pancreas, and they described
similar MR imaging features as previous studies. After analysis,
they found that a microcystic appearance, central scarring and
lack of peripheral wall enhancement were suggestive of SCNs,
whereas a macrocystic appearance, enhancement of the
peripheral wall and mural nodules were suggestive for MCNs.
TABLE 1 | Comparison of the clinical information and imaging features between
SCNs and MCNs.

Variables SCNs (n=57) MCNs (n=43) P value

Age (years) 54 (44.3-61.3) 47 (33-54) 0.009*
Gender 0.042**
Male 14 (24.6) 4 (9.3)
Female 43 (75.4) 39 (90.7)
Symptomatic 11 (19.3) 5 (11.6) 0.300
Tumor maker 4 (7.0) 4 (9.3) 0.476
Location <0.001**
Head/neck 26 (45.6) 6 (14.0)
Body/tail 31 (54.4) 37 (86.0)
Largest diameter (mm) 38.3 (23.9-52.7) 53.1 (32.2-69.5) 0.009*
Central scar 16 (28.1) 0 (0) <0.001**
Calcification <0.001**
None 42 (73.7) 34 (79.1)
On cyst wall 0 (0) 8 (18.6)
On non-cyst wall 15 (26.3) 1 (2.3)
Combined with small cyst 0.003**
None 53 (93.0) 32 (74.4)
Intracapsular cystic sign 0 (0) 8 (18.6)
Extracapsular cystic sign 4 (7.0) 3 (7.0)
Cystic wall thickening 0.024**
<3mm 56 (98.2) 37 (86.0)
≥3mm 1 (1.8) 6 (14.0)
Tumor morphology 0.194
Single cyst 12 (21.1) 14 (32.6)
Multiple cysts 45 (78.9) 29 (67.4)
*means P value has significance by using Mann-Whitney U test; **means P value has
significance by using Chi test.
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However, to overcome diagnostic radiological limitations,
radiomics has been recently suggested to differentiate SCNs
from MCNs. The combination of radiomics and imaging data
may lead to a more precise diagnosis, as described in our study.

Texture analysis has been extensively used for pancreatic
tumors as well as PCLs (15–18, 20–22). Yun et al. (17) used CT
texture analysis to predict the prognosis of pancreatic cancers and
found that texture parameters extracted from preoperative CT
images could be used as an independent predictive tool. The grade
of pancreatic neuroendocrine tumors could also be predicted
accurately; for example, higher skewness and lower kurtosis were
Frontiers in Oncology | www.frontiersin.org 6
identified as risk factors for a higher tumor grade (34). Texture
analysis could also identify high-risk disease in patients with
IPMNs (35, 36). Xie et al. (22) developed a radiomic model to
distinguish macrocystic SCNs (n = 26) from MCNs (n = 31), and
their combined model showed better calibration than a single
model, as our study showed; however, their sample size was too
small and lacked a validation group. Yang et al. (19) included 53
SCNs and 25 MCNs, without external validation, and extracted
radiomics features only. After implementing random forest and
LASSO methods, they built a diagnostic prediction model to
distinguish SCNs from MCNs and obtained AUCs of 0.73 and
A B

FIGURE 3 | Feature selection for the LASSO algorithm. (A) The figure shows binomial deviance (y-axis) plotted against log (l) (x-axis). The left dotted vertical line is
drawn at the optimal value of l (min l value = 0.0106, log (l) = -4.5468), where the model provides the best fit of the data, corresponding to the number of selected
features (23). The right vertical dotted line represents the value of l that yields the best minimum deviation value (minimum l standard deviation value = 0.1011, log
(l) = - 2.2912). (B) LASSO coefficient profiles for all features, which shows that the coefficients of 271 texture features changes with the final selections of different
numbers of features.
FIGURE 4 | Decision curve analysis for RFE_LinearSVC. The black line represents the true divisional capacity in distinguishing SCNs from MCNs.
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0.70 with the training group and the validation group, respectively.
Our study also developed a model based on texture features, which
achieved an AUC of 0.934 with the training group and 0.855 and
0.892 with the internal and external validation groups, respectively.
Frontiers in Oncology | www.frontiersin.org 7
Textural features derived from enhanced CT images are useful in
differentiating SCNs from MCNs and could provide a noninvasive
method to identify whether or not surgery is needed. However, the
combination of imaging characteristics and texture features
A B C

FIGURE 5 | ROC curves of texture features with the training, internal validation and external validation cohorts. (A) represents the training group with AUC of 0.934,
(B) represents the internal validation group with AUC of 0.855, while (C) represents with external validation group with AUC of 0.892.
A B

C D

FIGURE 6 | ROC curves of the two models with the training and validation cohorts. (A, B) represent the imaging model alone, respectively, and (C, D) represent the
imaging and radiomics models.
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outperformed morphological features or texture features alone in
Yang’s study (15), which achieved an AUC of 0.893 for the mixed
model. They used the LASSO algorithm to select 15 features, and
no further algorithm was applied, as in our study. For further
feature selection, we used the RFE_LinearSVC method, a machine
learning method with an excellent classification performance that
leads to superior discrimination (28). The external validation
cohort also demonstrated the remarkable capability of the model
to differentiate SCNs from MCNs. A radiomics-based method
could differentiate SCNs from other PCLs, with an AUC of
0.767, sensitivity of 0.686 and specificity of 0.709 in Wei’s study
(23). Shen et al. (20) performed similar work to differentiate SCNs,
MCNs and IPMNs, and their random forest classifier achieved the
highest accuracy of 84.35 and 79.59% in both the training and
validation cohorts. Another study designed an automatic
classification algorithm using random forest and conventional
neural network ensemble to classify the most common types of
PCLs, with an overall accuracy of 83.6% (21).

Several limitations should be emphasized in this study. First,
this was a retrospective study with unavoidably inherent
selection bias. Second, we only considered the maximal size of
the lesion, which may not represent the whole lesion due to
tumor heterogeneity. Finally, although the sample size was the
largest among similar studies, even larger numbers of patients
are required, especially for internal and external validation
cohorts, in future investigations.

In conclusion, this study showed that a logistic model
combining radiological features and CT texture features is
more effective in distinguishing SCNs from MCNs of the
pancreas than models built from radiological features alone.
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