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Abstract
Background: Time-course microarray experiments are being increasingly used to characterize
dynamic biological processes. In these experiments, the goal is to identify genes differentially
expressed in time-course data, measured between different biological conditions. These
differentially expressed genes can reveal the changes in biological process due to the change in
condition which is essential to understand differences in dynamics.

Results: In this paper, we propose a novel method for finding differentially expressed genes in
time-course data and across biological conditions (say C1 and C2). We model the expression at C1
using Principal Component Analysis and represent the expression profile of each gene as a linear
combination of the dominant Principal Components (PCs). Then the expression data from C2 is
projected on the developed PCA model and scores are extracted. The difference between the
scores is evaluated using a hypothesis test to quantify the significance of differential expression. We
evaluate the proposed method to understand differences in two case studies (1) the heat shock
response of wild-type and HSF1 knockout mice, and (2) cell-cycle between wild-type and Fkh1/Fkh2
knockout Yeast strains.

Conclusion: In both cases, the proposed method identified biologically significant genes.

Background
Microarray expression profiling is often carried out to
identify genes whose expression change across biological
conditions [1]. Two types of expression profiling can be
differentiated, static and time-course. In the static type,
snapshots of gene expression levels are measured in two
different cell populations, such as normal and diseased
[2]. Genes that are differentially expressed in the diseased
cells, compared to normal cell population, disclose path-
ways related to the disease and also serve as signature of
the disease. However, measuring expression levels irre-
spective of time does not provide information about the
dynamic interactions that characterize the cellular proc-

esses [3]. This necessitates time-course experiments where
gene expression levels are measured at different time-
points and across biological conditions such as wild-type
and gene-knockout strains [4] or normal and stimulated
cells [5].

Several methods have been proposed in literature to iden-
tify differentially expressed genes in static experiments.
The simplest technique is the calculation of fold change of
gene expression between the conditions. Genes with fold
change above a user-defined threshold such as 2-fold
change may be considered as differently expressed. For
cases where replicates of microarray experiments are avail-
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able, methods based on standard t-test, modified t-test
and non-parametric tests have been proposed (see reviews
[6] and [7]). These methods are not directly applicable for
time-course experiments where differential expression has
to be calculated globally in the temporal space and not
just between corresponding time points [8].

Recently, several methods have been proposed to identify
differentially expressed genes in time-course data. Bar-
Joseph et al. [9] proposed a method that represents
expression profiles as continuous curves and then uses a
global difference between the curves to identify differen-
tially expressed genes. In their approach, clustering of
genes is used as a preprocessing step; although simple,
this makes the method computationally expensive for
large datasets. Storey et al. [8] proposed a method that
measures the improvement in goodness-of-fit when a sin-
gle curve is used to fit the data from both conditions com-
pared to fitting a separate curves for each condition. If the
improvement in goodness-of-fit is significant then that
particular gene is considered as differentially expressed.
Their approach treats all genes as equal irrespective of
their expressions levels in the experiments. This leads to
the spurious identification of genes with low expression
in both conditions as differentially expressed genes (see
results). Conesa et al. [10] proposed a regression-based
approach that models the expression profile of each gene
with time as regressor and tests the hypothesis on the
equality of regression coefficients. A similar method is
proposed by Vinciotti et al. [11] where the expression pro-
files are fitted using cubic polynomials and tested for sim-
ilarity of coefficients. Modeling individual genes is
generally not recommended due to noise in the microar-
ray data [12]. Cheng et al. [13] proposed an approach that
represents the time-course data from both conditions as
two different gene relationship networks where each node
is a gene and each edge links the two similarly expressed
genes. Differentially expressed genes are identified by
comparing the neighborhood of each gene i in both net-
works. The neighborhood of gene i consists of genes that
have similar expressions. Genes with dramatic change in
neighborhood are deemed as differentially expressed.
Since the actual expression of a gene is not directly com-
pared in both conditions, genes similarly expressed in
both conditions can be declared as differentially expressed
if their neighbors change. Reverter et al. [14] proposed a
method that identifies genes that are simultaneously dif-
ferentially expressed and differentially connected. How-
ever, they quantify the difference in expression of a gene
as the sum of differences in individual time-points. This
may not capture systematic variations. Methods based on
ANOVA [15] and ANCOVA [16] models have also been
proposed specifically for replicated time-course data.

Each one of the available methods for identifying differ-
entially expressed genes in time-course data have particu-
lar drawbacks. They also do not consider natural
dependencies among different time-points. The noise in
the data is also ignored. In this paper, we propose a statis-
tical method for identifying differentially expressed genes
in time-course data. The proposed method uses Principal
Components Analysis (PCA) to consider the correlation
among different time-points and reveal fundamental pat-
terns in the data. The scores of genes on these fundamen-
tal patterns are used to identify the differentially expressed
genes. Noise is discounted by considering only the most
significant PCs (patterns) in the analysis.

Let time-course gene expression be measured at two differ-
ent biological conditions, C1 and C2. The proposed
method relies on Principal Components Analysis (PCA)
to model the expression data from C1. Noise is removed
from the model by using only the dominant components.
When the expression data from C2 is projected on this
PCA model, differences in the gene expression program
can be identified. Genes whose expressions do not change
between the two conditions will have similar scores, while
scores will be different for differentially expressed genes.
A statistical test is used to find the significance of the dif-
ference in scores and reliably identify differentially
expressed genes and their p-value (see Methods section for
details).

There are several advantages of using PCA for finding dif-
ferentially expressed genes: (1) The score of a gene on a PC
is the correlation between the gene and the PC. Compar-
ing the scores is equivalent to comparing the similarity of
temporal expression profiles. So the proposed approach
uses the systematic differences in expression to identify
differentially expressed genes, (2) Since only the domi-
nant PCs are used for analysis, the effect of noise in the
data is alleviated. This leads to meaningful comparison of
expression profiles across conditions and identifies signif-
icant differentially expressed genes. (3) PCs are the funda-
mental patterns in the data. They can be interpreted and
hence provides more information about the differences in
expression of genes [17-19].

We evaluate the proposed method using two case studies.
The first case study involves genome-wide study of differ-
ences in the heat-shock response of wild-type mouse and
mouse lacking heat-shock transcription factor 1 (HSF1).
The second case study concerns the Yeast cell-cycle
response between the wild-type and a mutant lacking
forehead proteins (Fkh1 and Fkh2). We compare the
results from these studies with results from other recent
approaches.
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Results
We test our approach using two publicly available data-
sets. The first time-course dataset is from heat-shock
response of wild-type and HSF1 mutant mice. The second
dataset is from Yeast cell-cycle study in a wild-type and
Fkh1 and Fkh2 double mutant strain.

Case Study 1: mouse time-course dataset
Heat-shock transcription factor 1 (HSF1) is the primary
regulator for many heat-shock proteins in mammalian
cells. To characterize its role, Trinklein et al. [20] meas-
ured the transcription levels and also assayed the binding
of HSF1 on human promoters. From this study, Trinklein
et al. [20] hypothesized that the induction of several heat
response genes is independent of HSF1. To test the
hypothesis, Trinklein et al. [20] measured the expression
levels of 9468 mouse genes using cDNA microarrays.
Expression levels of genes are measured at 0, 0.5, 1, 2, 3,
4, 6, and 8 h after the heat-shock in both wild-type and

mouse lacking HSF1. Trinklein et al. [20] analyzed the
transcriptional response of different gene groups: (A)
mouse genes homologues of human genes that are bound
by HSF1 and induced, (B) homologues that were bound
by HSF1 but not induced, (C) homologues that were
induced but not bound by HSF1, (D) genes induced by
heat in wild-type but not in mutant, (E) genes induced in
mutant mouse, (F) genes induced similarly in both wild-
type and mutant. Ideally, genes belonging to groups A, D
and E should be identified as differentially expressed
between wild-type and HSF1 mutant mouse and genes
belonging to groups C and F as similarly expressed.

Modeling the wild-type time-course data
We modeled the time-course expression data from the
wild-type mouse using PCA. The number of PCs, k, to be
retained in the model was found using cross-validation.
The root-mean square error of cross-validation (RMSECV)
takes the minimum value at k = 2 (Figure 1A). The first

Results for mouse datasetFigure 1
Results for mouse dataset. (A) Cross-validation results for the wild-type mouse time-course data. The RMSECV has the 
minimum value at number of PCs 2. So two PCs are used to model this dataset. (B) The PCs extracted in the wild-type mouse 
dataset. First PC shows the pattern related to activation of genes. The second PC has increased expression in the first time-
point and then decreases. It corresponds to the dynamic changes in genes expression due to heat-shock. (C) The distribution 
of p-value of the genes in mouse dataset. There are 288 genes in the p-value range 0–0.01. After that the distribution if more 
or less uniform. The p-value threshold selected for this dataset is 0.01. (D) Difference of scores of mouse genes on first two 
PCs. The differentially expressed genes identified by the proposed method are marked '*'.
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two PCs capture 42.12% and 24.75% of the total variance,
respectively. The third PC captures only 9% of the vari-
ance and the remaining PCs smaller amounts. The expres-
sion profiles of PCs are shown in Additional file 1. The
first two PCs model systematic changes in expression
where as rest appear to have random expressions depict-
ing noise. This provides additional evidence that the first
two PCs capture most of the variance and the rest of the
PCs essentially contain the noise in the data. So, selection
of two PCs is justified for this dataset. In order to validate
the PCA model, we analyzed the expression profiles of
these two PCs shown in Figure 1B. In wild-type mouse,
the heat-shock activates several heat inducible genes. The
first PC shows an upward trend indicating the activation
of the genes due to heat-shock. Genes whose scores are
positive on this PC show similar trend in their expression.
Some of these genes include heat inducible genes hsp60,
hsp70, hsp86, etc. The second PC shows an upward trend
at 0.5 hrs after the heat-shock and shows a downward
trend afterward. This PC represents the dynamic changes
in the expression of genes over time.

Identifying differentially expressed genes
The time-course data from the mouse lacking HSF1 is pro-
jected on the developed PCA model and the scores of
these genes on the two PCs are extracted. The differences
in their scores are used to calculate the p-values for the
genes (see Methods section for details). The histogram of
the p-values for all the genes is shown in Figure 1C. There
are 288 genes in the p-value range 0–0.01. The frequency
drops to 70 in the range 0.01–0.02 (see the inset in Figure
1C) and the p-values for the rest of the genes are distrib-
uted more or less uniformly. So, we selected a p-value
threshold of 0.01 for this dataset.

The proposed method identifies 288 genes as differen-
tially expressed at this p-value threshold. The differences
in the scores on two PCs are shown in Figure 1D. The dif-
ferentially expressed genes (marked as '*') are far away
from the majority of the genes. This confirms that the pro-
posed hypothesis test identifies the genes with large differ-
ence in scores. Since the HSF1 gene is knocked-out in the
experiment, we expect that the targets of HSF1 gene will
be differentially expressed in the mutant mouse. On the
other hand, genes related to metabolism and signaling
processes are expected to be similarly expressed in the
wild-type and mutant mice. The differentially expressed
genes identified by the proposed method include genes
previously reported as the targets of the HSF1 such as
hsp60, hsp70, hspa8 [21]. In contrast, several metabolic
and signal transduction genes including methylene tet-
rahydrofolate dehydrogenase, carbon catabolite repres-
sor, Protein kinase C alpha binding protein, and MAD
homologue 7 are not identified as differentially expressed.
The p-values for these genes are between 0.018–0.9989.

This clearly shows that the proposed method is able to
identify differentially expressed genes with biological
implications.

Our method identifies four (out of 9), group A mouse
genes homologues of human genes that are both bound
by HSF1 and induced in wild-type mouse. These are
Hsp105, Dnajb1, hsp84-1, and Cacybp and the corre-
sponding p-values are 1.0 × 10-15, 7.014 × 10-8, 3.0614 ×
10-4, and 4.7355 × 10-4. On the other hand, 13 (out of 15)
group C mouse genes homologue to human genes that are
induced in wild-type but not bound by HSF1 are not iden-
tified as differentially expressed genes. The p-values for
these genes are in the range of 0.035–0.927. These results
support the hypothesis that HSF1 does not regulate all the
heat induced genes.

Comparison of results with previous study
Trinklein et al. [20] reported 167 genes differentially
expressed in the experiment (groups D and E). Our
approach identified 78 of the genes out of these 167. Most
of the remaining genes identified by Trinklein et al. [20]
have <2-fold change at all the time-points in both wild-
type and the mutant mouse. Trinklein et al. [20] used the
heatmaps of the clusters to identify differentially
expressed genes. In heatmaps, small positive and small
negative values are showed in different colors and can
hence lead to mis-identification as differentially
expressed. The proposed approach also identified 210
novel genes as differentially expressed. We clustered these
genes using hierarchical clustering [see Additional file 2].
The figure shows the novel genes are differentially
expressed between the wild-type and mutant mouse. Trin-
klein et al. [20] identified the genes that were completely
up- or down-regulated between the wild-type and mutant
mice. This can be seen in Figure 2 where the genes identi-
fied by Trinklein et al. [20] span only in the direction of
first PC that represents activation of genes after heat-
shock. The proposed approach identifies all the genes
with differential expression between the two mice.

Case Study 2: Yeast cell-cycle dataset
For the second case study, we use the Yeast cell-cycle data-
set where the expression levels of genes are measured over
two cell-cycles in a wild type and Fkh1, Fkh2 double
mutant strain. Spellman et al. [22] monitored the expres-
sion levels of almost all genes during two cell-cycles.
Eighteen samples were taken following the a factor release
with a sample period of 7 mins. They identified 800 cell-
cycle regulated genes using periodic algorithms. Zhu et al.
[4] monitored the expression levels of Yeast genes in a
mutant strain that lacks two forkhead transcription factors
Fkh1 and Fkh2. They measured expression levels at 13
time-points, the first twelve at 15 min intervals from time
0 till 165 mins, and the last at 210 mins. Out of the 800
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cell-cycle genes reported by Spellman et al. [22] in the
Wild-Type (WT) strain, expression data is available for
746 genes in the Knock-Out (KO) experiment. So we use
the expression data for these 746 genes from both strains
to evaluate the proposed method.

Since the number of samples and the time of samples are
different in WT and KO experiments, we use dynamic time
warping [23] to align the expression profiles by warping
their time scales. Particularly, we use asymmetric time
warping algorithm to map the time axis of the KO genes
signals to the WT ones. The expression profiles of both the
WT and KO genes are fitted to cubic splines and resam-
pled at each minute. These supersets are aligned using
asymmetric DTW. After alignment, the resampled expres-
sion values for the KO are obtained at the time points cor-
responding to the original WT samples (0 to 119 mins
with a period of 7 mins). The aligned datasets for both the
WT and KO strains thus contain expression of 746 genes
at 18 time points.

Modeling the wild-type time-course data
We modeled the expression time-course data from the
wild-type Yeast strain using PCA. The RMSECV has local
minima at k = 4, 8 and 11 (Figure 3). The expression pro-
files of all PCs are shown in Additional file 3. The first four

PCs have systematic changes in expression. The first 4 PCs
capture approximately 80% of the variance in the data.
Considering the noise levels in microarray data, we use
only 4 PCs. The expression profiles of the four PCs are
shown in Figure 4. These PCs correspond to different fun-
damental patterns in the WT cell-cycle data. Genes from
different phases are found to be highly correlated with
these patterns. For example, genes with high scores on PC
1 such as Clb2, Clb1, Ace2 and Cdc5 are mainly from G2
and M phases. Similarly, genes from G1 and S phases have
higher scores on PC 2, the PC 3 maps to the M/G1 and G2
phases. PC 4 contributes to genes from different phases.

Identifying differentially expressed genes
When the resampled KO (C2) gene-expressions were pro-
jected to the PCA model, the proposed method identified
72 genes as differentially expressed at the p-value thresh-
old of 0.05. We identified several genes expressed at high
levels in WT strain but showing little or no expression in
KO strain. For example, 40 genes had 2-fold change in at
least one time-point in the WT strain that lost their expres-
sion in the KO strain and showed less than 2-fold change
in all time-points. The proposed method also identified 4
genes that have less than 2-fold change in WT strain but
having 2-fold change at one time-point (2 genes) and 2
time-points (2 genes) in the KO strain. We identified one
gene that has less than 2-fold change in both WT and KO
strain as differentially expressed. All the remaining genes
showed high expression levels in both the WT and KO
strains but differed in their expression profiles.

Zhu et al. [4] analyzed the heatmaps of clusters of co-
expressed cell-cycle genes and reported that genes from

Difference of scores of mouse genes on first two PCsFigure 2
Difference of scores of mouse genes on first two PCs. 
The differentially expressed genes identified by Trinklein et 
al. [20] are marked '+'. These genes span mainly in the direc-
tion of the first PC. The first PC represents the pattern 
related to activation of genes. Genes on the positive side of 
the plane are up-regulated in wild-type and down-regulated 
in mutant mouse. Genes on the negative side of the plane are 
down-regulated in wild-type and up-regulated in mutant 
mouse. This indicates that Trinklein et al. [20] identified only 
the genes that are completely up- or down-regulated.
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CLB2 and SIC1 clusters are differentially expressed in the
mutant strain. The proposed method identifies several
genes from CLB2 and SIC1 clusters. We identified 11
genes (out of 31) from CLB2 cluster. The expression pro-
files of four of these genes in WT and KO are shown in Fig-
ure 5. These genes show a significant difference in their
expression between the WT and KO strains – oscillatory
behavior (with > 2-fold change) in the WT strain and
almost no expression in KO strain. Some of the remaining
genes in this cluster have flat expression profiles in the KO
as well as in WT [see Additional file 4]. The genes identi-
fied by the proposed method are the most significantly
differentially expressed genes in CLB2 cluster. In the SIC1
cluster, we identified 16 (out of 26) genes. The expression
profiles of some of these genes in WT and KO are shown
in Figure 6. From this figure, it is clear that the genes iden-
tified are differentially expressed. The remaining 10 genes
showed a little expression in both the WT and KO [see
Additional file 5]. The benefit of the proposed method is
the quantitative comparison of the expression profiles
which enables the identification of significantly differen-
tially expressed genes and eliminates subjective errors.

We validate the results at different levels. First, we com-
pare the genes identified by the proposed method with
results from other approaches for identifying differen-
tially expressed genes. The novel genes identified by our
method are evaluated using the Genome-wide location
data from Simon et al. [24] who studied genome-wide
transcription factor (TF)-DNA interactions for nine cell-
cycle TFs including Fkh1, Fkh2, Ace2 and Swi5. Finally,
differential expression of genes is also confirmed by
directly comparing the actual expression profiles.

Comparison with results from other methods
We compare our results with the results from the different
approaches proposed for identifying differentially
expressed genes in time-course microarray datasets. Bar-
Joseph et al. [9] used the same datasets and reported 56
genes as differentially expressed. There is a significant
overlap between the genes identified by our method and
those reported by Bar-Joseph et al. [9]. Our method iden-
tifies 44 of these 56. Changing the p-value threshold to
0.1 includes 5 more genes. We found all the genes identi-
fied by Bar-Joseph et al. [9] in CLB2 cluster. Additionally,

Principal Components extracted from the wild-type Yeast cell-cycle datasetFigure 4
Principal Components extracted from the wild-type Yeast cell-cycle dataset. The four PCs extracted from the wild-
type Yeast cell-cycle dataset have distinct patterns and map to different phases of the cell-cycle.
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our list includes Cdc5 and YPR156C from that cluster.
Cdc5 is a pole-like kinase, possibly a substrate of Cdc28,
which is found to be bound by Ndd1. Even though Ndd1
is not directly affected in this experiment, its binding is
mediated by Fkh2 in G2/M [25]. The second gene
YPR156C is involved in polyamine transport. There are no
regulators found to be bound to this gene in TF-DNA
interaction data. However, its expression is different
between WT and KO. Similarly, most of the genes
reported by Bar-Joseph et al. [9] from the SIC1 cluster
have been identified by our method.

We used the EDGE software by Storey et al. [8] to identify
differentially expressed genes. Using natural cubic splines
with basis of 4, their method identifies 73 genes as differ-
entially expressed at the p-value threshold of 0.001. Only

30 (out of these 73) genes match the genes identified by
our method, and only 22 genes with those identified by
Bar-Joseph et al. [9]. Overall, 21 genes are identified by all
the three methods, while 42 are novel genes identified
only by the Storey et al. [8] approach. Most of these novel
genes show very little expression in both the WT and KO
strain [see Additional file 6]. Only 7 of the 42 novel genes
are found to be bound by one or more of Fkh1, Fkh2,
Ace2 and Swi5. The normalization procedure they use
equally weighs highly expressed genes and genes with lit-
tle expression. This is the probable reason for the misiden-
tification of genes with little expression as being
differentially expressed.

Recently, Cheng et al. [13] used the cell-cycle dataset to
evaluate their approach and identified 100 genes as differ-

Expression profiles of four genes identified by the proposed method in the CLB2 clusterFigure 5
Expression profiles of four genes identified by the proposed method in the CLB2 cluster. The solid line represents 
the expression of gene in the WT and the dotted line represents the expression of gene in the KO strain. Gene names and the 
p-values are shown for all genes. The WT genes show an oscillatory behavior while the expression in KO is significantly 
changed.
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entially expressed, among which 41 genes are present in
out dataset (we used 746 cell-cycle regulated genes). We
identified 19 out of these 41 genes as differentially
expressed. Additional 6 genes will be identified as differ-
entially expressed if the p-value threshold is increased to
0.1. The expression profiles of the remaining 22 genes are
show in Additional file 7. Several genes showed similar
expression in both wild-type and the mutant strain. The
approach proposed by Cheng et al. [13] considers the
change in neighborhood of a gene in two conditions.
Since the actual expression profile of genes is not com-
pared in different conditions, genes with similar expres-
sion profiles could also be detected as differentially
expressed if their neighborhood genes are differentially
expressed.

Validation of Novel genes
Using our method, we identified 28 novel genes that have
previously not been identified. We find the TFs for the
novel genes using Genome-wide location data from
Simon et al. [24] with a strict p-value threshold of 0.005
for TF-DNA binding (Table 1). The novel genes we identi-
fied are from all cell-cycle phases. It is known that cell-
cycle is carried out by serial regulation of transcription fac-
tors [24]. So it is expected that a change in the cell-cycle
will affect the different phases. 13 genes (out of 28) are
found to be bound by one or more of Fkh1, Fkh2, Ace2,
and Swi5. Fhk2 is the predominant binding partner for
Mcm1 and it also mediates the binding of Ndd1 [25]. So
genes regulated by Mcm1 or Ndd1 would possibly change
their expression in the mutant strain. The remaining genes
are found to be bound by one or more of Swi4, Swi6, and

Expression profiles of four genes identified by the proposed method in SIC1 clusterFigure 6
Expression profiles of four genes identified by the proposed method in SIC1 cluster. The solid line represents the 
expression of gene in the WT and the dotted line represents the expression of gene in the KO strain. Gene names and the p-
values are shown for all genes. There is considerable change in the expression of SIC1 genes between WT and KO strain.
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Mbp1. Both Swi6 and Mbp1 have very little expression in
WT and they were not identified as cell-cycle regulated
genes by Spellman et al. [22]. So, the data we used
includes only Swi4. The p-value for Swi4 is 0.06 which is
very close to the threshold we used. It also shows a differ-
ence in expression between WT and KO. This differential
expression of Swi4 is probably the reason for the differen-
tial expression of genes bound by it.

Understanding cell-cycle using novel genes
To understand how the cell-cycle is affected by the dele-
tion of the two forkhead proteins Fkh1 and Fkh2, we con-
structed a heatmap of the cell-cycle regulated genes using
the Treeview software [26](Figure 7). As expected, genes
having peak expression in M (CLB2 genes) and M/G1
(SIC1 genes) phases of cell-cycle have lost their expression
in the KO strain. Several G1 genes also showed a signifi-
cant difference in their expression. One interesting aspect
we observed in the heatmap is that, in the KO strain, most
of the genes from G1 phase retained their expression in
the first cell-cycle but not in the second cycle. However,
the phenotype indicates that cells entered into second
cell-cycle: mother and daughter cells budding synchro-

nously [4]. The novel genes we identified as differentially
expressed partially explain this phenomenon.

To understand the cell-cycle regulation in Yeast, consider
Figure 8, a simplified form of Simon et al. [24] cell-cycle
model. Two transcription factor complexes SBF (complex
of Swi4 and Swi6) and MBF (complex of Mbp1 and Swi6)
are major regulators of G1 phase genes. SBF requires Cln3-
Cdc28 to change to active state by post-transcriptional
action [27].

In contrast to the other approaches which identify only
Cln1, we identified all three CLN genes (Cln1, Cln2 and
Cln3) as differentially expressed. The expression profiles
of these three genes are shown in Figure 9. In the WT
strain, all three show oscillatory behavior. Cln1 loses its
oscillatory behavior in the KO strain and its expression is
very low. Cln2 retains its oscillatory behavior but at a
lower magnitude. Cln3 is not expressed in the KO strain.
Cln3 is found to be bound by Mcm1, Ace2, Swi5, Swi4
and Swi6 (Table 1). So we hypothesize that for the KO
strain, expression of Cln3 is affected, because of which
SBF is in an inactive state. Consequently, the expression of
G1 phase genes during the second cell-cycle is altered. It

Table 1: Validation of novel genes

Gene Phase p-value Transcription Factors

PCL9 M/G1 0.0495 Swi5
CHS1 M/G1 0.0098 Swi5

YDL117W M/G1 0.0110
YBR296C M/G1 0.0104

SST2 M/G1 0.0224
AGA1 M/G1 0.0048 Mcm1, Mbp1, Swi4, Swi6
TSL1 G1 0.0274 Fkh1, Fkh2, Ndd1, Ace2, Swi5, Mbp1, Swi4, Swi6
CLB6 G1 0.0027 Fkh2, Mbp1, Swi4, Swi6
SVS1 G1 0.0001 Fkh1, Fkh2, Swi4, Swi6

POL30 G1 0.0268
MCD4 G1 0.0257
YOX1 G1 0.0085 Fkh2, Mbp1, Swi4, Swi6
CLN2 G1 0.0088 Swi6

YMR305C G1 0.0187 Mcm1, Mbp1, Swi4, Swi6
HHT1 S 0.0403 Fkh2
HHO1 S 0.0162 Swi4, Swi6

YIL129C G2 0.0021 Swi5
YMR215W G2 0.0025 Fkh1, Fkh2, Mbp1, Swi6

CIK1 G2 0.0126 Fkh1, Fkh2
CDC5 M 0.0033 Ndd1

YPR156C M 0.0064
YPR157W M 0.0219

NCE2 M 0.0203 Fkh2, Ndd1, Swi4
FET3 M 0.0042

YOR383C M 0.0371
YDL039C M 0.0089

CLN3 M 0.0108 Mcm1, Ace2, Swi5, Swi4, Swi6
MFA2 M 0.0216 Fkh1, Ndd1, Mcm1, Swi5

Novel differentially expressed genes identified by the proposed method. Genes are grouped based on the phase of the cell-cycle where they show 
peak expression.
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Heatmap of cell-cycle expression data from WT and KO strainsFigure 7
Heatmap of cell-cycle expression data from WT and KO strains. Most of the genes from M/G1 and M phases are dif-
ferentially expressed in the KO strain compared to the WT strain. Genes from G1 phase retained their expression during first 
cell-cycle but are differentially expressed in second cell-cycle. Most of the genes from G2 and S phase show little or no change 
from their WT expression.
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has been reported that the other two CLN genes (Cln1 and
Cln2) are regulated by SBF [28]. The significant decrease
in their expressions in the KO strain also lends evidence to
the hypothesis that Cln3 affected SBF which in turn
affected several G1 phase genes in the second cell-cycle
(Figure 7). Further evidence is that CLB6, which is bound
by SBF (Table 1), is also identified as differentially
expressed.

Discussion
In both the case studies, the Wild-Type (WT) dataset was
modeled using PCA and the Knock-Out (KO) data was
projected on the model. When the KO data is used for
model development and WT data projected on the model
to identify differentially expression genes, the results are
almost the same. For the Yeast cell-cycle Case study 5 PCs
are needed to model the Knock-out data [see Additional
file 8]. With this model, 89 genes were detected as differ-
entially expressed at a p-value threshold of 0.05. There is
a significant overlap between the two sets. Out of 72 genes
from the WT model, 69 were also identified by the KO
model. The median rank of these 72 genes is 37.5 which
is very close to median rank of 36.5 if all these 72 are in
the top in the list. This indicates that the almost same
genes are identified as differentially expressed in both sce-
narios and the proposed method is robust.

The proposed method uses a hypothesis test to find the
significance of the differential expression of a gene
between two biological conditions. This test assumes that
difference of scores between WT and KO follows a multi-

variate normal distribution. The scores are the weighted
linear combination of original expressions (Eq 4). As per
the central limit theorem, linear combinations of varia-
bles would follow a normal distribution even if the indi-
vidual variables do not. If scores are normally distributed,
so would their difference. We tested the normality of the
difference of scores on each PC using quantile-quantile
plots for both the mouse dataset [see Additional file 9]
and Yeast cell-cycle dataset [see Additional file 10]. The
coefficient of determination between the observed values
and the expected values ranges from 0.92 to 0.97. We also
tested the multivariate normality using beta probability
plot of Small [29]. The coefficient of determination, using
all genes, is 0.65 for mouse dataset which further increases
to 0.95 after removal of only 1% of outlier genes [see
Additional file 11]. Similarly, for Yeast cell-cycle dataset
the coefficient of determination is 0.81 when all genes are
used and 0.96 after removal of 5% outlier genes [see Addi-
tional file 12]. Hence, the assumption of the normality is
reasonable.

The proposed method uses Mahalanobis distance as the
distance metric to find differentially expressed genes.
Mahalanobis distance is the most widely used distance

Simple model of cell-cycle-regulation of YeastFigure 8
Simple model of cell-cycle-regulation of Yeast. Tran-
scription factors (TF) that regulate genes from different 
phases of cell-cycle are represented as ovals and placed near 
the corresponding phases. Solid lines represent the regula-
tory interaction and the dotted line represents the post tran-
scriptional actions.

Expression profile of three CLN genes in WT and KO strainFigure 9
Expression profile of three CLN genes in WT and KO 
strain. Cln1 loses its oscillatory behavior and is almost flat in 
KO strain. Cln2 retains its oscillation but at a diminished 
magnitude. Cln3 is not expressed in the KO strain. Only 
Cln1 is reported previously as differentially expressed. We 
identified the remaining two CLN genes.
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metric with PCA analysis. It weighs different direc-
tions(PCs) differently and the weights are inversely pro-
portional to the variance in those directions. So,
differences in expression in directions with large variance
(inherently higher noise) are given less credit when iden-
tifying differentially expressed genes. However, this
assumes that all co-expressed genes are similar in magni-
tude. This assumption may not be valid particularly for
Transcription Factors (TFs) since their expression levels
are often much lower than other genes. For example, the
p-value for TF ACE2 in Yeast cell-cycle case study is
0.1794. The expression levels of ACE2 are lower com-
pared to its co-expressed genes such as ALK1, CLB1, and
IQG1. The later genes are identified as differentially
expressed by the proposed method. This is common
shortcoming for methods based on quantitative analysis.
It is better to visualize the actual expression profiles for
TFs rather than selecting a strict p-value threshold or suit-
able normalizing techniques can be used in processing
step.

The proposed method currently does not include repli-
cates information. Replicates improve the reliability of
identifying differentially expressed genes. It is possible to
extend the method using ideas from Multiway Principal
Component Analysis (MPCA) to explicitly include repli-
cates.

Finally, the proposed method is useful especially for large
datasets since it relies on PCA which is computationally
efficient even for large number of genes. In large datasets,
most of the genes are generally unchanged between differ-
ent biological conditions. Consequently, the differential
expression may not be reflected in all dominant PCs as the
PCs are not driven by differential expression between dif-
ferent conditions. Yet, the proposed method identifies dif-
ferentially expressed genes correctly. To illustrate this, we
used the complete dataset containing all cell-cycle- and
non-cell-cycle-regulated genes. The datasets contain meas-
urements for 5696 genes at 18 time points. Considering
the large number of genes, a more stringent p-value
threshold of 0.001 is used instead of 0.05 that was used
for the cell-cycle genes. We identified 151 genes as differ-
entially expressed which contained 68 (out of 72) genes
identified in the cell-cycle data alone.

Conclusion
In this paper, we proposed a method for identifying differ-
entially expressed genes in time-course data. We evaluated
the proposed method using two gene expression datasets
and compared the results with previously published
results. The proposed method models the expression data
from one condition using PCA and projects the expression
data from another condition on the developed PCA
model. The scores of genes are used to identify differen-

tially expressed genes. Since scores represent the linear
relation between the expression profile of genes and the
PC, comparison of scores measures the systematic varia-
tion in the gene expressions. In contrast to previously
published methods that treat all the genes equally irre-
spective of actual expression levels [8], directly compare
the expression profiles [9], or not use the expression levels
[13], our approach uses PCA where different PCs contrib-
ute differently to the gene expression profiles and provide
comparison at multiple levels. This is important because,
for some genes a small change in expression is important
for change of biological function whereas, for others a
large expression change is required to be significant. Com-
paring genes at multiple levels considers these differences
and identifies biologically meaningful genes that explain
biological phenomena. For example, CLN3 has similar
scores on PC 1, 3 and 4 in both wild-type and mutant
Yeast strain. However, it has a large difference in score on
PC 2, which flags it as a differentially expressed gene.
None of the previously mentioned approaches identified
this gene. This clearly shows that the proposed method
identifies differentially expressed genes with biological
basis.

Methods
Modeling C1 expression data using PCA

Let  be the expression data containing n genes meas-

ured at t time-points. The superscript refers to the biolog-
ical condition at which the expression data is collected.
Each element xij represents the expression level of ith gene

measured at the jth time-point. PCA decomposes the
expression matrix X(1)as the sum of outer product of two
vectors zi and pi plus a residual matrix E [30]

where  vectors, known as scores, are of size n × 1, the

pi vectors are called loadings and their size is t × 1. Here k

≤ min(n, t).

PCA relies on the eigenvalue decomposition of the covar-
iance matrix of X(1), given by

provided X(1)is column mean-centered. The pi vectors are
the eigenvectors of the covariance matrix of data and rep-
resent the Principal Components (directions) of variation
in the data, i.e

Spi = λipi
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where λi is the eigenvalue associated with the eigenvector
pi. The eigenvalue λi is the variance in new direction rep-
resented by pi. The Principal Components pi form an
orthogonal set. Hence the score vector for each pi is given
by

The Principal Components (PCs) are similar to the eigen-
genes of Alter et al. [19] that represent the fundamental
patterns of the gene expression program that contribute to
the expression of genes all over the genome. In this model
(Eq 1), the expression profile of each gene is represented
as a linear combination of the PCs with associated gene-
specific scores. So, the expression dataset can be recon-
structed if all the pairs of score and loading vectors are

retained. The ( pi) pairs are arranged in descending

order of λi. So, the first few components associated with

larger variance represent the systematic variation in data
whereas components with lower variance essentially con-
tain noise due to uncontrolled experimental and instru-
mental variations. The filtering of the insignificant
components removes noise from the expression data and
enables a meaningful comparison of the expression pro-
files.

The identification of significant components translates to
selecting a value for k, the number of PCs to be retained.
The simplest approach is to find the number of PCs that
can capture at least a predefined amount (say 95%) of the
original variance in the data. Another technique, scree
test, plots the eigenvalues in non-increasing order to finds
the 'knee' between dominant and insignificant PCs. The
number of PCs can also be found by significance tests
[31]. In this paper, we use the cross-validation procedure
proposed by Wise and Ricker [32]. In this procedure, the
dataset is divided into a predefined number of equal sized
segments. PCA model is developed on all but one of the
segments. The developed PCA model is used to recon-
struct the un-modeled data. The error in reconstruction,
the root-mean-square error of cross-validation
(RMSECV), is plotted as function of number of PCs and
the number of PCs, k, is selected with minimum RMSECV.

Projection of expression data on PCA model

Through the above, a PCA model of C1 expression is gen-

erated where the expression profile of each gene over time,
xi is represented as a combination of PCs. The expression

data from condition C2 can then be compared for statisti-

cally significant differences from this PCA model. Let the

expression data from C2 be denoted as  where the

same genes are measured at the same time points in a dif-
ferent biological condition C2. If there are differences in

the time points between C1 and C2, it can be addressed by

resampling either/both C1 and C2. Projection of X(2) on to

the PCA model gives the corresponding scores vectors

Genes whose expression is not significantly altered in C2

will have approximately the same scores, i.e. ,

while differentially expressed genes will have significant
differences in their zis. We use a statistical test to find the

significance of the difference in scores and thus identify
differentially expressed genes.

Calculation of significance of differential expression
Let ZΔ be the difference between Z1 and Z2 where the ith

row of ZΔ is the difference in the scores of gene gi

zi
Δ = zi

(1) - zi
2

We test the hypothesis that the differences in scores is by
chance. Therefore, the null and alternative hypotheses are:

H0 = Difference in the scores of gene is by chance

H1 = Difference in scores of gene is not by chance

This hypothesis is tested based on the following insight.
When we depict each gene gi on the scores plot, genes with
small zi

Δ will form a k-dimensional cloud around the ori-
gin while genes that are differentially expressed will be
away from the origin. The distance of zi

Δ from the origin
measured using a suitable metric and considering the null
distribution, reveals the significance of the difference in
the scores, and thus that of differential expression of that
gene.

The Mahalanobis distance is a common metric used with
PCA and is given by

where  is the centroid of ZΔand Σ is the covariance
matrix of ZΔ. We use the Mahalanobis distance to find the
distance between each point to the centroid and use it as
evidence for the differential expression. Mahalanobis dis-
tance is the most widely used distance metric with PCA
analysis [30]. The larger the distance the more evidence
there is to conclude that a particular gene is differentially
expressed. When the difference in scores follows a multi-
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dimensional normal distribution, the Mahalanobis dis-

tance follows a χ2distribution with k degrees of freedom.
The p-value that the differential expression occurred by
chance is then given by the cumulative distribution func-
tion:

where Γ(·) is a Gamma function.
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Additional material

Additional file 1
Expression profiles of Principal Components (PCs) extracted in mouse 
dataset. The first two PCs model systematic changes in expression where 
as rest appear to have random expressions depicting noise. This indicates 
that modeling this dataset with 2 PCs is good.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-267-S1.png]

Additional file 2
Heatmap of the novel genes identified by the proposed method in mouse 
time-course dataset. Up-regulation of gene is indicated by red color and 
down-regulated genes are represented by green color. From this figure, it 
is clear that these novel genes are differently expressed between wild-type 
and mouse lacking HSF1 gene.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-267-S2.png]

Additional file 3
Expression profiles of Principal Components (PCs) extracted in Yeast cell-
cycle dataset. PCs 1–4 have systematic changes in expression over time 
where as the expression profile of rest of PCs is nearly random. This indi-
cates that modeling this dataset with 4 PCs is good.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-267-S3.png]
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Additional file 4
Expression profiles of genes from CLB2 cluster that are not identified as 
differentially expressed by the proposed method. Solid line represents the 
expression profile in WT strain and the dotted line represents the expres-
sion profile in KO strain. Blue horizontal lines correspond to 2-fold 
change. Most (15 of 20) have less than 2-fold change in both WT and 
KO strains. Increasing the p-value threshold from 0.05 to 0.10 will lead 
to identification of 3 more genes as differentially expressed.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-267-S4.png]

Additional file 5
Expression profiles of genes from SIC1 cluster that are not identified as 
differentially expressed by the proposed method. Solid line represents the 
expression profile in the WT strain and the dotted line represents the 
expression profile in the KO strain. Blue horizontal lines correspond to 2-
fold change.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-267-S5.png]

Additional file 6
Expression profiles of novel genes identified by EDGE method proposed by 
Storey et al. (2005). Solid line represents the expression profile in WT 
strain and the dotted line represents the expression profile in KO strain. 
Blue horizontal lines correspond to 2-fold change. Most of the genes have 
<2-fold change both in WT and KO strains and also has similar expres-
sion profiles.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-267-S6.png]

Additional file 7
Expression profiles of genes from identified as differentially expressed by 
Cheng et al. (2006) but not by the proposed method. Most of these genes 
have very little expression in both the WT and KO Yeast strains. Moreo-
ver, their expression profiles are similar in both strains. Increasing the p-
value threshold from 0.05 to 0.10 will lead to identification of 6 more 
genes as differentially expressed by our method.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-267-S7.png]

Additional file 8
Cross-validation results for Knock-out Yeast cell-cycle. dataset. The 
RMSECV takes minimum value at number of PCs 5. The first 5 Principal 
components (PCs) captured almost 87% of the variance in the data and 
are used to model this dataset.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-267-S8.png]

Additional file 9
Normal distribution plots for the difference of scores on individual PCs. 
Normal plots of difference of scores of mouse dataset.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-267-S9.png]
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Additional file 10
Normal distribution plots for the difference of scores on individual PCs. 
Normal plots of difference of scores of Yeast cell-cycle dataset. The coeffi-
cient of determination, r2, between the observed values and the expected 
values ranges from 0.92 to 0.97 indicating normal distributions for all 
directions.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-267-S10.png]

Additional file 11
Multivariate normal distribution plot for the difference of scores of mouse 
dataset. The coefficient of determination, r2, is 0.65 when all genes are 
used and its value increases to 0.95 after removing only 1% of outlier 
genes.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-267-S11.png]

Additional file 12
Multivariate normal distribution plot for the difference of scores of Yeast 
cell-cycle dataset. The coefficient of determination, r2, is 0.81 when all 
genes are used and its value increases to 0.96 after removing only 5% of 
outlier genes. The plots indicates that the multivariate normality assump-
tion for the difference of scores is reasonable.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-267-S12.png]
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