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ABSTRACT

Human topoisomerase | plays an important role in
removing positive DNA supercoils that accumulate
ahead of replication forks. It also is the target for
camptothecin-based anticancer drugs that act by
increasing levels of topoisomerase I-mediated
DNA scission. Evidence suggests that cleavage
events most likely to generate permanent genomic
damage are those that occur ahead of DNA tracking
systems. Therefore, it is important to characterize
the ability of topoisomerase | to cleave positively
supercoiled DNA. Results confirm that the human
enzyme maintains higher levels of cleavage with
positively as opposed to negatively supercoiled sub-
strates in the absence or presence of anticancer
drugs. Enhanced drug efficacy on positively super-
coiled DNA is due primarily to an increase in
baseline levels of cleavage. Sites of topoisomerase
I-mediated DNA cleavage do not appear to be
affected by supercoil geometry. However, rates of
ligation are slower with positively supercoiled sub-
strates. Finally, intercalators enhance topoisomer-
ase I-mediated cleavage of negatively supercoiled
substrates but not positively supercoiled or linear
DNA. We suggest that these compounds act by
altering the perceived topological state of the
double helix, making underwound DNA appear to
be overwound to the enzyme, and propose that
these compounds be referred to as ‘topological
poisons of topoisomerase I'.

INTRODUCTION

Globally, DNA in all living systems ranging from
eubacteria to humans is under torsional stress (1-4).

The double helix is ~6% underwound (i.e. negatively
supercoiled) as compared to the ideal Watson—Crick struc-
ture (5). This underwinding puts energy into DNA and
enhances the ability to open the double helix so that the
genetic information can be duplicated or expressed. In
contrast, the movement of tracking enzymes through the
genetic material causes the DNA ahead of replication
forks or transcription complexes to become overwound
(1,2,4,6,7). The resulting positive DNA supercoils impair
the ability to separate the two strands of the double helix
and eventually block these and other essential nucleic acid
processes (1,6,8-10).

The enzymes that remove (i.e. relax) negative and
positive superhelical twists from DNA are known as topo-
isomerases (1,6,11-16). All topoisomerases function by
generating transient breaks in the DNA backbone.
There are two classes of topoisomerases, categorized by
the number of strands that they cut. Type I and I enzymes
generate transient single- and double-stranded breaks, re-
spectively (1,6,11-16). Humans encode five nuclear topo-
isomerases: topoisomerase I, IITo and ITIB (which are type
I enzymes) and topoisomerase Iloe and 11 (which are type
IT enzymes) (1,6,11-16). In order to maintain genomic in-
tegrity during enzyme function, all topoisomerases form
covalent bonds between active site tyrosyl residues and the
newly generated DNA termini (1,6,11-16). These covalent
enzyme-cleaved DNA complexes are known as ‘cleavage
complexes’.

Human topoisomerase I relaxes negative and positive
superhelical twists by a controlled rotation mechanism
(11,14,17-19). In contrast, topoisomerase I1loe and IIIB
utilize a single-stranded DNA passage mechanism
(11,20). Since these latter enzymes require their DNA sub-
strates to contain considerable single-stranded character,
they relax only underwound molecules (11,20,21).
Topoisomerase Ila and IIf act by passing an intact
DNA duplex through a transient double-stranded DNA
break (11,15,20,22,23). Hence, they can relax positively
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or negatively supercoiled molecules and can also re-
move knots and tangles from the genectic material
(6,11,15,20,22-24).

As a result of its catalytic mechanism, topoisomerase I
plays an important role in removing positive DNA super-
coils that accumulate ahead of replication forks and tran-
scription complexes (1,6,11,14,17,25). Topoisomerase Ila
also is capable of removing positive DNA supercoils that
form during DNA replication (24). In light of their physio-
logical roles, it is not surprising that these two enzymes
can distinguish the geometry of DNA supercoils. Indeed,
recent studies indicate that topoisomerase I and topoisom-
erase Iloo both remove positive superhelical twists
~10-fold faster than they do negative superhelical twists
(17,24).

Beyond their important cellular functions, human topo-
isomerase I and topoisomerase Ilo are targets for a
number of highly effective anticancer agents that act at
the enzyme-DNA interface (13,22,26-30). Topoisomerase
I is the target of an emerging class of drugs based on the
parent compound camptothecin (27,28,30). Two deriva-
tives, topotecan (a water soluble formulation) and
irinotecan (a prodrug that is activated in vivo) are used
for the treatment of colorectal, gynecological and other
cancers (27,28,30). Topoisomerase Ila is the target for
a number of established anticancer drugs, including
etoposide and adriamycin, that are used as front line
therapy for a wide varicty of human malignancies
(13,22,26,29).

All of these drugs are referred to as topoisomerase
‘poisons’ as opposed to ‘catalytic inhibitors’ and function
by increasing levels of enzyme-DNA cleavage complexes.
The accumulation of these complexes ahead of DNA
tracking systems is believed to kill cells by several different
mechanisms (13,22,25-30). First, the presence of cleavage
complexes or positive supercoils ahead of the replication
or transcription machinery impairs these essential cellular
functions. Second, the presence of blocked replication
forks induces replication re-start pathways that generate
DNA strand breaks. Third, collisions between DNA
tracking systems and covalent topoisomerase roadblocks
convert transient cleavage complexes to permanent DNA
strand breaks. Since the DNA ahead of DNA tracking
systems should be overwound, cleavage complexes that
are most likely to block essential nuclear processes or
generate permanent strand breaks are formed on positive-
ly supercoiled DNA.

Topoisomerase Ilo maintains lower levels (~2- to
4-fold) of cleavage complexes with positively supercoiled
as opposed to negatively supercoiled DNA (24,31,32).
While this feature makes the enzyme safer to function
ahead of replication and transcription complexes, it may
make it less sensitive to the actions of anticancer drugs.
In contrast, preliminary reports suggest that human topo-
isomerase I maintains higher levels of cleavage complexes
with positively supercoiled substrates (17,31). This
property makes the type I enzyme a potentially better
target for therapeutic agents. However, it also suggests
that topoisomerase I is intrinsically more dangerous to
the cell than the type II enzyme.
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Because of the fundamental role that topoisomerase I
plays in a number of critical nuclear processes and in the
treatment of human malignancies, it is important to more
fully characterize the ability of the enzyme to cleave posi-
tively supercoiled DNA. Results confirm that topoisomer-
ase I maintains higher levels of cleavage complexes
with positively as opposed to negatively supercoiled sub-
strates in the absence or presence of anticancer drugs.
Furthermore, this effect correlates with a decreased rate
of ligation with overwound DNA. Finally, intercalating
agents that make covalently closed DNA appear to be
positively supercoiled enhance topoisomerase [-mediated
DNA cleavage in vitro and in cultured human cells.
We propose that this latter class of compounds be
referred to as ‘topological poisons of topoisomerase I.

MATERIALS AND METHODS
Enzymes and materials

Human topoisomerase I was expressed in Saccharaomyces
cerevisiae topl null strain RS190 (a gift from R.
Sternglanz, State University of New York at Stony
Brook) and purified as described earlier (33).

Positively supercoiled pBR322 DNA was prepared by
incubating negatively  supercoiled plasmids  with
Archaeoglobus fulgidus reverse gyrase as described by
McClendon et al. (24). The average number of superhelic-
al twists present in DNA substrates and the resulting o
values were determined by electrophoretic band counting
relative to relaxed molecules. Typical of plasmids isolated
from Escherichia coli, negatively supercoiled plasmids con-
tained ~15-17 negative superhelical twists per molecule (o
~ —0.035 to —0.039). Positively supercoiled plasmids con-
tained ~15-17 positive superhelical twists per molecule
(o ~ +0.035 to +0.039). Thus, the supercoiled substrates
employed for this study contained equivalent numbers of
superhelical twists but were of opposite handedness.

It should be noted that positively supercoiled plasmids
bind less ethidium bromide than negatively supercoiled
molecules (24). To ensure that equal amounts of plasmid
were used in all experiments, the DNA concentration was
assessed by spectrophotometric analysis and confirmed
by ethidium bromide staining of linearized plasmid
substrates.

[0-**P]dATP (6000 Ci/mmol) and [o-**P]TTP (3000 Ci/
mmol) were obtained from New England Nuclear.
Camptothecin, ethidium bromide and 9-aminoacridine
were from Sigma, and topotecan was from Alexis
Biochemicals. Tas-103 was a gift from Taiho
Pharmaceuticals. Amsacrine was a gift from David
Graves (University of Alabama at Birmingham). All
other chemicals were analytical reagent grade.
Camptothecin and topotecan were stored at —20°C as
10mM stock solutions in 100% DMSO and water, re-
spectively. Amsacrine and 9-aminoacridine were stored
at 4°C as 20mM stock solutions in 100% DMSO.
TAS-103 and ethidium bromide were stored at 4°C as
10mM and 2.5mM stock solutions in water, respectively.
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Cleavage of circular plasmid DNA by human
topoisomerase I

Unless indicated otherwise, DNA cleavage reactions were
carried out by incubating 5nM positively or negatively
supercoiled pBR322 plasmid DNA with 11nM human
topoisomerase I in 20 pl of cleavage buffer (10 mM Tris—
HCI, pH 7.5, 15mM NaCl, 1 mM EDTA, 5SmM MgCl,,
S5mM CaCl,, 2.5% glycerol). Reactions were incubated
for 2min at 37°C, and enzyme—-DNA cleavage complexes
were trapped by the addition of 2 pul of 5% SDS followed
by 1l of 375mM EDTA, pH 8.0. Proteinase K (2 ul of a
0.8 mg/ml solution) was added, and protein samples were
incubated for 30 min at 45°C to digest the topoisomerase
I. Samples were mixed with 2 ul of agarose gel loading
buffer (60% sucrose in 10mM Tris—-HCI, pH 7.9, 0.1%
xylene cyanol and 0.1% bromophenol blue) heated for
Smin at 45°C, and subjected to electrophoresis in 1%
agarose gels in 40mM Tris—acetate, pH 8.3 and 2mM
EDTA containing 0.5 ug/ml ethidium bromide. DNA
bands were visualized with ultraviolet light and quantified
using an Alpha Innotech digital imaging system. DNA
cleavage was monitored by the conversion of covalently
closed circular supercoiled plasmid DNA to nicked
molecules.

The effects of anticancer drugs on topoisomerase
I-mediated cleavage of positively or negatively supercoiled
plasmid DNA were assessed in the presence of 0-10 uM
camptothecin or topotecan. The effects of intercalators
were assessed in the presence of 0-20uM ethidium
bromide, 0-20 uM TAS-103, 0-100 uM 9-aminoacridine,
or 0-400 uM amsacrine.

Site-specific cleavage of circular DNA by human
topoisomerase I

DNA cleavage reactions contained 7nM negatively or
positively supercoiled pBR322 DNA and 14nM human
topoisomerase I (in the absence or presence of 5uM
topotecan) in a total of 160ul of cleavage buffer.
Samples were incubated for 2min at 37°C and enzyme-
DNA cleavage complexes were trapped by the addition of
l6ul of 1% SDS followed by 8ul 375mM EDTA.
Proteinase K (3 pl of a 4 mg/ml solution) was added, and
mixtures were incubated for 30 min at 45°C to digest the
topoisomerase I. Reaction products were purified by
passage through Qiaquick spin columns (Qiagen) as
described by the manufacturer. Plasmids were linearized
by treatment with EcoRI and labeled with Klenow (exo-)
(New England Biolabs) in the presence of [o-*P]JdATP
and [o->?P]TTP. Samples were treated with HindIII, and
the singly end-labeled 4330-bp DNA fragment was
purified by passage through a CHROMA SPIN+ TE-10
column (Clontech). Reaction products were normalized
for radioactivity. Equivalent counts were mixed with 5 ul
of polyacrylamide gel loading buffer (80% formamide,
10mM sodium hydroxide, 1 mM sodium EDTA, 0.1%
xylene cyanol and 0.1% bromophenol blue), and subjected
to electrophoresis in 6% polyacrylamide sequencing gels.
Gels were dried in vacuo, and DNA cleavage products
were visualized with a Bio-Rad Molecular Imager FX.

Site-specific cleavage of linear DNA by human
topoisomerase 1

pBR322 was linearized, labeled, and the 4330-bp
EcoRI-HindIII fragment was isolated as described in the
preceding section. DNA cleavage reactions (20 pl) con-
tained 4.4nM labeled linear pBR322 DNA and 20nM
human topoisomerase I, in the absence of drugs or in
the presence of topoisomerase I-targeted anticancer
drugs (10 uM camptothecin or topotecan) or DNA
intercalators (20 uM ethidium bromide, 20 uM TAS-103,
100 uM 9-aminoacridine or 200 uM amsacrine). Reactions
were incubated for 2min at 37°C, and enzyme-DNA
cleavage complexes were trapped by the addition of 2 pul
of 5% SDS followed by 1l of 375mM EDTA, pH 8.0.
Proteinase K (2 ul of a 0.8 mg/ml solution) was added, and
protein samples were incubated for 30min at 45°C to
digest the topoisomerase I. Reaction products were
ethanol precipitated and resuspended in 6 pl of polyacryl-
amide gel loading buffer. Samples were subjected to poly-
acrylamide gel electrophoresis and analyzed as described
in the preceding section.

Ligation of cleaved DNA by human topoisomerase I

DNA cleavage-ligation equilibria were established for
2min at 37°C in cleavage buffer that contained 10 uM
camptothecin or 5uM topotecan, as described in the
section on cleavage of circular DNA. Ligation was
initiated by the addition of NaCl to a final concentration
of 300 mM and terminated from 5 to 45s by the addition
of 2l 5% SDS. Samples were processed and analyzed as
described for circular DNA cleavage. The percent DNA
cleavage at Time 0 was set to 100%, and ligation was
monitored by quantifying the loss of nicked DNA over
time.

DNA intercalation

Intercalation reaction mixtures contained 20nM topo-
isomerase I and 5nM pBR322 DNA in a total of 20 pl
of 50mM Tris—=HCI (pH 7.5), 0.1lmM EDTA, 50 mM
KCI, 10mM MgCl, and 0.5mM DTT. Reactions con-
tained 0—10 uM ethidium bromide or TAS-103, 0-50 uM
9-aminoacridine or 0-100 uM amsacrine. Mixtures were
incubated at 37°C for 10min, extracted with a phe-
nol:chloroform:isoamyl alcohol mixture (25:24:1), and
added to 3pul of 0.77% SDS and 77mM EDTA (pH
8.0). Samples were mixed with 2ul of agarose gel
loading buffer, heated at 45°C for 5min, and subject to
electrophoresis in a 1% agarose gel in 100mM Tris—
borate (pH 8.3) and 2mM EDTA. Gels were stained
with 1pg/ml ethidium bromide, and DNA bands were
visualized as described for plasmid DNA cleavage.

The DNA intercalation assay is based on the fact that
intercalative agents induce constrained negative supercoils
and compensatory unconstrained positive superhelical
twists in covalently closed circular DNA (31,34).
Therefore, as the concentration of an intercalative
compound increases, a plasmid that is negatively super-
coiled or relaxed (i.e. contains no superhelical twists)
appears to become positively supercoiled. Treatment of



an intercalated plasmid with topoisomerase I removes the
unconstrained positive DNA  superhelical twists.
Subsequent extraction of the compound allows the local
drug-induced unwinding to redistribute in a global
manner and manifest itself as a net negative supercoiling
of the plasmid. Thus, in the presence of an intercalative
agent, topoisomerase treatment converts relaxed plasmids
to negatively supercoiled molecules (see inset, Figure 5).

Formation of topoisomerase I-DNA cleavage complexes in
cultured human cells

Human CEM leukemia cells were cultured in <5% CO, at
37°C in RPMI 1640 medium (Cellgro by Mediatech, Inc.)
containing 10% heat-inactivated fetal calf serum
(Hyclone). The in vivo complex of enzyme (ICE)
bioassay (as modified on the TopoGen, Inc., website)
was utilized to determine levels of topoisomerase I-DNA
cleavage complexes formed in the presence of anticancer
drugs and/or intercalative compounds. Exponentially
growing cultures were treated with no drug, 10puM
ethidium bromide, 5puM topotecan or 10uM ethidium
bromide + 5 uM topotecan for 1h. Cells (~5 x 10°) were
harvested by centrifugation and lysed by the immediate
addition of 3ml of 1% sarkosyl. Following gentle hom-
ogenization in a Dounce homogenizer, cell lysates were
layered onto a 2ml cushion of CsCl (1.5g/ml) and
centrifuged at 45000 rpm for 15h at 20°C. DNA pellets
were isolated, resuspended in 5mM Tris—HCI, pH 8.0 and
0.5mM EDTA, normalized for the amount of DNA
present, and blotted onto nitrocellulose membranes
using a Schleicher and Schuell slot blot apparatus.
Covalent complexes formed between human topoisomer-
ase I and DNA were detected using a polyclonal antibody
directed against human topoisomerase I (Topogen) at a
1:3000 dilution.

RESULTS

Cleavage of positively supercoiled DNA by human
topoisomerase 1

As discussed earlier, topoisomerase I cleavage complexes
formed ahead of DNA tracking systems (i.e. on positively
supercoiled portions of the genome) are most likely to be
converted to permanent strand breaks (4,6,7,25,28,30,35).
Previous data generated using a single concentration of
human topoisomerase I suggested that the enzyme main-
tained higher levels of cleavage complexes with positively
supercoiled DNA as compared to negatively supercoiled
molecules (17,31). Given the importance of the topoisom-
erase [-DNA cleavage reaction to the physiological and
pharmacological functions of the enzyme, we explored
the preference for overwound substrates in greater
detail. To begin this characterization, the ability of
human topoisomerase I to cleave overwound and
underwound DNA was assessed over a broad enzyme con-
centration range (~3-45nM). As seen in Figure 1, topo-
isomerase I retained its ability to discern the geometry of
DNA over the entire concentration range, maintaining a
concentration of cleavage complexes that was approxi-
mately three times greater with substrates that contained

Nucleic Acids Research, 2011, Vol. 39, No.3 1017

% DNA Cleavage

0 10 20 30 40 50
[Topo I] (nM)

Figure 1. Topoisomerase I maintains higher levels of cleavage
complexes with positively supercoiled DNA. The ability of increasing
concentrations of human topoisomerase I to cleave positively [(+)SC,
closed circles] and negatively [(—)SC, open circles] supercoiled pBR322
plasmid DNA is shown. Error bars represent the standard deviation of
at least three independent experiments.
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Figure 2. Effects of DNA supercoil handedness on topoisomerase
I-mediated DNA cleavage in the presence of anticancer drugs. The
ability of topoisomerase I to cleave positively [(+)SC, closed circles]
and negatively [(—)SC, open circles] supercoiled pBR322 plasmid
DNA in the presence of 0-10 uM camptothecin (A) or topotecan (B)
is shown. Error bars represent the standard deviation of four independ-
ent experiments.

positive as compared to negative supercoils. Taken
together with the preferential relaxation of positive
DNA supercoils (17), these findings strongly suggest that
human topoisomerase I is an enzyme that is designed to
act primarily on overwound substrates.

The effects of DNA handedness on topoisomerase
I-mediated cleavage in the presence of anticancer drugs
are shown in Figure 2. As shown earlier (17,31), higher
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levels of cleavage were observed with camptothecin and
positively supercoiled DNA. Topotecan also induced
higher levels of DNA scission with overwound plasmids.
In both cases, ~3-fold more drug-induced scission was
observed with positively supercoiled (as compared to
negatively supercoiled) substrates over the range of
camptothecin and topotecan examined. Since this level
of enhancement is similar to that seen in the absence of
topoisomerase I poisons, it is proposed that increased
drug efficacy on overwound DNA is due primarily to an
increase in baseline levels of cleavage rather than an
altered drug interaction in the enzyme—-DNA complex.

Mechanistic basis for increased topoisomerase I-mediated
DNA cleavage of positively supercoiled substrates

Although topoisomerase I preferentially relaxes and
cleaves overwound molecules, it binds positively and nega-
tively supercoiled DNA with similar affinities (17).
Therefore, the enhanced cleavage of overwound molecules
must result from a different aspect of the enzyme-DNA
interaction. One possibility is that topoisomerase I
cleaves a broader selection of sites in overwound DNA.
Therefore, sites of enzyme-mediated scission were mapped
in positively and negatively supercoiled substrates.
Mapping in the absence of drugs is difficult due to the
low level of cleavage. Consequently, topotecan was
included in experiments to increase the overall level of
scission. Four to five major and several minor sites of
cleavage were observed in the presence of the anticancer
drug (Figure 3). In general, corresponding sites were
observed in both substrates, but levels of scission were
higher when positively supercoiled plasmid was used.
Thus, differences in site specificity probably are not the
major cause for the enhanced cleavage with overwound
substrates.

A second possibility is that topoisomerase I maintains
higher concentrations of cleavage complexes with
overwound molecules because the enzyme ligates these
substrates more slowly. In the absence of drugs, rates of
enzyme-mediated ligation are too quick to monitor at the
bench. Therefore, camptothecin or topotecan (both of
which reduce the rate of ligation) were included in
assays. In the presence of either drug, topoisomerase I
ligated positively supercoiled plasmids more slowly than
it did negatively supercoiled DNA (Figure 4). Relative
rates of ligation (based on calculated apparent first order
constants) for positively versus negatively supercoiled
DNA were ~2.6- and 7.0-fold slower in reactions that
contained camptothecin and topotecan, respectively. On
the basis of this finding, it is proposed that topoisomerase
I maintains higher levels of cleavage complexes with
overwound substrates (at least in part) because it ligates
them more slowly than it does underwound DNA.

DNA intercalators as topological poisons of
topoisomerase I

The binding of intercalators to DNA locally opens (i.c.
underwinds) the double helix (31,36,37). In a covalently
closed plasmid, this local underwinding is balanced by a
compensatory global overwinding of the unconstrained
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Figure 3. Effects of DNA supercoil handedness on sites of topoisom-
erase [-mediated DNA cleavage. DNA sites cleaved by topoisomerase I
were mapped in negatively [(—)SC] and positively [(+)SC] supercoiled
pBR322 plasmid DNA in the absence (TOP1) or presence (TPT) of
SuM topotecan. Untreated DNA is shown as a control (DNA).
Following cleavage assays, plasmids were linearized and singly-end-
labeled with [**P]-phosphate as described under ‘Materials and
Methods’ section. The autoradiogram is representative of three inde-
pendent experiments. Size markers that were 300 bp and smaller were
derived from DNA sequence ladders and those that were 350 bp and
larger were derived from restriction digests.

(i.e. unbound) DNA. Thus, even though the overall topo-
logical state of the plasmid has not changed, the presence
of intercalative agents make the DNA available to the
enzyme appear to be positively supercoiled.

Since topoisomerase I maintains higher levels of cleavage
complexes with overwound substrates, we investigated
the effects of intercalators on enzyme-mediated DNA
scission. Four different intercalators, ethidium bromide,
9-aminoacridine, TAS-103 and amsacrine, were employed.
The latter two compounds are topoisomerase II poisons
(38,39). Significant intercalation was observed over the
concentration ranges employed (Figure 5, insets).

As seen in Figure 5, all of the intercalators examined
enhanced topoisomerase [-mediated DNA cleavage when
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Figure 4. Effects of DNA supercoil handedness on topoisomerase
I-mediated DNA ligation in the presence of anticancer drugs. The
ability of topoisomerase 1 to ligate positively [(+)SC, closed circles]
and negatively [(—)SC, open circles] supercoiled pBR322 plasmid
DNA was monitored in the presence of 10 uM camptothecin (A) or
SuM topotecan (B). DNA ligation was initiated by the addition of
300mM NaCl. Levels of cleavage at time zero were set to 100%.
Error bars represent the standard deviation of three independent
experiments.

added to negatively supercoiled plasmids. Ethidium
bromide was the most potent and efficacious of the com-
pounds tested. Approximately 10-fold enhancement of
DNA cleavage was observed at 20uM ethidium
bromide. The other three compounds enhanced cleavage
~3- to 6-fold.

Two possible conclusions can be drawn from the above
results. The intercalators may be ‘topological poisons’ of
topoisomerase I, enhancing DNA scission by making the
negatively supercoiled substrate appear to be positively
supercoiled. Alternatively, they may be previously
undescribed ‘interfacial’ topoisomerase I poisons (i.e.
poisons such as camptothecin that function at the
enzyme—-DNA interface) (30). Three experiments were
carried out to distinguish between these possibilities. In
the first, the effects of intercalators on topoisomerase
I-mediated DNA cleavage were determined using positive-
ly supercoiled substrates. Since these plasmids are already
overwound, the addition of intercalative compounds
should have very little effect on the apparent topology
of the DNA. In all cases, virtually no enhancement of
cleavage was observed when intercalators were present
in assays that examined overwound substrates (Figure 5).

In the second experiment, levels and sites of topoisom-
erase I-mediated cleavage in the presence of ethidium
bromide, 9-aminoacridine, TAS-103 or amsacrine were
monitored using radioactively end-labeled linear DNA
(Figure 6). Since linear DNA is a topologically open
system, the opening of the double helix by intercalators
does not result in the accumulation of positive superhelical
twists. Intercalator concentrations corresponded to those
that generated maximal cleavage with negatively super-
coiled substrates (Figure 5). No enhancement of
cleavage was seen with any of the compounds. This is in
marked contrast to camptothecin or topotecan, both of
which greatly increased levels of scission.
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Figure 5. Effects of DNA intercalators on topoisomerase I-mediated
cleavage of plasmid DNA. Cleavage of positively [(+)SC, closed
circles] and negatively [(—)SC, open circles] supercoiled pBR322
plasmid DNA was monitored in the presence of ethidium bromide
(EtBr), TAS-103, 9-aminoacridine (9-AA) or amsacrine (m-AMSA).
Data were plotted as relative (i.e. fold) DNA cleavage enhancement
for simplicity and to aid in visualizing the effects of intercalators on
topoisomerase I-mediated cleavage of positively and negatively super-
coiled substrates. Fold DNA cleavage enhancement was calculated by
normalizing levels of scission in the absence of intercalator to a relative
value of 1.0. Error bars represent the standard deviation of at least
three independent experiments. Insets show representative gels of
DNA intercalation assays using relaxed plasmids in the absence of
enzyme (DNA) or in the presence of the indicated concentration
(uM) of compound (see ‘Materials and Methods’ section for the inter-
pretation of intercalation assays). Note that intercalation assays are
designed to monitor the DNA relaxation activity of topoisomerase I.
Consequently, reactions are terminated under conditions that do not
trap enzyme-DNA cleavage complexes. The positions of supercoiled
(FI) and nicked circular (FII) molecules are indicated.

In the third experiment, the effects of ethidium bromide
on topoisomerase I-mediated DNA cleavage were assessed
in the presence of camptothecin or topotecan (Figure 7).
Once again, the intercalator increased scission only when
negatively supercoiled plasmid was used. These results
suggest that ethidium bromide affects topoisomerase |
cleavage by a mechanism that is distinct from that of inter-
facial poisons such as camptothecin and topotecan.

Taken together, these findings provide strong evidence
that the intercalative compounds examined have no intrin-
sic activity against topoisomerase I and are not classical
interfacial poisons. Since intercalators only affected
enzyme-mediated DNA cleavage when underwound cova-
lently closed substrates were employed, it is concluded
that these compounds are topological poisons of
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Figure 6. Effects of anticancer drugs and DNA intercalators on topo-
isomerase [-mediated cleavage of linear DNA. The ability of anticancer
drugs [5SuM camptothecin (Cpt) or 10 uM topotecan (Tpt)] and DNA
intercalating agents [20 uM ethidium bromide (EtBr), 20 uM TAS-103
(TAS), 100 uM 9-aminoacridine (9-AA) or 200 pM amsacrine (AMSA)]
to enhance cleavage of a 3’-end labeled DNA substrate was determined.
The autoradiograph is representative of three independent experiments.
Size markers are described in Figure 3.

topoisomerase I and enhance enzyme-mediated scission
by altering the apparent superhelical state of the double
helix.

Effects of intercalators on topoisomerase I-mediated
DNA cleavage in cultured human cells

Since the genetic material in human cells is globally
underwound, DNA intercalators might influence the
ability of topoisomerase I to cleave the double helix
in vivo. To assess this possibility, the effects of ethidium
bromide on topoisomerase I-mediated DNA scission were
determined in human CEM cells (Figure 8). Levels of
topoisomerase I-DNA cleavage complexes rose ~2.0- to
2.5-fold when cells were treated with 10 uM ethidium
bromide. Similar to the in vitro results seen in Figure 7,
the intercalator also enhanced scission in cells that were
treated with 5puM topotecan. These results indicate
that ethidium bromide can poison topoisomerase I in
human cells.
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Figure 7. Effects of DNA intercalators on topoisomerase I-mediated
cleavage of plasmid DNA in the presence of anticancer drugs.
Cleavage of positively [(+)SC, closed circles] and negatively [(—)SC,
open circles] supercoiled pBR322 plasmid DNA was monitored in the
presence of 0-20 uM ethidium bromide and either 2.5 uM camptothecin
(A) or 5uM topotecan (B). Error bars represent the standard deviation
of at least three independent experiments.
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Figure 8. Effects of ethidium bromide on topoisomerase I-mediated
DNA cleavage in cultured human CEM cells. Cells were treated for
lh with no drug (ND), 10puM ethidium bromide (EtBr), 5pM
topotecan (Tpt) or both ethidium bromide and topotecan
(Tpt+ EtBr). Topoisomerase I-DNA complexes were monitored using
the ICE bioassay (see inset for a representative blot). Levels of topo-
isomerase I-mediated DNA cleavage in the absence of drug were set to
a relative value of 1. Error bars represent the standard deviation of six
independent experiments.

DISCUSSION

Topoisomerase I is an important enzyme that functions in
a number of essential nuclear processes (1,6,11,12,14,15).
Previous work demonstrated that the enzyme can distin-
guish the handedness of DNA supercoils and relaxes posi-
tively supercoiled substrates ~10-fold faster than
negatively supercoiled molecules (17). The present study
provides further evidence that the enzyme also maintains
~3-fold higher levels of cleavage complexes with
overwound substrates in the absence or presence of
anticancer drugs. The above findings suggest that topo-
isomerase I is designed to function primarily on positively



supercoiled DNA. While the high levels of cleavage that
topoisomerase [ potentially generates ahead of DNA
tracking systems makes the enzyme a potent target for
anticancer drugs, it also makes it an intrinsic danger to
human cells. This may explain why eukaryotic cells encode
an enzyme, tyrosyl-DNA phosphodiesterase 1, that spe-
cifically removes processed topoisomerase I from the
3’-terminus of cleaved nucleic acids (40,41).

The increased concentration of cleavage complexes
generated with positively supercoiled substrates appears
to correlate with decreased rates of enzyme-mediated
DNA ligation. This seems counterintuitive given the fact
that topoisomerase I preferentially relaxes positive super-
coils (17). However, since the enzyme removes multiple
superhelical twists per event, ligation may not be the
limiting step of the relaxation reaction. Alternatively, if
the enzyme is less likely to ligate cleaved DNA, it may
actually remove superhelical twists more rapidly.

Finally, intercalators that have little or no intrinsic
effect on topoisomerase I function enhance the ability of
the enzyme to cleave covalently closed negatively super-
coiled substrates. We suggest that these compounds act by
altering the perceived topological state of the double helix,
making underwound DNA appear to be overwound. Due
to the novel mechanism of action of intercalators on the
type I enzyme, it is proposed that these compounds
be referred to as topological poisons of topoisomerase 1.
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