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Neural transplantation is a promising therapeutic strategy for neurodegenerative diseases
and other disorders of the central nervous system (CNS) such as Parkinson and Hunting-
ton diseases, multiple sclerosis or stroke. Although cell replacement therapy already went
through clinical trials for some of these diseases using fetal human neuroblasts, several
significant limitations led to the search for alternative cell sources that would be more suit-
able for intracerebral transplantation.Taking into account logistical and ethical issues linked
to the use of tissue derived from human fetuses, and the immunologically special status of
the CNS allowing the occurrence of deleterious immune reactions, neural stem/progenitor
cells (NSPCs) appear to be an interesting cell source candidate. In addition to their ability for
replacing cell populations lost during the pathological events, NSPCs also display surprising
therapeutic effects of neuroprotection and immunomodulation. A better knowledge of the
mechanisms involved in these specific characteristics will hopefully lead in the future to a
successful use of NSPCs in regenerative medicine for CNS disorders.
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THE CENTRAL NERVOUS SYSTEM, AN ORGAN WITH AN
“IMMUNOLOGICALLY SPECIAL” STATUS
Inflammation is the primary response of the immune system
that occurs to defend the organism against danger signals pro-
voked by an infection or irritation consecutive to the intrusion
of pathogens. The specific property of the immune system is
to discriminate the self from the non-self and thus to identify
and eliminate the infectious agents. From this same mechanism
originates the phenomenon of rejection in transplantation. How-
ever, since Van Dooremal work in 1873 on tumor cell graft in
the eye anterior chamber, it is known that specific sites in the
organism display limited immune reactions. In 1948, Sir Peter
Medawar, Nobel Prize of Medicine and pioneer in the field of the
immunology of transplantation, proposed the term of “immune
privilege” to describe a reduced inflammation after inoculation of
allogeneic tissues in some organs like the brain or the eye anterior
chamber (Medawar, 1948). Later, this definition was extended to
the particular property of specific organs or tissues to display a
prolonged, and sometimes infinite, survival when grafted in con-
ventional sites of the organism. Thus, throughout the years, the
cornea, the placenta, the eye anterior chamber (Billingham and
Boswell, 1953; Hori et al., 2000), or the testis (Head et al., 1983)
were examples of well-studied immune-privileged tissues. In this
context, the central nervous system (CNS) and the immune system
were traditionally perceived as separate morphological and func-
tional entities, preventing the disturbance of the CNS homeostasis
which is crucial to neuronal functioning. This vision that the CNS
could escape the immune surveillance was supported by the dis-
covery of the blood–brain barrier (BBB) preventing the exchange
between a wide range of soluble molecules from the blood and

the brain, like growth factors, cytokines, or immunoglobulins
(Goldstein and Betz, 1983; Joó, 1993). In addition, there is no
proof of the existence of professional antigen presenting cells like
dendritic cells, B cells, and macrophages in the unlesioned CNS
(Wekerle et al., 1987) preventing the initiation and propagation of
antigen-specific immune responses in the brain. In physiological
conditions, the expression of antigens from the major histocom-
patibility complex (MHC) by neural cells is very weak and even
in some cases undetectable (Barker and Billingham, 1977; Mauer-
hoff et al., 1988) allowing these cells to escape the recognition by
antigen-specific T cells. However, only the normal CNS displays
such an absence of immune response.

During certain pathological processes, specific genes are acti-
vated leading to the change of this immunologically non-reactive
tissue into an environment favorable to the development of
inflammatory reactions. In these conditions, macrophages are
recruited from the pool of blood monocytes and infiltrate the
perivascular spaces. In addition, microglial cells from the CNS
are activated and acquire phagocytosis and antigen presentation
abilities (Aloisi, 2001). Microglia can induce the production of
pro-inflammatory cytokines like TNF and IL-1β (Sivakumar et al.,
2011) and, along with reactive astrocytes, become able to present
antigens through class I and II MHC molecules (Höftberger et al.,
2004), allowing CNS-infiltrated T cells to recognize the antigenic
peptides and behave as potent immune effectors (Cornet et al.,
2000). The last two decades have thus witnessed the questioning
of the concept of immune privilege. Discovery of the perme-
ability of the BBB under pathological circumstances (Kebir et al.,
2007), the existence of an unconventional lymphatic drainage in
the CNS (Hatterer et al., 2006), and the migration of leucocytes
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across the BBB on a regular basis (Hickey et al., 1991; Cayrol et al.,
2008) were convincing proofs of the strong bidirectional com-
munication between the immune and the nervous systems. The
brain is now more readily considered as an organ with special
immune characteristics and subject to immunological surveil-
lance than a strictly immune-privileged tissue (Hickey, 2001). This
dual status of the CNS, being both more favorable to the trans-
plantation than the periphery but also a propitious environment
for deleterious inflammatory reactions in response to pathologi-
cal conditions (Kerschensteiner et al., 2009) could in part explain
why fetal neuron allografts in the brain are usually well tolerated
under moderate immunosuppressive treatment (Björklund and
Lindvall, 2000; Bachoud-Lévi et al., 2006; Krystkowiak et al., 2007)
while intracerebral xenografts are systematically rejected (Larsson
et al., 2000).

CELL REPLACEMENT THERAPY FOR THE CNS
Neuronal cell death is the main characteristic of CNS acute disor-
ders like stroke or trauma but also of neurodegenerative diseases
including Alzheimer, Parkinson, and Huntington diseases. As
the adult CNS displays very weak capacities of endogenous cell
replacement and repair, both being necessary to attain a significant
functional recovery, cell replacement therapy for the CNS repre-
sents a promising avenue for the treatment of these pathological
conditions. In fact, clinical impact of cell replacement strategy
has already been assessed in Parkinson disease patients by allo-
transplantation of fetal mesencephalic cells. The results of the
clinical trials showed, in some patients, a long-term symptomatic
improvement associated with a survival of the grafted cells and
a partial reinnervation of the striatum (Björklund and Lindvall,
2000). A functional recovery has also been noticed in a small
cohort of patients suffering from Huntington disease and grafted
with human fetal striatal neuroblasts (Bachoud-Lévi et al., 2000,
2006), with one study even showing integration of cells from the
donor into the host tissue (Freeman et al., 2000). Despite these
promising outcomes, several issues remain to be assessed (Björk-
lund et al., 2003). Tissue availability, ethical and logistical concerns
linked to the use of human material, cell viability and purity,
or appearance of deleterious side-effects like dyskinesia (Olanow
et al., 2003) represent important obstacles that need to be over-
come before resuming clinical trials on neural allotransplantation.
Moreover, the discovery of biological signs of alloimmunization
to donor’s antigens like the appearance of anti-HLA antibodies
in Huntington disease patients following fetal neural grafts (Krys-
tkowiak et al., 2007) underlined the importance of considering
immune responses in the CNS as a crucial parameter for future
cell transplantation strategies. In order to at least circumvent some
of the problems mentioned above, alternative cell sources for
intracerebral transplantation like porcine neuroblasts have been
considered (Pakzaban and Isacson, 1994).

INTRACEREBRAL XENOTRANSPLANTATION
Porcine fetal neural tissue has been for a long time considered
as the more adequate cell source for xenotransplantation in the
human brain. Indeed, swine offer the advantage of a relatively
easy breeding allowing an excellent access to fetal material and
can be genetically modified. In fact, porcine fetal cells have been

proven to be an efficient source for cell therapy in animal models of
neurodegenerative diseases. Interest in these cells started to grow
after first studies revealed that xenografts derived from the ventral
mesencephalon of pigs (21–26 days of gestation) could survive in
the brain of a rat model of Parkinson disease under immunosup-
pression (Freeman et al., 1988; Huffaker et al., 1989). Beyond the
long-term survival, xenotransplanted neural cells also displayed
a long-distance axonal outgrowth (Wictorin et al., 1990; Deacon
et al., 1994). Isacson et al. (1995) have shown that neurons iso-
lated from several areas of the porcine fetal brain and transplanted
in homotypic or ectopic lesioned cerebral regions of an adult
rat could project axons in the deafferented zones, thus rebuild-
ing the brain parenchyma cytoarchitecture. This inter-species and
targeted axonal growth of porcine dopaminergic neuroblasts sig-
nificantly restored in several months an efficient dopaminergic
innervation. A significant functional recovery in transplanted rats
was also observed and was correlated to the number of tyrosine
hydroxylase (TH)-positive cells and to the size of the graft (Galpern
et al., 1996). Encouraging results obtained from animal models of
Parkinson disease led to small-scale clinical trials. Isacson’s group
performed a study where 12 Parkinson disease patients received
a unilateral striatal graft constituted of a porcine ventral mesen-
cephalon (25–28 days of gestation) cell suspension (Schumacher
et al., 2000). Even though a significant decrease in Unified Parkin-
son’s Disease Rating Scale (UPDRS) scores was observed, positron
emission tomography (PET) analyses did not show any increase
in the [18F]fluorodopa uptake, underlining a lack of improve-
ment in axon termination density of dopaminergic neurons from
the graft and no increase in dopa-decarboxylase activity. More-
over, a postmortem study revealed that only 638 TH-positive cells
out of the 12 millions of porcine neuroblasts transplanted had
survived at that stage, with a lymphocytic infiltration at the bor-
der and within the graft, despite the fact that the patient was
under cyclosporine A treatment (Deacon et al., 1997). If some
work has shown that neural xenografts are able to survive for
a long time in the CNS without the use of immunosuppressors
(Björklund et al., 1982; Daniloff et al., 1985), most of the recent
studies, including those from our group, indicate that intracere-
bral xenografts trigger a strong immune reaction leading to the
fast destruction of the graft through the invasion of microglial
cells/macrophages, T lymphocytes, and dendritic cells within 5–
7 weeks post-transplantation (Rémy et al., 2001; Melchior et al.,
2002; Michel et al., 2006; Figure 1). Xenograft rejection is more
aggressive than that observed with allotransplantation and mainly
occurs through the involvement of T cells. A genetically modi-
fied swine has been engineered to express CTLA4-Ig, a human
molecule inhibiting T cells, under the neuron-specific enolase pro-
moter. This construction allowed porcine transgenic neurons to
locally deliver an immunosuppressive molecule after transplan-
tation in the brain (Martin et al., 2005). In the CNS, xenograft
survival has been significantly prolonged by administration of
immunosuppressive drugs targeting T cells like cyclosporine A.
However, this immunosuppressor at doses required to inhibit the
rejection process has strong sides effects (Rezzani, 2006) and is
only transiently efficient. Graft rejection has also been delayed
when the T cell receptor (TCR) and the IL-2 receptor α chain
(CD25) were inactivated, and in the case of CD4-positive T cell
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depletion (Honey et al., 1990; Okura et al., 1997). The admin-
istration of two successive high doses of anti-CD4 monoclonal
antibodies resulted in a longer survival of discordant xenografts
(between species differing from the expression of the gal epitope,
like pig and human), although not prolonged, suggesting that
other immune components than T cells are implicated (Wood
et al., 1996). Indeed, B cells and immunoglobulins have been
shown to intervene in the survival and function of the graft. The
importance of immunoglobulins has been highlighted by compar-
ing the survival of a cell suspension derived from porcine ventral
mesencephalon xenografted in the brain of wild-type (WT) or
immunoglobulin-deficient (Ig-KO) mice. Most of the Ig-KO mice
displayed for more than 4 weeks a functional graft with very little
immune cell infiltration while xenograft survival beyond 4 days
remained exceptional in WT mice. After a prolonged survival of
about 4 weeks, an immune cellular response with a high pro-
portion of CD8-positive T cells occurred and led to the rejection
of the graft in Ig-KO mice (Larsson et al., 1999). These observa-
tions indicate that immunoglobulins play an important part in
the fast initiation of discordant neural xenografts rejection, a phe-
nomenon that appears to be unavoidable despite all the efforts
made to control it. Overall, these pre-clinical and clinical stud-
ies led to disappointing results and limited the enthusiasm and
hope initially raised by the use of fetal xenogeneic neuroblasts in
regenerative medicine. It is now important to find more adequate
cell sources for intracerebral transplantation. In theory, the ideal
candidate should be tolerogenic and safe and have the proper-
ties to be easily amplified, resist to long-term storage, be efficient
for cell replacement and allow manipulation to adjust to a spe-
cific pathology. Until these days, no cell type possesses all those
characteristics and several cells at different stages of the neuronal
lineage have been tested in animal models and clinical trials (Guil-
laume and Zhang, 2008). Among them, neural stem/progenitor
cells (NSPCs) seem to represent a good candidate.

NSPCs, THE FUTURE OF INTRACEREBRAL
TRANSPLANTATION?
Stem cells are defined by their ability to self renew to maintain
the pool of undifferentiated cells, to proliferate to give rise to
lineage-restricted progenitors, and to differentiate into a range of
mature cell types. Among them, multipotent neural stem cells
(NSCs), derived from embryonic or adult nervous systems, can
be cultivated in vitro as neurospheres, a mixture of neural stem
cells and progenitors (NSPCs), in presence of growth factors
such as bFGF (Vescovi et al., 1993; Gritti et al., 1996), and EGF
(Reynolds and Weiss, 1992). Withdrawal of growth factors induces
their differentiation into neurons, astrocytes, and oligodendro-
cytes (Reynolds and Weiss, 1992; Reynolds et al., 1992). These
properties make them an interesting source of cells for neural
repair after injury or disease. Besides their differentiation poten-
tial, NSPCs seem to have a selective advantage for their survival
when transplanted in the brain. In a xenotransplantation context,
Armstrong and colleagues as well as our group demonstrated that
porcine NSPCs were able to survive longer than porcine neurob-
lasts when grafted into the striatum of non-immunosuppressed
rats (Armstrong et al., 2001; Michel-Monigadon et al., 2011). As
NSPCs were reported to express no or low levels of MHC molecules

FIGURE 1 | Characterization of xenograft infiltration by activated

immune cells. Kinetics (A). In the absence of immunosuppressive
treatment, the rejection process of fetal neurons xenografted in the rat
striatum involves cells from the macrophagic lineage. After a peak of
microglial activation and dendritic cell infiltration in the first days
post-transplantation, probably consecutive to the surgery, a latency phase
is observed. Around 5 weeks post-transplantation, rejection process is
initiated and strong microglial cell activation at the border but also within
the graft is observed. This phenomenon is strongly correlated with a
massive T cell and dendritic cell infiltration. Immunostaining (B). Specific
porcine neurofilament is revealed by NF70 antibody and allows visualization
of the graft. Immune reaction is assessed by Ox62 (dendritic cells), Ox42
(microglial cells/macrophages), and R73 (T cells) antibodies. Scale bar:
200 μm.

(Klassen et al., 2001; Hori et al., 2003), this phenomenon was
firstly linked to a lesser immunogenicity of these cells compared
to more mature cells (Odeberg et al., 2005). However, immuno-
genic properties of NSPCs cannot totally justify their delayed
rejection, and recent studies confirmed the expression of MHC
class I and class II molecules by NSPCs, under normal or inflam-
matory conditions (Sergent-Tanguy et al., 2006; Johansson et al.,
2008; Yin et al., 2008; Laguna Goya et al., 2011). Beneficial effects
of NSPC transplantation have been shown in pre-clinical mod-
els of several neurologic disorders such as Parkinson disease
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(Richardson et al., 2005), Huntington disease (McBride et al.,
2004), or multiple sclerosis but also in other pathologies includ-
ing renal ischemia-reperfusion (Wang et al., 2009b). However, the
different mechanisms by which these cells exert their therapeutic
effect remain unclear. The replacement of cells that have been lost
or damaged was for a long time thought to be the main function
of transplanted stem cells but it is now clear that somatic stem
cells could also induce several beneficial effects far beyond the
cell replacement itself. For instance, it has recently been demon-
strated that several stem cell types (embryonic, mesenchymal, or
neural) display a strong immunosuppressive potential (Fändrich
et al., 2002; Zappia et al., 2005; Einstein et al., 2007), favorable
to their use in transplantation strategies for immune-related dis-
eases like multiple sclerosis. It is also possible that NSPCs induce
neural repair through intrinsic properties of neuroprotection and
immunomodulation by releasing directly at the graft site a range of
molecules (immunomodulatory molecules, growth factors, stem
cell regulatory factors) spatially and temporally orchestrated by
the microenvironment (Pluchino et al., 2009).

ADMINISTRATION ROUTE AND SOURCE OF
TRANSPLANTED NSPCs
Defining the best route of administration of cells represents a con-
straint for NSPC transplantation and is very dependent on the
type of CNS lesions (focal or multifocal). Anatomic and patho-
logic characteristics of CNS focal disorders like Parkinson disease,
spinal cord lesions, Huntington disease, or stroke suggest that
intracerebral transplantation of cells directly at the site of the lesion
would be the more appropriate strategy to facilitate tissue regener-
ation. However, the presence of several lesion areas in diseases like
multiple sclerosis or epilepsy represents a major limit for intrale-
sional cellular transplantation approaches, and some groups were
able to show a therapeutic effect of NSPC systemic transplan-
tation by intravenous or intrathecal route (Pluchino et al., 2003;
Einstein et al., 2007). Efficiency of restorative transplantation can
also depend on the differentiation stage of the grafted cells. In
some cases where a specific cell type is selectively lost during the
pathogenic event, like the dopaminergic neurons in Parkinson
disease, transplantation of pre-differentiated cells sharing similar
properties in the affected region could allow a better functional
recovery (Kim et al., 2002; Lévesque et al., 2009). However, the
use of multipotent undifferentiated cells could be the best strat-
egy in the case of a lesion or disease affecting several cell types
in extended areas. Indeed these cells could spontaneously dif-
ferentiate in vivo under the influence of the microenvironment
in cells with desired phenotypes. It has recently been show that
undifferentiated human NSPCs could survive and differentiate
into neurons and glial cells after xenotransplantation into the rat
spinal cord (Mothe et al., 2011).

AUTO, ALLO, AND XENOTRANSPLANTATION OF NSPCs
Autologous NSPCs derived from rodent adult nervous tissue and
transplanted in the CNS can functionally integrate in the cerebral
parenchyma, confirming their potential use in therapy (Taupin
and Gage, 2002). Isolation of NSPCs from the human adult
brain offers the opportunity to perform autologous transplan-
tation, in which NSPCs would be isolated from an unlesioned

region of the CNS, amplified in culture and reimplanted in the
patient to repair cerebral or spinal damage without the need for
immunosuppressive treatment (Pfeifer et al., 2006). To date, autol-
ogous transplantation of differentiated NSPCs was performed in
one Parkinson disease patient with encouraging results (Lévesque
et al., 2009). If the invasive surgery to isolate NSPCs may have
critical consequences like permanent damage in the taking area,
this strategy presents the advantage to avoid immune compatibil-
ity problems and could allow patient-specific gene modifications
of the cells prior to transplantation (Stojkovic and Lako, 2011).
Genetic engineering of autologous NSPCs could for example be
used to repair potential genetic damage linked to the patient’s
disease (like in Huntington disease), stimulate dopaminergic dif-
ferentiation in the case of Parkinson disease (Wagner et al., 1999)
or dedifferentiate NSPCs toward a pluripotent state using the Oct4
gene (Kim et al., 2009). Despite the immunologically special status
of the CNS, long-term survival of neural allografts is compromised
in the host without immunosuppression (Krystkowiak et al., 2007;
Rota Nodari et al., 2010). Immunogenicity is therefore an impor-
tant parameter to consider for the survival of transplanted cells.
NSPCs express class I MHC and co-stimulatory molecules (Imi-
tola et al., 2004; Sergent-Tanguy et al., 2006) but the expression
of MHC class II molecules remain undetectable in physiological
conditions (Hori et al., 2003). However in the case of an inflamma-
tory process, in particular under IFNγ exposure, the expression of
immunogenic molecules at NSPC’s surface is strongly increased
(Johansson et al., 2008; Laguna Goya et al., 2011) which com-
promises their survival and consequently their long-term effects.
Moreover, NSPC allotransplantation studies have revealed that
NSPCs derived from adult tissue could be less efficient than those
derived from the fetal CNS (Guillaume and Zhang, 2008). Indeed,
the latter have demonstrated a greater capacity of proliferation
in vitro and would more easily differentiate into neurons in vivo.
NSPCs derived from the adult brain display weak propensity to
integrate in the cerebral tissue, show limited synapse formation
and their survival remains relatively short (Dziewczapolski et al.,
2003), compromising a potential functional recovery. These obser-
vations suggest that NSPCs should preferentially be isolated from
the fetal CNS prior to transplantation. However, one must keep
in mind that the use of human fetal NSPCs, like ES cells, is lim-
ited by ethical and logistical issues. The use of NSPCs from animal
species like swine could alleviate problems linked to the use of fetal
human cells. In several studies, porcine NSPCs have been shown to
have a reduced immunogenicity that could optimize their survival
in vivo (Armstrong et al., 2001). Porcine NSPCs are also particu-
larly interesting because of their multipotency. Barker’s group has
demonstrated that porcine NSPCs xenografted in cyclosporine A-
immunosuppressed rats presenting a 6-hydroxydopamine lesion
to model Parkinson disease could differentiate into dopaminer-
gic neurons (Armstrong et al., 2002). In addition, the xenografted
cells have proven to significantly integrate in the host tissue and
partially reconstitute damaged neuronal circuitry (Harrower et al.,
2006). In a recent study, our group has shown that NSPCs derived
from the cerebral cortex of pig embryos at 28 days of gestation
could survive significantly longer than porcine neuroblasts iso-
lated from the ventral mesencephalon after transplantation in the
brain of non-immunosuppressed rats. This prolonged survival

Frontiers in Cellular Neuroscience www.frontiersin.org April 2012 | Volume 6 | Article 17 | 4

http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


“fncel-06-00017” — 2012/4/9 — 12:25 — page 5 — #5

Bonnamain et al. NSPC for CNS cell therapy

was associated with an absence of T lymphocyte, dendritic and
activated microglial cell infiltration within the NSPC healthy
grafts and with a trophic effect of the grafted cells on the host
dopaminergic system (Michel-Monigadon et al., 2011). However,
we did not observe any dopaminergic differentiation suggesting
that NSPCs could be beneficial far beyond the cell replacement
process itself.

THERAPEUTIC EFFECTS OF TRANSPLANTED NSPCs
CELL REPLACEMENT
Human NSPCs transplanted in the brain of immunodeficient
mice can proliferate, migrate, and differentiate depending on
the injection site (Tamaki et al., 2002). Allotransplantation of
NSPCs has proven to be efficient in animal models of stroke
and spinal cord lesion. Murine NSPCs from C17.2 cell line
implanted in an ischemic mouse brain could survive, integrate,
and differentiate into neurons and glial cells (Snyder et al., 1997).
Animal models of cerebral ischemia have also been used to
demonstrate that NSPCs delivered by intraventricular injection
could migrate toward and through the damaged tissue, inte-
grate, and differentiate into the main neural cell types (Riess
et al., 2002). Moreover, NSPCs genetically modified to overex-
press NT-3 have shown a potent integration and a significant
regenerative capacity in a model of hypoxic and ischemic cere-
bral lesion, associated with a decrease in the severity of brain
parenchyma damage, an improvement of axonal outgrowth, and
a diminution of the glial scar (Park et al., 2006). These studies
suggest that, under certain conditions, the lesioned CNS could
represent a permissive environment for the maintenance of trans-
planted NSPCs. Functional integration and reconstruction of the
neuronal circuitry is an important goal for restorative therapy. In
this context, several groups have shown that NSPCs cultured in
vitro could give rise to functional neurons connected and elec-
trically active (Auerbach et al., 2000) that could integrate in the
host cortical connections after transplantation (Snyder et al., 1997;
Lundberg et al., 2002; Park et al., 2002). Despite these encourag-
ing results, proofs of the ability of NSPCs to differentiate into
a sufficient number of functional neurons that could regener-
ate lost functions by massive cell replacement remain relatively
rare. Functional benefits resulting from NSPC transplantation
are hardly correlated to the number of fully differentiated neu-
ral cells obtained from the grafted cells. This inefficiency to
complete the differentiation process and the tendency to main-
tain an undifferentiated phenotype within the host tissue suggest
that transplanted NSPCs partially exert their therapeutic effect by
alternative mechanisms.

NEUROPROTECTION
Transplanted NSPCs can significantly improve the survival and
the functions of endogenous glial and neuronal progenitor cells
that have survived the pathologic event. NSPCs display a strong
tropism for tissue lesions and seem to migrate toward these
critical sites to release molecules preventing death and facilitat-
ing regeneration of targeted cell populations (Ourednik et al.,
2002). Several groups are interested in this particular tropism
of NSPCs and stem cells in general for damaged zones. This
property could indeed be used to deliver therapeutic molecules

directly in the lesioned area using genetically engineered stem
cells (Müller et al., 2006). This type of strategy would especially
be appropriate in ischemic pathologies where altered blood flow
decreases the access to the lesion site by systemic administration
route. NSPC’s neuroprotective effect often goes along with an
increase in the bioavailability of the main neurotrophic factors
like NGF, BDNF, CNTF, and GDNF (Carletti et al., 2011). This
has been demonstrated in rodents suffering from primary cen-
tral inflammatory diseases like multiple sclerosis (Pluchino et al.,
2003), spinal cord lesions (Lu et al., 2003), or stroke, and also
in rodent models of neurodegenerative disorders associated with
an immune reaction such as Parkinson and Huntington diseases
(McBride et al., 2004; Ryu et al., 2004; Richardson et al., 2005). Cel-
lular and molecular mechanisms implicated in this phenomenon
remain unclear but may reside in the intrinsic properties of neu-
rospheres, cellular artifacts resulting from NSPC culture and from
which most of transplanted NSPCs are derived. Typically, neu-
rospheres are generated in vitro after about 10 days in culture
in the absence of serum and in the presence of high concen-
trations of growth factors (EGF/bFGF). This culture protocol
allows the selection of NSPCs responding to those factors. Thus,
after transplantation, neurosphere-derived NSPCs might be more
sensitive to environmental signals (especially bFGF) in the host
tissue triggering neurotrophin secretion by neighboring cells (Lu
et al., 2003).

IMMUNOMODULATION
Accumulating evidence suggest that stem cells, like mesenchymal
stem cells (MSCs) or embryonic stem cells, could interact with
components of the immune system, leading to the modulation
of many effector functions (Fändrich et al., 2002; Zappia et al.,
2005). For instance, MSCs are known to suppress T cell prolif-
eration in vitro (Di Nicola et al., 2002) and to induce long-term
graft survival in an allogeneic context (Bartholomew et al., 2002;
Chabannes et al., 2007). Regarding NSPCs, a growing number of
studies highlighted their immunomodulatory properties, in vivo
and in vitro (Bonnamain et al., 2011). It was clearly demonstrated
that NSPCs were able to attenuate experimental autoimmune
encephalomyelitis (EAE) when injected centrally or peripherally
(Einstein et al., 2003, 2007; Pluchino et al., 2005). If the site of
action (i.e., CNS or lymph nodes) is not clearly defined, NSPCs
have the capacity to inhibit the proliferation of lymph nodes-
derived T cells, in response to either concanavalin A (ConA) or
to myelin oligodendrocyte glycoprotein, in vitro (Einstein et al.,
2003). A recent study showed that syngenic NSPCs transplanted
in a model of focal spinal cord injury were able to interact
with activated-macrophages in situ to decrease their number and
increase the proportion of regulatory T cells (Cusimano et al.,
2012). This confirms the importance of the interactions between
NSPCs and immune cells to reconfigure the deleterious inflamma-
tory environment and thus promote the healing or regeneration
processes. As systemic transplantation of NSPCs was shown to
be beneficial in animal models of autoimmune disease like mul-
tiple sclerosis (Einstein et al., 2007), it could be hypothesized that
NSPCs exert their immunomodulatory effect through a strong
paracrine mechanism. Previous studies revealed the expression of
immune molecules like TGFβ-1 by NSPCs (Klassen et al., 2003),
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or inducible nitric oxide synthase (iNOS) and prostaglandin E2 in
NSPC cell line (Wang et al., 2009a). Even if the implication of some
of these molecules in the immunosuppressive effect of NSPC cell
line has already been suggested, the mechanism remains poorly
understood.

CONCLUSION
Significant progresses in stem cell biology have generated con-
siderable enthusiasm for the use of these cells in therapeutic
strategies for CNS disorders. Numerous studies have challenged

the common knowledge that the CNS was an immunologically
privileged tissue deprived of any immune reaction and that
transplanted NSPCs were only efficient through mechanisms of
neuronal replacement. It is now clear that neuroprotection and
immunomodulation capacities of these cells play a major part in
the beneficial effects observed in pre-clinical models of neurode-
generative diseases and other CNS affections. Elucidation of these
mechanisms may be a crucial step in the control and improve-
ment of NSPC transplantation as a major therapeutic strategy in
regenerative medicine.

REFERENCES
Aloisi, F. (2001). Immune function of

microglia. Glia 36, 165–179.
Armstrong, R. J., Harrower, T. P., Hurel-

brink, C. B., McLaughin, M., Rat-
cliffe, E. L., Tyers, P., Richards, A.,
Dunnett, S. B., Rosser, A. E., and
Barker, R. A. (2001). Porcine neu-
ral xenografts in the immunocompe-
tent rat: immune response following
grafting of expanded neural precur-
sor cells. Neuroscience 106, 201–216.

Armstrong, R. J. E., Hurelbrink, C. B.,
Tyers, P., Ratcliffe, E. L., Richards,
A., Dunnett, S. B., Rosser, A. E.,
and Barker, R. A. (2002). The
potential for circuit reconstruction
by expanded neural precursor cells
explored through porcine xenografts
in a rat model of Parkinson’s disease.
Exp. Neurol. 175, 98–111.

Auerbach, J. M., Eiden, M. V., and
McKay, R. D. (2000). Transplanted
CNS stem cells form functional
synapses in vivo. Eur. J. Neurosci. 12,
1696–1704.

Bachoud-Lévi, A.-C., Gaura, V.,
Brugières, P., Lefaucheur, J.-P., Boissé,
M.-F., Maison, P., Baudic, S., Ribeiro,
M.-J., Bourdet, C., Remy, P., Cesaro,
P., Hantraye, P., and Peschanski, M.
(2006). Effect of fetal neural trans-
plants in patients with Huntington’s
disease 6 years after surgery: a long-
term follow-up study. Lancet Neurol.
5, 303–309.

Bachoud-Lévi, A. C., Rémy, P., Nguyen,
J. P., Brugières, P., Lefaucheur, J. P.,
Bourdet, C., Baudic, S., Gaura, V.,
Maison, P., Haddad, B., Boissé, M.
F., Grandmougin, T., Jény, R., Bar-
tolomeo, P., Dalla Barba, G., Degos,
J. D., Lisovoski, F., Ergis, A. M.,
Pailhous, E., Cesaro, P., Hantraye,
P., and Peschanski, M. (2000).
Motor and cognitive improvements
in patients with Huntington’s disease
after neural transplantation. Lancet
356, 1975–1979.

Barker, C. F., and Billingham, R. E.
(1977). Immunologically privileged
sites. Adv. Immunol. 25, 1–54.

Bartholomew, A., Sturgeon, C., Siatskas,
M., Ferrer, K., McIntosh, K., Patil,
S., Hardy, W., Devine, S., Ucker, D.,

Deans, R., Moseley, A., and Hoff-
man, R. (2002). Mesenchymal stem
cells suppress lymphocyte prolifera-
tion in vitro and prolong skin graft
survival in vivo. Exp. Hematol. 30,
42–48.

Billingham, R. E., and Boswell, T.
(1953). Studies on the problem of
corneal homografts. Proc. R. Soc.
Lond. B Biol. Sci. 141, 392–406.

Björklund, A., Dunnett, S. B., Brundin,
P., Stoessl, A. J., Freed, C. R., Breeze,
R. E., Levivier, M., Peschanski, M.,
Studer, L., and Barker, R. (2003).
Neural transplantation for the treat-
ment of Parkinson’s disease. Lancet
Neurol. 2, 437–445.

Björklund, A., and Lindvall, O. (2000).
Cell replacement therapies for cen-
tral nervous system disorders. Nat.
Neurosci. 3, 537–544.

Björklund, A., Stenevi, U., Dunnett, S.
B., and Gage, F. H. (1982). Cross-
species neural grafting in a rat model
of Parkinson’s disease. Nature 298,
652–654.

Bonnamain, V., Neveu, I., and Naveil-
han, P. (2011). In vitro analyses
of the immunosuppressive proper-
ties of neural stem/progenitor cells
using anti-CD3/CD28-activated T
cells. Methods Mol. Biol. 677, 233–
243.

Carletti, B., Fpiemonte, F., and Rossi, F.
(2011). Neuroprotection: the emerg-
ing concept of restorative neural stem
cell biology for the treatment of neu-
rodegenerative diseases. Curr. Neu-
ropharmacol. 9, 313–317.

Cayrol, R., Wosik, K., Berard, J. L.,
Dodelet-Devillers, A., Ifergan, I.,
Kebir, H., Haqqani, A. S., Kreym-
borg, K., Krug, S., Moumdjian, R.,
Bouthillier, A., Becher, B., Arbour,
N., David, S., Stanimirovic, D., and
Prat, A. (2008). Activated leuko-
cyte cell adhesion molecule promotes
leukocyte trafficking into the central
nervous system. Nat. Immunol. 9,
137–145.

Chabannes, D., Hill, M., Merieau, E.,
Rossignol, J., Brion, R., Soulillou, J.
P., Anegon, I., and Cuturi, M. C.
(2007). A role for heme oxygenase-
1 in the immunosuppressive effect of

adult rat and human mesenchymal
stem cells. Blood 110, 3691–3694.

Cornet, A., Bettelli, E., Oukka, M.,
Cambouris, C., Avellana-Adalid, V.,
Kosmatopoulos, K., and Liblau, R.
S. (2000). Role of astrocytes in anti-
gen presentation and naive T-cell
activation. J. Neuroimmunol. 106,
69–77.

Cusimano, M., Biziato, D., Brambilla,
E., Donegà, M., Alfaro-Cervello, C.,
Snider, S., Salani, G., Pucci, F.,
Comi, G., Garcia-Verdugo, J. M.,
De Palma, M., Martino, G., and
Pluchino, S. (2012). Transplanted
neural stem/precursor cells instruct
phagocytes and reduce secondary tis-
sue damage in the injured spinal cord.
Brain 35(Pt. 2), 447–460.

Daniloff, J. K., Low, W. C., Bodony, R.
P., and Wells, J. (1985). Cross-species
neural transplants of embryonic sep-
tal nuclei to the hippocampal forma-
tion of adult rats. Exp. Brain Res. 59,
73–82.

Deacon, T., Schumacher, J., Dinsmore,
J., Thomas, C., Palmer, P., Kott, S.,
Edge, A., Penney, D., Kassissieh, S.,
Dempsey, P., and Isacson, O. (1997).
Histological evidence of fetal pig neu-
ral cell survival after transplantation
into a patient with Parkinson’s dis-
ease. Nat. Med. 3, 350–353.

Deacon, T. W., Pakzaban, P., Burns,
L. H., Dinsmore, J., and Isacson,
O. (1994). Cytoarchitectonic devel-
opment, axon–glia relationships, and
long distance axon growth of porcine
striatal xenografts in rats. Exp. Neu-
rol. 130, 151–167.

Di Nicola, M., Carlo-Stella, C., Magni,
M., Milanesi, M., Longoni, P. D., Mat-
teucci, P., Grisanti, S., and Gianni,
A. M. (2002). Human bone marrow
stromal cells suppress T-lymphocyte
proliferation induced by cellular or
nonspecific mitogenic stimuli. Blood
99, 3838–3843.

Dziewczapolski, G., Lie, D. C., Ray,
J., Gage, F. H., and Shults, C. W.
(2003). Survival and differentiation
of adult rat-derived neural progenitor
cells transplanted to the striatum of
hemiparkinsonian rats. Exp. Neurol.
183, 653–664.

Einstein, O., Fainstein, N., Vaknin,
I., Mizrachi-Kol, R., Reihartz, E.,
Grigoriadis, N., Lavon, I., Baniyash,
M., Lassmann, H., and Ben-Hur,
T. (2007). Neural precursors atten-
uate autoimmune encephalomyelitis
by peripheral immunosuppression.
Ann. Neurol. 61, 209–218.

Einstein, O., Karussis, D., Grigori-
adis, N., Mizrachi-Kol, R., Reinhartz,
E., Abramsky, O., and Ben-Hur, T.
(2003). Intraventricular transplanta-
tion of neural precursor cell spheres
attenuates acute experimental allergic
encephalomyelitis. Mol. Cell. Neu-
rosci. 24, 1074–1082.

Fändrich, F., Dresske, B., Bader, M.,
and Schulze, M. (2002). Embryonic
stem cells share immune-privileged
features relevant for tolerance induc-
tion. J. Mol. Med. 80, 343–350.

Freeman, T. B., Cicchetti, F., Hauser,
R. A., Deacon, T. W., Li, X.-J., Her-
sch, S. M., Nauert, G. M., Sanberg,
P. R., Kordower, J. H., Saporta, S.,
and Isacson, O. (2000). Transplanted
fetal striatum in Huntington’s dis-
ease: phenotypic development and
lack of pathology. Proc. Natl. Acad.
Sci. U.S.A. 97, 13877–13882.

Freeman, T. B., Wojak, J. C., Brandeis,
L., Michel, J. P., Pearson, J., and
Flamm, E. S. (1988). Cross-species
intracerebral grafting of embryonic
swine dopaminergic neurons. Prog.
Brain Res. 78, 473–477.

Galpern, W. R., Burns, L. H., Dea-
con, T. W., Dinsmore, J., and Isac-
son, O. (1996). Xenotransplanta-
tion of porcine fetal ventral mesen-
cephalon in a rat model of Parkin-
son’s disease: functional recovery and
graft morphology. Exp. Neurol. 140,
1–13.

Goldstein, G. W., and Betz, A. L. (1983).
Recent advances in understanding
brain capillary function. Ann. Neurol.
14, 389–395.

Gritti, A., Parati, E. A., Cova, L., Frol-
ichsthal, P., Galli, R., Wanke, E.,
Faravelli, L., Morassutti, D. J., Roisen,
F., Nickel, D. D., and Vescovi, A.
L. (1996). Multipotential stem cells
from the adult mouse brain prolifer-
ate and self-renew in response to basic

Frontiers in Cellular Neuroscience www.frontiersin.org April 2012 | Volume 6 | Article 17 | 6

http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


“fncel-06-00017” — 2012/4/9 — 12:25 — page 7 — #7

Bonnamain et al. NSPC for CNS cell therapy

fibroblast growth factor. J. Neurosci.
16, 1091–1100.

Guillaume, D. J., and Zhang, S.-C.
(2008). Human embryonic stem cells:
a potential source of transplantable
neural progenitor cells. Neurosurg.
Focus 24, E3.

Harrower, T. P., Tyers, P., Hooks, Y.,
and Barker, R. A. (2006). Long-term
survival and integration of porcine
expanded neural precursor cell grafts
in a rat model of Parkinson’s disease.
Exp. Neurol. 197, 56–69.

Hatterer, E., Davoust, N., Didier-Bazes,
M., Vuaillat, C., Malcus, C., Belin,
M.-F., and Nataf, S. (2006). How
to drain without lymphatics? Den-
dritic cells migrate from the cere-
brospinal fluid to the B-cell follicles
of cervical lymph nodes. Blood 107,
806–812.

Head, J. R., Neaves, W. B., and Billing-
ham, R. E. (1983). Immune privilege
in the testis. I. Basic parameters of
allograft survival. Transplantation 36,
423–431.

Hickey, W. F. (2001). Basic principles
of immunological surveillance of the
normal central nervous system. Glia
36, 118–124.

Hickey, W. F., Hsu, B. L., and Kimura, H.
(1991). T-lymphocyte entry into the
central nervous system. J. Neurosci.
Res. 28, 254–260.

Höftberger, R., Aboul-Enein, F., Brueck,
W., Lucchinetti, C., Rodriguez, M.,
Schmidbauer, M., Jellinger, K., and
Lassmann, H. (2004). Expression
of major histocompatibility complex
class I molecules on the different cell
types in multiple sclerosis lesions.
Brain Pathol. 14, 43–50.

Honey, C. R., Clarke, D. J., Dall-
man, M. J., and Charlton, H. M.
(1990). Human neural graft function
in rats treated with anti-interleukin
II receptor antibody. Neuroreport 1,
247–249.

Hori, J., Joyce, N., and Streilein, J. W.
(2000). Epithelium-deficient corneal
allografts display immune privilege
beneath the kidney capsule. Invest.
Ophthalmol. Vis. Sci. 41, 443–452.

Hori, J., Ng, T. F., Shatos, M., Klassen,
H., Streilein, J. W., and Young, M. J.
(2003). Neural progenitor cells lack
immunogenicity and resist destruc-
tion as allografts. Stem Cells 21,
405–416.

Huffaker, T. K., Boss, B. D., Morgan,
A. S., Neff, N. T., Strecker, R. E.,
Spence, M. S., and Miao, R. (1989).
Xenografting of fetal pig ventral mes-
encephalon corrects motor asymme-
try in the rat model of Parkinson’s
disease. Exp. Brain Res. 77, 329–336.

Imitola, J., Comabella, M., Chandraker,
A. K., Dangond, F., Sayegh, M. H.,

Snyder, E. Y., and Khoury, S. J. (2004).
Neural stem/progenitor cells express
costimulatory molecules that are dif-
ferentially regulated by inflammatory
and apoptotic stimuli. Am. J. Pathol.
164, 1615–1625.

Isacson, O., Deacon, T. W., Pakz-
aban, P., Galpern, W. R., Dins-
more, J., and Burns, L. H. (1995).
Transplanted xenogeneic neural cells
in neurodegenerative disease mod-
els exhibit remarkable axonal target
specificity and distinct growth pat-
terns of glial and axonal fibres. Nat.
Med. 1, 1189–1194.

Johansson, S., Price, J., and Modo,
M. (2008). Effect of inflamma-
tory cytokines on major histocom-
patibility complex expression and
differentiation of human neural
stem/progenitor cells. Stem Cells 26,
2444–2454.

Joó, F. (1993). The blood–brain barrier
in vitro: the second decade. Neu-
rochem. Int. 23, 499–521.

Kebir, H., Kreymborg, K., Ifergan, I.,
Dodelet-Devillers, A., Cayrol, R.,
Bernard, M., Giuliani, F., Arbour,
N., Becher, B., and Prat, A. (2007).
Human TH17 lymphocytes promote
blood–brain barrier disruption and
central nervous system inflamma-
tion. Nat. Med. 13, 1173–1175.

Kerschensteiner, M., Meinl, E., and
Hohlfeld, R. (2009). Neuro-immune
crosstalk in CNS diseases. Neuro-
science 158, 1122–1132.

Kim, J. B., Sebastiano, V., Wu, G.,
Araúzo-Bravo, M. J., Sasse, P., Gentile,
L., Ko, K., Ruau, D., Ehrich, M., van
den Boom, D., Meyer, J., Hübner, K.,
Bernemann, C., Ortmeier, C., Zenke,
M., Fleischmann, B. K., Zaehres, H.,
and Schöler, H. R. (2009). Oct4-
induced pluripotency in adult neural
stem cells. Cell 136, 411–419.

Kim, J.-H., Auerbach, J. M., Rodríguez-
Gómez, J. A., Velasco, I., Gavin, D.,
Lumelsky, N., Lee, S.-H., Nguyen,
J., Sánchez-Pernaute, R., Bankiewicz,
K., and McKay, R. (2002). Dopamine
neurons derived from embryonic
stem cells function in an animal
model of Parkinson’s disease. Nature
418, 50–56.

Klassen, H., Schwartz, M. R., Bai-
ley, A. H., and Young, M. J. (2001).
Surface markers expressed by mul-
tipotent human and mouse neural
progenitor cells include tetraspanins
and non-protein epitopes. Neurosci.
Lett. 312, 180–182.

Klassen, H. J., Imfeld, K. L., Kirov,
I. I., Tai, L., Gage, F. H., Young,
M. J., and Berman, M. A. (2003).
Expression of cytokines by multipo-
tent neural progenitor cells. Cytokine
22, 101–106.

Krystkowiak, P., Gaura, V., Labalette,
M., Rialland, A., Remy, P., Peschan-
ski, M., and Bachoud-Lévi, A.-C.
(2007). Alloimmunisation to donor
antigens and immune rejection fol-
lowing foetal neural grafts to the
brain in patients with Huntington’s
disease. PLoS ONE 2, e166. doi:
10.1371/journal.pone.0000166

Laguna Goya, R., Busch, R., Mathur,
R., Coles, A. J., and Barker, R. A.
(2011). Human fetal neural precursor
cells can up-regulate MHC class I and
class II expression and elicit CD4 and
CD8 T cell proliferation. Neurobiol.
Dis. 41, 407–414.

Larsson, L. C., Czech, K. A., Brundin,
P., and Widner, H. (2000). Intrastri-
atal ventral mesencephalic xenografts
of porcine tissue in rats: immune
responses and functional effects. Cell
Transplant. 9, 261–272.

Larsson, L. C., Czech, K. A., Widner,
H., and Korsgren, O. (1999). Discor-
dant neural tissue xenografts survive
longer in immunoglobulin deficient
mice. Transplantation 68, 1153–1160.

Lévesque, M. F., Neuman, T., and Rezak,
M. (2009). Therapeutic microinjec-
tion of autologous adult human neu-
ral stem cells and differentiated neu-
rons for Parkinson’s disease: five-year
post-operative outcome. Open Stem
Cell J. 1, 20–29.

Lu, P., Jones, L. L., Snyder, E. Y.,
and Tuszynski, M. H. (2003). Neu-
ral stem cells constitutively secrete
neurotrophic factors and promote
extensive host axonal growth after
spinal cord injury. Exp. Neurol. 181,
115–129.

Lundberg, C., Englund, U., Trono,
D., Björklund, A., and Wictorin, K.
(2002). Differentiation of the RN33B
cell line into forebrain projection
neurons after transplantation into the
neonatal rat brain. Exp. Neurol. 175,
370–387.

Martin, C., Plat, M., Nerriére-Daguin,
V., Coulon, F., Uzbekova, S., Ven-
turi, E., Condé, F., Hermel, J.-M.,
Hantraye, P., Tesson, L., Anegon,
I., Melchior, B., Peschanski, M., Le
Mauff, B., Boeffard, F., Sergent-
Tanguy, S., Neveu, I., Naveilhan, P.,
Soulillou, J. P., Terqui, M., Brachet,
P., and Vanhove, B. (2005). Trans-
genic expression of CTLA4-Ig by fetal
pig neurons for xenotransplantation.
Transgenic Res. 14, 373–384.

Mauerhoff, T., Pujol-Borrell, R.,
Mirakian, R., and Bottazzo, G. F.
(1988). Differential expression and
regulation of major histocompati-
bility complex (MHC) products in
neural and glial cells of the human
fetal brain. J. Neuroimmunol. 18,
271–289.

McBride, J. L., Behrstock, S. P., Chen,
E.-Y., Jakel, R. J., Siegel, I., Svendsen,
C. N., and Kordower, J. H. (2004).
Human neural stem cell transplants
improve motor function in a rat
model of Huntington’s disease. J.
Comp. Neurol. 475, 211–219.

Medawar, P. B. (1948). Immunity to
homologous grafted skin; the fate of
skin homografts transplanted to the
brain, to subcutaneous tissue, and to
the anterior chamber of the eye. Br. J.
Exp. Pathol. 29, 58–69.

Melchior, B., Rémy, S., Nerrière-
Daguin, V., Heslan, J.-M., Soulillou,
J.-P., and Brachet, P. (2002). Tempo-
ral analysis of cytokine gene expres-
sion during infiltration of porcine
neuronal grafts implanted into the rat
brain. J. Neurosci. Res. 68, 284–292.

Michel, D. C., Nerrière-Daguin, V.,
Josien, R., Brachet, P., Naveilhan,
P., and Neveu, I. (2006). Dendritic
cell recruitment following xenograft-
ing of pig fetal mesencephalic cells
into the rat brain. Exp. Neurol. 202,
76–84.

Michel-Monigadon, D., Bonnamain, V.,
Nerrière-Daguin, V., Dugast, A.-S.,
Lévèque, X., Plat, M., Venturi, E.,
Brachet, P., Anegon, I., Vanhove,
B., Neveu, I., and Naveilhan, P.
(2011). Trophic and immunoregu-
latory properties of neural precur-
sor cells: benefit for intracerebral
transplantation. Exp. Neurol. 230,
35–47.

Mothe, A. J., Zahir, T., Santaguida, C.,
Cook, D., and Tator, C. H. (2011).
Neural stem/progenitor cells from the
adult human spinal cord are mul-
tipotent and self-renewing and dif-
ferentiate after transplantation. PLoS
ONE 6, e27079. doi: 10.1371/jour-
nal.pone.0027079

Müller, F.-J., Snyder, E. Y., and Loring,
J. F. (2006). Gene therapy: can neural
stem cells deliver? Nat. Rev. Neurosci.
7, 75–84.

Odeberg, J., Piao, J.-H., Samuelsson,
E.-B., Falci, S., and Akesson, E.
(2005). Low immunogenicity of in
vitro-expanded human neural cells
despite high MHC expression. J. Neu-
roimmunol. 161, 1–11.

Okura, Y., Tanaka, R., Ono, K., Yoshida,
S., Tanuma, N., and Matsumoto, Y.
(1997). Treatment of rat hemiparkin-
son model with xenogeneic neural
transplantation: tolerance induction
by anti-T-cell antibodies. J. Neurosci.
Res. 48, 385–396.

Olanow, C. W., Goetz, C. G., Kordower,
J. H., Stoessl, A. J., Sossi, V., Brin,
M. F., Shannon, K. M., Nauert, G.
M., Perl, D. P., Godbold, J., and
Freeman, T. B. (2003). A double-
blind controlled trial of bilateral fetal

Frontiers in Cellular Neuroscience www.frontiersin.org April 2012 | Volume 6 | Article 17 | 7

http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


“fncel-06-00017” — 2012/4/9 — 12:25 — page 8 — #8

Bonnamain et al. NSPC for CNS cell therapy

nigral transplantation in Parkinson’s
disease. Ann. Neurol. 54, 403–414.

Ourednik, J., Ourednik, V., Lynch, W.
P., Schachner, M., and Snyder, E.
Y. (2002). Neural stem cells display
an inherent mechanism for rescuing
dysfunctional neurons. Nat. Biotech-
nol. 20, 1103–1110.

Pakzaban, P., and Isacson, O. (1994).
Neural xenotransplantation: recon-
struction of neuronal circuitry across
species barriers. Neuroscience 62,
989–1001.

Park, K. I., Himes, B. T., Stieg, P.
E., Tessler, A., Fischer, I., and Sny-
der, E. Y. (2006). Neural stem cells
may be uniquely suited for com-
bined gene therapy and cell replace-
ment: evidence from engraftment of
neurotrophin-3-expressing stem cells
in hypoxic-ischemic brain injury.
Exp. Neurol. 199, 179–190.

Park, K. I., Teng, Y. D., and Snyder, E.
Y. (2002). The injured brain interacts
reciprocally with neural stem cells
supported by scaffolds to reconsti-
tute lost tissue. Nat. Biotechnol. 20,
1111–1117.

Pfeifer, K., Vroemen, M., Caioni, M.,
Aigner, L., Bogdahn, U., and Wei-
dner, N. (2006). Autologous adult
rodent neural progenitor cell trans-
plantation represents a feasible strat-
egy to promote structural repair in
the chronically injured spinal cord.
Regen. Med. 1, 255–266.

Pluchino, S., Quattrini, A., Brambilla,
E., Gritti, A., Salani, G., Dina, G.,
Galli, R., Del Carro, U., Amadio,
S., Bergami, A., Furlan, R., Comi,
G., Vescovi, A. L., and Martino,
G. (2003). Injection of adult neuro-
spheres induces recovery in a chronic
model of multiple sclerosis. Nature
422, 688–694.

Pluchino, S., Zanotti, L., Brini, E.,
Ferrari, S., and Martino, G. (2009).
Regeneration and repair in multi-
ple sclerosis: the role of cell trans-
plantation. Neurosci. Lett. 456,
101–106.

Pluchino, S., Zanotti, L., Rossi, B.,
Brambilla, E., Ottoboni, L., Salani,
G., Martinello, M., Cattalini, A.,
Bergami, A., Furlan, R., Comi, G.,
Constantin, G., and Martino, G.
(2005). Neurosphere-derived multi-
potent precursors promote neu-
roprotection by an immunomod-
ulatory mechanism. Nature 436,
266–271.

Rémy, S., Canova, C., Daguin-
Nerrière, V., Martin, C., Melchior,
B., Neveu, I., Charreau, B., Soulil-
lou, J. P., and Brachet, P. (2001).
Different mechanisms mediate the

rejection of porcine neurons and
endothelial cells transplanted into
the rat brain. Xenotransplantation 8,
136–148.

Reynolds, B. A., Tetzlaff, W., and
Weiss, S. (1992). A multipotent EGF-
responsive striatal embryonic pro-
genitor cell produces neurons and
astrocytes. J. Neurosci. 12, 4565–
4574.

Reynolds, B. A., and Weiss, S. (1992).
Generation of neurons and astro-
cytes from isolated cells of the adult
mammalian central nervous system.
Science 255, 1707–1710.

Rezzani, R. (2006). Exploring
cyclosporine A-side effects and
the protective role-played by antiox-
idants: the morphological and
immunohistochemical studies.
Histol. Histopathol. 21, 301–316.

Richardson, R. M., Broaddus, W. C.,
Holloway, K. L., and Fillmore, H. L.
(2005). Grafts of adult subependy-
mal zone neuronal progenitor cells
rescue hemiparkinsonian behav-
ioral decline. Brain Res. 1032,
11–22.

Riess, P., Zhang, C., Saatman, K. E.,
Laurer, H. L., Longhi, L. G., Raghu-
pathi, R., Lenzlinger, P. M., Lif-
shitz, J., Boockvar, J., Neugebauer,
E., Snyder, E. Y., and McIntosh,
T. K. (2002). Transplanted neural
stem cells survive, differentiate, and
improve neurological motor function
after experimental traumatic brain
injury. Neurosurgery 51, 1043–1052;
discussion 1052–1054.

Rota Nodari, L., Ferrari, D., Giani,
F., Bossi, M., Rodriguez-Menendez,
V., Tredici, G., Delia, D., Vescovi,
A. L., and De Filippis, L. (2010).
Long-term survival of human neural
stem cells in the ischemic rat brain
upon transient immunosuppression.
PLoS ONE 5, e14035. doi: 10.1371/
journal.pone.0014035

Ryu, J. K., Kim, J., Cho, S. J., Hatori,
K., Nagai, A., Choi, H. B., Lee, M.
C., McLarnon, J. G., and Kim, S.
U. (2004). Proactive transplantation
of human neural stem cells prevents
degeneration of striatal neurons in
a rat model of Huntington disease.
Neurobiol. Dis. 16, 68–77.

Schumacher, J. M., Ellias, S. A., Palmer,
E. P., Kott, H. S., Dinsmore, J.,
Dempsey, P. K., Fischman, A. J.,
Thomas, C., Feldman, R. G., Kas-
sissieh, S., Raineri, R., Manhart, C.,
Penney, D., Fink, J. S., and Isacson,
O. (2000). Transplantation of embry-
onic porcine mesencephalic tissue
in patients with PD. Neurology 54,
1042–1050.

Sergent-Tanguy, S., Véziers, J., Bon-
namain, V., Boudin, H., Neveu,
I., and Naveilhan, P. (2006). Cell
surface antigens on rat neural pro-
genitors and characterization of the
CD3 (+)/CD3 (−) cell populations.
Differentiation 74, 530–541.

Sivakumar, V., Foulds, W. S., Luu, C. D.,
Ling, E., and Kaur, C. (2011). Reti-
nal ganglion cell death is induced by
microglia derived pro-inflammatory
cytokines in the hypoxic neonatal
retina. J. Pathol. 224, 245–260.

Snyder, E. Y., Yoon, C., Flax, J.
D., and Macklis, J. D. (1997).
Multipotent neural precursors can
differentiate toward replacement of
neurons undergoing targeted apop-
totic degeneration in adult mouse
neocortex. Proc. Natl. Acad. Sci.
U.S.A. 94, 11663–11668.

Stojkovic, M., and Lako, M. (2011).
Neural stem cells, a step closer to
clinic? Stem Cells 29, 1477–1478.

Tamaki, S., Eckert, K., He, D., Sutton,
R., Doshe, M., Jain, G., Tushin-
ski, R., Reitsma, M., Harris, B.,
Tsukamoto, A., Gage, F., Weissman, I.,
and Uchida, N. (2002). Engraftment
of sorted/expanded human central
nervous system stem cells from fetal
brain. J. Neurosci. Res. 69, 976–986.

Taupin, P., and Gage, F. H. (2002).
Adult neurogenesis and neural stem
cells of the central nervous system
in mammals. J. Neurosci. Res. 69,
745–749.

Vescovi, A. L., Reynolds, B. A., Fraser,
D. D., and Weiss, S. (1993). bFGF
regulates the proliferative fate of
unipotent (neuronal) and bipotent
(neuronal/astroglial) EGF-generated
CNS progenitor cells. Neuron 11,
951–966.

Wagner, J., Akerud, P., Castro, D. S.,
Holm, P. C., Canals, J. M., Sny-
der, E. Y., Perlmann, T., and Arenas,
E. (1999). Induction of a midbrain
dopaminergic phenotype in Nurr1-
overexpressing neural stem cells by
type 1 astrocytes. Nat. Biotechnol. 17,
653–659.

Wang, L., Shi, J., van Ginkel, F. W., Lan,
L., Niemeyer, G., Martin, D. R., Sny-
der, E. Y., and Cox, N. R. (2009a).
Neural stem/progenitor cells modu-
late immune responses by suppress-
ing T lymphocytes with nitric oxide
and prostaglandin E2. Exp. Neurol.
216, 177–183.

Wang, P. H. M., Schwindt, T. T., Barn-
abé, G. F., Motta, F. L. T., Semedo, P.,
Beraldo, F. C., Mazzali, M., Dos Reis,
M. A., Teixeira Vde, P. A., Pacheco-
Silva, A., Mello, L. E., and Câmara,
N. O. (2009b). Administration of

neural precursor cells ameliorates
renal ischemia-reperfusion injury.
Nephron Exp. Nephrol. 112, e20–e28.

Wekerle, H., Sun, D., Oropeza-Wekerle,
R. L., and Meyermann, R. (1987).
Immune reactivity in the nervous sys-
tem: modulation of T-lymphocyte
activation by glial cells. J. Exp. Biol.
132, 43–57.

Wictorin, K., Clarke, D. J., Bolam, J.
P., Brundin, P., Gustavii, B., Lindvall,
O., and Björklund, A. (1990). Exten-
sive efferent projections of intra-
striatally transplanted striatal neu-
rons as revealed by a species-specific
neurofilament marker and antero-
grade axonal tracing. Prog. Brain Res.
82, 391–399.

Wood, M. J., Sloan, D. J., Wood, K. J.,
and Charlton, H. M. (1996). Indef-
inite survival of neural xenografts
induced with anti-CD4 mono-
clonal antibodies. Neuroscience 70,
775–789.

Yin, L., Fu, S.-L., Shi, G.-Y., Li, Y., Jin, J.-
Q., Ma, Z.-W., and Lu, P.-H. (2008).
Expression and regulation of major
histocompatibility complex on neu-
ral stem cells and their lineages. Stem
Cells Dev. 17, 53–65.

Zappia, E., Casazza, S., Pedemonte, E.,
Benvenuto, F., Bonanni, I., Gerdoni,
E., Giunti, D., Ceravolo, A., Caz-
zanti, F., Frassoni, F., Mancardi, G.,
and Uccelli, A. (2005). Mesenchy-
mal stem cells ameliorate experimen-
tal autoimmune encephalomyelitis
inducing T-cell anergy. Blood 106,
1755–1761.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 15 February 2012; paper pend-
ing published: 06 March 2012; accepted:
26 March 2012; published online: 11
April 2012.
Citation: Bonnamain V, Neveu I and
Naveilhan P (2012) Neural stem/
progenitor cells as promising candidates
for regenerative therapy of the central ner-
vous system. Front. Cell. Neurosci. 6:17.
doi: 10.3389/fncel.2012.00017
Copyright © 2012 Bonnamain, Neveu
and Naveilhan. This is an open-access
article distributed under the terms of
the Creative Commons Attribution Non
Commercial License, which permits non-
commercial use, distribution, and repro-
duction in other forums, provided the
original authors and source are credited.

Frontiers in Cellular Neuroscience www.frontiersin.org April 2012 | Volume 6 | Article 17 | 8

http://dx.doi.org/10.3389/fncel.2012.00017
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive

	Neural stem/progenitor cells as promising candidates for regenerative therapy of the central nervous system
	The central nervous system, an organ with an "immunologically special'' status
	Cell replacement therapy for the CNS
	Intracerebral xenotransplantation
	NSPCs, the future of intracerebral transplantation?
	Administration route and source of transplanted NSPCs
	Auto, allo, and xenotransplantation of NSPCs
	Therapeutic effects of transplanted NSPCs
	Cell replacement
	Neuroprotection
	Immunomodulation

	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


