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The increased feasibility of whole-genome (or whole-exome) sequencing has led to
renewed interest in using family data to find disease mutations. For clinical phenotypes
that lend themselves to study in large families, this approach can be particularly effective,
because it may be possible to obtain strong evidence of a causal mutation segregating
in a single pedigree even under conditions of extreme locus and/or allelic heterogeneity
at the population level. In this paper, we extend our capacity to carry out positional
mapping in large pedigrees, using a combination of linkage analysis and within-pedigree
linkage trait-variant disequilibrium analysis to fine map down to the level of individual
sequence variants. To do this, we develop a novel hybrid approach to the linkage portion,
combining the non-stochastic approach to integration over the trait model implemented in
the software package Kelvin, with Markov chain Monte Carlo-based approximation of the
marker likelihood using blocked Gibbs sampling as implemented in the McSample program
in the JPSGCS package. We illustrate both the positional mapping template, as well as the
efficacy of the hybrid algorithm, in application to a single large pedigree with phenotypes
simulated under a two-locus trait model.
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INTRODUCTION
The increased feasibility of whole-genome (or whole-exome)
sequencing has led to renewed interest in using family data to find
disease mutations. For clinical phenotypes that lend themselves to
study in large families, this approach can be particularly effective,
because it may be possible to obtain strong evidence of a causal
mutation segregating in a single pedigree even under conditions of
extreme locus and/or allelic heterogeneity at the population level.

The template for this type of “single large pedigree” design
is straightforward. Linkage analysis can be used to narrow the
region of interest to a relatively small locus. From there, linkage
disequilibrium (LD, or association) analysis can be used for fine-
mapping within the linked locus. This step can be based on all
sequence variants within the region (whether measured directly
in all individuals or partially imputed from selected individuals
with sequence and single nucleotide polymorphism (SNP)-chip
data in remaining family members). That is, rather than relying
solely on bioinformatic filtering approaches to reduce the set of
all observed sequence variants down to a manageable number, the
set of candidate sequence variants is obtained by (i) restricting the
region of interest based on co-segregation with the phenotype, and
then within that region, further restricting the set of interesting
variants to specific individual mutations co-segregating with the
phenotype. Of course, in the presence of appreciable LD among
mutations, further filtering and follow-up experiments may be
needed to resolve which among a set of correlated mutations is the
functional one.

One challenge to this approach is that linkage analysis of large
pedigrees is itself not trivial. As is well-known, the Elston–Stewart
(ES) algorithm (Elston and Stewart, 1971) can handle relatively
large pedigrees, but only a small number of markers at a time.
This was less of an issue in the era of microsatellite marker maps,
but renders ES relatively ineffective when conducting multipoint
analyses using SNPs, because relying on a small number of SNPs
per calculation leaves substantial gaps in map informativeness. On
the other hand, the Lander–Green (LG) algorithm (Lander and
Green, 1987), which can make simultaneous use of large numbers
of SNPs, is constrained to smaller pedigrees. Pedigrees with more
than around 25 individuals can exceed the limits of the LG algo-
rithm, but these are precisely the pedigrees that can show strong
evidence on their own. Trimming or breaking up pedigrees to
circumvent LG limitations can lead to substantial loss of infor-
mation and potentially to misleading results. This is also true of
the practice of selecting a small number of affected individuals to
use for identity-by-state (IBS) sharing of rare sequence variants,
rather than utilizing identity-by-descent (IBD) methods to track
variants through the full pedigree structure.

One widely used approach to circumventing the computational
complexity of large pedigree calculations is to use statistical meth-
ods that avoid calculation of the full pedigree likelihood, such
as variance-components (as implemented, e.g., in Almasy and
Blangero, 1998). Another familiar alternative is to use Markov
chain Monte Carlo (MCMC). This supports the use of the full
likelihood, but the difficulties of optimizing performance of
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samplers tends to limit flexibility in handling the trait model. In
particular, we have developed a suite of linkage methods with a
very flexible underlying framework for handling the trait model
(Vieland et al., 2011) by integrating trait parameters out of the like-
lihood, one advantage of which is the ease with which new trait
models or additional trait parameters can be added to the calcula-
tion. MCMC would require separate development and tuning of
samplers for each variation of the model, and success in develop-
ing well-behaved samplers for all variations is far from guaranteed.
For this reason, we have been reluctant to turn to MCMC in the
past.

Here we take a novel hybrid approach, combining MCMC
to handle the marker data, while retaining the non-stochastic
approach to trait–model integration implemented in Kelvin
(Vieland et al., 2011). Specifically, we use the graphical-model-
based MCMC approach of (Thomas et al., 2000) for the marker
data combined with the adaptive numerical integration algorithm
described in detail in Seok et al. (2009) for the trait data. This
allows us to exploit the power of MCMC in the context of the
posterior probability of linkage (PPL) framework (Vieland et al.,
2011). We illustrate the application of this new approach by
applying it to a single large family.

MATERIALS AND METHODS
In this section, we (i) present background on Kelvin, the software
package in which the PPL framework is implemented, and (ii) on
McSample, which implements the underlying MCMC techniques
used here. We restrict attention to background directly relevant to
this paper (see Vieland et al., 2011 for details on the PPL framework
and Thomas et al., 2000 for details on the MCMC methodology).
We then (iii) describe the software engineering used to implement
the new hybrid method, and (iv) describe the application of the
new method to a single large pedigree.

KELVIN
The PPL framework, as implemented in the software package
Kelvin (Vieland et al., 2011), can be used to calculate two pri-
mary statistics, both illustrated here: the PPL and the PPLD
(posterior probability of linkage disequilibrium, or trait–marker
association). The PPL framework is designed to accumulate evi-
dence both for linkage and/or LD and also against linkage and/or
LD. All statistics in the framework are on the probability scale,
and they are interpreted essentially as the probability of a trait
gene being linked (and/or associated) to the given location (or
marker). The PPL assumes a prior probability of linkage of 2%,
based on empirical calculations (Elston and Lange, 1975), while
the PPLD assumes a prior probability of trait–marker LD of 0.04%
based on reasoning in Huang and Vieland (2010). This is one
caveat to interpretation of the statistics as simple probabilities,
since values below the prior indicate evidence against linkage
(or LD), while values above the prior indicate evidence in favor.
Note too that the small prior probabilities constitute a form of
“penalization” of the likelihood; moreover, as posterior proba-
bilities rather than p-values, statistics in the PPL framework do
not require correction for multiple testing (see, e.g., Edwards,
1992; Vieland and Hodge, 1998 for further discussion of this
issue).

One distinguishing feature of this framework is how it handles
the trait parameter space. An underlying likelihood in a vector of
trait parameters is used. The base models are a dichotomous trait
(DT) model parameterized in terms of a disease allele frequency,
three genotypic penetrances, and the admixture parameter α of
Smith (1963) to allow for intra-data set heterogeneity; and a quan-
titative trait (QT) model parameterized in terms of a disease allele
frequency, three genotypic means and variances corresponding to
normally distributed data at the genotypic level, and α. The QT
model has been shown to be highly robust to non-normality at
the population level and it is inherently ascertainment corrected,
so that no transformations of QTs are necessary prior to analysis
(Bartlett and Vieland, 2006). Models assuming χ2 distributions
at the genotypic level are also available to handle QTs with floor
effects. The basic QT model can also be extended to cover left- or
right-censoring, using a QT threshold (QTT) model (Bartlett and
Vieland, 2006; Hou et al., 2012).

Whatever specific model is used, Kelvin handles the unknown
parameters of the model by integrating over them for a kind of
model-averaging. [Independent uniform priors are assumed for
each (bounded) parameter, with an ordering constraint imposed
on the penetrances (DT) or genotypic means (QT); see Vieland
et al., 2011 for details.]. Kelvin also uses Bayesian sequential updat-
ing to accumulate evidence across data sets, integrating over the
trait parameter space separately for each constituent data set. This
is an explicit allowance for inter-data set heterogeneity with respect
to trait parameters, and it also means that the number of param-
eters being integrated over does not go up with the number of
data sets analyzed (see below). A related technique is Kelvin’s use
of liability classes (LCs): individuals are assigned to an LC, and
the integration over the penetrances or means is done separately
for each LC. This is an explicit allowance for dependence of the
penetrances (or means) on a classification variable. While current
computational restrictions preclude the use of more than three or
four LCs at a time, one very important use of this model is incor-
poration of gene–gene interaction by classifying individual based
on their status at a known gene or SNP; we illustrate this approach
below.

Due to the nature of the underlying trait models, which are
formulated based on genetic considerations without regard to
computational convenience, analytic solutions to the resulting
multi-dimensional integrals are not possible. Instead, Kelvin car-
ries out the integration over the trait parameters using a modified
version of DCUHRE (Berntsen et al., 1997; Seok et al., 2009), a
sub-region adaptive or dynamic method, tailored to the specific
features of our application. While non-stochastic in nature, the
method tunes the amount of resampling of the parameter space
to the shape of that space (peakedness) on a position-by-position
basis for each data set, resulting in a highly efficient approach to
obtaining accurate estimates of the integral. The algorithm is the-
oretically guaranteed to be accurate for up to 13–15 dimensions,
a limit that we generally do not exceed (see above); and because
the method is non-stochastic, we do not need to worry about
burn-in, convergence or other issues that can complicate Monte
Carlo-based approaches.

Kelvin source code is available for download at http://kelvin.
mathmed.org/ and Kelvin documentation is accessible on the same

Frontiers in Genetics | Applied Genetic Epidemiology April 2013 | Volume 4 | Article 59 | 2

http://www.frontiersin.org/Applied_Genetic_Epidemiology/
http://www.frontiersin.org/Applied_Genetic_Epidemiology/archive


“fgene-04-00059” — 2013/4/17 — 20:04 — page 3 — #3

Huang et al. MCMC under the PPL framework

site. Help with access, installation, and use can be requested by
emailing kelvin@nationwidechildrens.org.

McSAMPLE
McSample is a program for sampling the inheritance states
in a pedigree of relatives from the conditional distribution
given the structure of the pedigree, observed genotypes and/or
phenotypes for individuals in the pedigree, and a model for
the founder haplotypes. It is written in Java and is part
of the Java Programs for Statistical Genetics and Computa-
tional Statistics (JPSGCS) package available from Alun Thomas
(http://balance.med.utah.edu/wiki/index.php/Download). The
sampling is done using blocked Gibbs updates of two types: ones
involving all the inheritance states associated with a locus, and
ones involving inheritance states associated with sets of individ-
uals as described by Thomas et al. (2000). Founder haplotype
models can be derived under the assumption of linkage equilib-
rium from the allele frequencies in a sample. It is also possible
to estimate models under LD using the FitGMLD program that
is also available in JPSGCS, as described by Thomas (2010) and
Abel and Thomas (2011). In the case that LD is allowed, only
locus block Gibbs updates can be made which typically leads to
poorer mixing of the MCMC sampler. The input to McSample
must be provided in the format used by the LINKAGE programs
(Ott, 1976) with extensions when there is LD. Missing data are
allowed in the input. In McSample output, the inheritances are
specified by labeling each founder allele uniquely and listing the
alleles inherited by each person in the pedigree. There are no miss-
ing data in the output. A different output file is created for each
iteration. These output files can then be used as input, e.g., to stan-
dard lod score calculating programs, with the results averaged over
iterations. Note that a standard application would consist of aver-
aging over MCMC-based marker likelihoods for a single, fixed trait
model.

SOFTWARE ENGINEERING
The only difficulty in combining MCMC to handle the marker
data with Kelvin’s non-stochastic algorithm for the trait param-
eter space is one of order of operations. On the MCMC side,
calculations are done on a per-pedigree basis for an entire chro-
mosome at a time, and likelihoods are averaged across iterations.
For the trait model, however, the adaptive algorithm works by
averaging the likelihood ratio (LR, not likelihood; see Vieland
et al., 2011 for details) across pedigrees, one calculating posi-
tion at a time as we walk down each chromosome. Thus there
are two iterative processes that need to be decoupled and prop-
erly tracked: first, repeated MCMC marker-sample generation for
each pedigree across the chromosome; second, repeated (adaptive)
trait-space sampling across pedigrees at each position on each
chromosome, conditional upon the marker data obtained from
the MCMC runs and the trait data. In order to minimize confu-
sion in the exposition that follows, we use “iteration” to describe
each individual marker configuration as generated by the MCMC
routine in obtaining the marker likelihood, and “trait vector” to
describe each individual vector of values for the trait parameters
generated by Kelvin to calculate the trait likelihood conditional on
the marker information.

To address the required bookkeeping issues while maintaining
modular code with minimal changes to existing logic, we adapted
Kelvin by simply inserting a set of McSample runs at the begin-
ning of the calculation. At this step, multiple MCMC iterations are
generated for each pedigree conditional on the marker data only.
Each iteration creates a set of pedigree files with fully informative,
phased marker genotypes for each pedigree and each chromosome.
We create a single pedigree file incorporating all iterations for each
pedigree, with the pedigree label modified to reflect both the pedi-
gree and the iteration. To calculate the LR for a pedigree, we first
calculate the LR for each iteration as if it represented a unique pedi-
gree. For each trait vector we average these LRs across iterations
for each pedigree at each calculation position along the chromo-
some, returning a set of LRs by pedigree by position for each trait
vector. These LRs are multiplied across pedigrees to obtain the LR
by position across pedigrees for each vector, and averaged over all
trait vectors. The average LR per position is then evaluated, on the
basis of which additional trait vectors may be added in an itera-
tive process until the adaptive trait–model integration algorithm
terminates.

The marker likelihood calculation itself is done using the ES
algorithm, based on the two markers flanking each calculation
position in turn. Because each individual MCMC iteration is fully
phased and fully informative, using two markers is equivalent to
using all markers with computational complexity no longer a func-
tion of the total number of markers. (Indeed a single marker could
be used, but because of Kelvin’s built-in algorithm for walking
down each chromosome in multipoint analysis, three-point calcu-
lations were simpler to implement.) Trait calculations per position
are also done based on the ES algorithm regardless of pedigree
complexity (Wang et al., 2007). Thus the overall complexity of the
MCMC-PPL analysis is linear to the product of the number of
iterations, the number of pedigrees, the number of individuals
and the number of trait vectors, the last of which differs across
calculating positions.

In order to decouple the adaptive trait–model integration
process from the likelihood calculations, we use the software engi-
neering trick of employing a client–server architecture together
with a database to facilitate the operations (see Figure 1). The
client is the driver for the generation of trait vectors, deciding
which trait vectors are needed for the likelihood evaluation at each
position, as described in detail in Seok et al. (2009). The client
requests likelihoods for the trait vectors from the server using
the database as an intermediary. If requested trait vectors are not
available in the database, the client adds the required entries to
the database for each pedigree for the given calculation position.
Once the likelihoods are available for all pedigrees, the client uses
them to calculate integrals for the current set of trait vectors and
to decide whether additional trait vectors are needed, in which
case the process is repeated until the client determines that no
additional sampling of the trait vector space is needed.

On the server side, once initiated the server searches the
database for trait vector entries flagged as new. It performs the
needed likelihood calculations, stores the results in the database,
and marks the entry for that trait vector, pedigree, and posi-
tion as complete/available. Here the server is not a physical node,
but rather a likelihood-calculation process. Typically our analyses
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FIGURE 1 | Client–server architecture in Kelvin.

involve a small number of client processes and many likelihood
servers. (Thus this is the reverse of the typical client–server model
with a small number of servers and many clients. Nonetheless,
our likelihood client plays the usual client role, by sending many
requests to the likelihood servers.) The integration process is fast
and efficient, requiring very little in terms of computing resources,
and for this reason only a few client processes are required. By
contrast, the likelihood calculations are highly computationally
intensive. Thus the more servers, the faster the overall speed of
the analysis. Here the database serves not only as a bookkeeping
device, but also as the single server interface to a large pool of
server processes.

The client–server architecture supports considerable flexibility
in overall Kelvin functionality. It allows us to dynamically add and
delete servers as needed. It also allows us to dedicate each server to
one pedigree, with the amount of memory and number of cores
tailored to the complexity of the pedigree, for efficient use of a
distributed computing resource. The client is also by design indif-
ferent as to how the underlying marker likelihood is calculated,
i.e., the mechanism used to request and retrieve likelihoods is the
same regardless of what approach was used to generate the likeli-
hood. This allows us in principle to mix and match approaches to
the marker data, e.g., using the LG algorithm for pedigrees small
enough for LG to handle while simultaneously employing MCMC
for larger pedigrees, all within the same data set.

APPLICATION TO SIMULATED DATA
To illustrate the use of this new hybrid MCMC–Kelvin approach,
we selected a single large pedigree from an ongoing study of
real human data. The pedigree has 48 individuals spanning
four generations (see Figure 2); all but 10 individuals were
genotyped. We used actual genotypes for 664,278 SNPs (after
comprehensive cleaning) from the Illumina Human OmniEx-
press 12 V1.0. However, we simulated a new phenotype (for all
but the 10 individuals missing genotypes) by selecting two SNPs
(rs6851302@178.68cM on chromosome 4, which we call locus
1, and rs1145787@102.65cM on chromosome 6, which we call

locus 2), with population frequencies (based on additional data
not used here) matching our generating model as specified below;
these SNPs were selected additionally for entering the pedigree
through the top-most founders and segregating to the next gener-
ation at least four times to ensure they would be at least moderately
informative in this pedigree.

Phenotypes for each individual were generated assuming an
underlying two-locus (2L) disease model based on genotypes at
this pair of SNPs. The generating model stipulated disease gene
frequency of 1% (locus 1) and 20% (locus 2), and a fully pene-
trant dominant–dominant (DD) model. This model was selected
from a set of 2L models considered in Vieland et al. (1992), which
suggested that locus 1 would be moderately easy to map given
sufficient meiotic information, while locus 2 might be very diffi-
cult to map; the model also represents a major gene effect with a
modifier, something we might be interested in studying individual
pedigrees. However, the purpose here is not to undertake a com-
prehensive study of power under different models, but simply to
illustrate our approach in application to a single, albeit possibly
atypical, pedigree.

Our overall approach to analyzing the pedigree is as follows:

1. We thinned the marker map following standard procedures to
eliminate marker–marker LD, after filtering out markers with
minor allele frequencies lower than 25%, and applied the new
hybrid MCMC–Kelvin method to perform genome-wide link-
age analysis. For purposes of this analysis the locus 1 and 2 SNPs
were omitted from the marker set analyzed. We based the anal-
ysis on 2,000 MCMC iterations combined from 10 independent
sampling processes (with different seeds), each with a 1,000-
sample burn-in and 200 iterations/sampling run. (See below for
rationale.) Linkage calculations were made every 2 cM under
Kelvin’s standard single-locus (SL) DT model.

2. We applied the PPLD to fine map under the (primary) linkage
peak obtained in the first step, now utilizing all of the available
SNPs (including those trimmed out during the first step and
the locus 1 and 2 SNPs). While we did not have whole-genome
sequence available for this pedigree, if such data were available,
then this step would be applied to each variant in turn under
the peak(s).

3. We repeated step 1, this time conditioning on genotypes at the
most highly associated SNP from step 2, under a 2L model.
Specifically, we assigned each individual to a LC based on the
individual’s SNP genotype. Kelvin then integrates over the trait
parameters separately within LC as described above, which
allows for dependence of penetrances on LC. We rescanned the
genome under this model in order to look for possible modifier
loci interacting with the gene under the primary linkage peak.
We also carried out conditional 2L-PPLD analyses to see if we
could fine map under a secondary linkage peak down to the level
of the individual modifier SNP (or sequence variant, if we had
sequence available).

In addition to these analyses, we also used the simulated pedi-
gree to assess variability of the MCMC portion of the calculations.
First, we repeated the entire MCMC process as described above
five times, and examined variability of the results across these
five runs. Second, we ran a single, much longer sampling process
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FIGURE 2 | Structure of the analyzed pedigree (filled, affected; empty, unaffected; ?, unknown phenotype and genotype).

(20,000 iterations) for which convergence was almost certainly
achieved, then compared our results as described in step 1 with
the final 5,000 iterations from the tail (post-convergence) end of
this run. Finally, we considered variability across individual runs
of 200 iterations with a 1,000-sample burn-in, that is, the length
of runs that were averaged over in step 1 above.

RESULTS
In this section we (i) show results of the analysis of the single
large pedigree. We then (ii) consider the accuracy of the MCMC
component of the analysis.

DATA ANALYTIC RESULTS
Figure 3A shows the initial linkage scan. A peak on chromosome
4 clearly stands out above background noise, and we considered
this to be our primary linkage finding. The PPL is elevated across
a broad region of the chromosome (Figure 3B). However, the
strongest evidence of linkage spans a relatively short region at
approximately 175–181 cM.

For purposes of fine-mapping, we considered any positions
on this chromosome with PPL ≥ 10%. The resulting (non-
contiguous) region contained 9,433 SNPs from the full original
marker set. Forty-nine percent of the analyzed SNPs within the
linked regions gave evidence against LD (PPLD < 0.0004), while
only six SNPs (0.064%) showed PPLD ≥ 5% (Table 1). Two SNPs
(rs6851302 and rs654089) clearly stand out from the rest, with
PPLD = 0.43 in both cases. These two are in complete LD with

Table 1 | Chromosome 4 SNPs with PPLD ≥ 5%.

Chromosome SNP cM BP PPLD

4 rs1800792 157.60 155753857 0.07

4 rs11100000 158.54 156542439 0.1

4 rs1460128 158.54 156544989 0.09

4 rs11934037 178.57 176255309 0.06

4 rs6851302 178.68 176328488 0.43

4 rs654089 178.71 176347501 0.43

one another (R2 = 1) and in fact they share the same genotypes
across this pedigree; rs6851302 and rs11934037 also show some
LD (R2=0.28). Note that even had we restricted fine-mapping to
just the best supported region (175–181 cM), we would have suc-
cessfully found this LD peak. Also for reference purposes, had
we selected all 15,531 SNPs from all regions across the entire
genome with PPL ≥ 10%, only one additional SNP would have
given PPLD ≥ 5% (rs9916791, at 21.73 cM on chromosome 17,
PPLD = 0.05).

We then conditioned on rs6851302 in order to rescan the
genome for evidence of modifier loci. (Clearly choosing to use
rs11934037 instead would yield identical results.) Figure 4A shows
the 2L genome scan and Figure 4B shows the difference between
the 2L and SL-PPLs across the genome (a measure of how much
the data “prefer” the 2L model over the SL model). There are no

FIGURE 3 | (A) Single-locus (SL) genome scan; (B) chromosome 4 alone.
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FIGURE 4 | (A) Two-locus (2L) genome scan; (B) 2L-PPL – SL-PPL across the genome; note that the scale of the y -axis is [−0.1, 0.1]. (C) Chromosome 6 alone.

FIGURE 5 | (A) SL-PPLD under linkage peak region on chromosome 4 with solid line depicting PPL; (B) 2L-PPLD – SL-PPLD across linked region on
chromosome 6; (C) 2L-PPLD under the 2L linkage peak on chromosome 6.

large 2L peaks (Figure 4A). However, using the difference between
the 2L and SL-PPLs as an indication of how much the data “prefer”
the 2L model over the SL model (Figure 4B), the largest positive
difference occurs on chromosome 6 at 112 cM (SL-PPL = 5%; 2L-
PPL = 10%). The doubling of the PPL under the epistasis model
suggested a possible modifier gene location. We determined the
width of the linkage peak by visual inspection as covering approxi-
mately 100–114 cM (see Figure 4C), and ran conditional 2L-PPLD
analyses on all 3,120 SNPs in this region.

Figure 5A shows the SL-PPLD under the linkage region on
chromosome 4, and Figure 5B shows the 2L-PPLD – SL-PPLD
across the linkage region on chromosome 6; again a single region
is elevated in the 2L analysis, with the highest positive change
in the PPLD occurring at rs1145787 (SL-PPLD = 0.71%, 2L-
PPLD = 1.48%; see Figure 5C). While these numbers are very
small, they are still considerably higher than the prior probabil-
ity of LD, and viewed in terms of 2L–SL differences, rs1145787 is
clearly salient.

In summary, SL linkage analysis in this single pedigree enabled
us to narrow the primary genomic region of interest to 6 cM
on chromosome 4, while fine-mapping based on LD within this
region detected the true causal variant (locus 1) within this region
along with one other variant in complete LD with the causal one.
The modifier locus was not salient in the initial linkage scan,
however, 2L analysis conditioning on genotype at locus 1 led to
discovery of the true modifier variant. While both the PPL and the
PPLD at this locus were relatively small, they were easily detected
based on the amount of increase of the 2L signals relative to the
original SL signals.

Kelvin can also be used to estimate the trait model using
maximum likelihood estimators (m.l.e.’s) following the theory
developed in Clerget-Darpoux et al. (1986), Elston (1989), Green-
berg (1989), and Vieland and Hodge (1998). While our numerical
integration routine is not optimized for maximization and there-
fore returns approximate rather than exact m.l.e.’s, it is interesting
to note the models obtained from these analyses (Table 2). The
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Table 2 | Approximate maximum likelihood trait parameter estimates.

Analysis Locus Disease allele frequency Penetrances

SL-PPL 1 0.011 0.75, 0.56, 0.006

SL-PPLD 1 0.022 0.50, 0.49, 0.01

2L-PPL 2 0.125 0.99, 0.97, 0.011

2L-PPLD 2 0.25 0.99, 0.98, 0.011

Penetrances are given for: (SL), D1D1, D1d1, and d1d1 genotypes, respectively,
where “D1” indicates the putative disease allele at locus 1; (2L) D2D2, D2d2,
and d2d2 genotypes, respectively at locus 2, among those individuals who carry
D1D1 or D1d1.

disease allele frequency is estimated quite accurately by both
PPL and PPLD analyses at locus 1; while at locus 2, the 2L-
PPLD in particular returns an estimate reasonably close to the
generating model. (Particularly at locus 2 where the PPL and
PPLD themselves are quite low, the standard error of these esti-
mates is likely to be substantial. Kelvin itself has no direct way
to calculate these, but see Nouanesengsy et al., 2009 for further
discussion.) More interesting, however, are the penetrance esti-
mates. While there is no exact analog of the random reduced
penetrance parameter of the SL model for a 2L generating model,
using the approach described in Vieland et al. (1993), we obtain a
SL penetrance vector “corresponding” to the generating model
of (0.62, 0.62, 0) for the putative disease genotypes, respec-
tively. This vector is approximated very closely by both the PPL
and PPLD m.l.e.’s at locus 1. At the modifier locus, consid-
ering only individuals coded in the “dominant” LC based on
locus 1, the estimated penetrance vectors indicate a virtually fully
penetrant 2L dominant–dominant epistatic model. Thus over-
all, we were able not only to map both loci to the level of the
individual variant, but also to determine the correct generating
model with great accuracy, all in a single, highly informative
pedigree.

MCMC ACCURACY
As seen in Figure 6A, repeating the entire MCMC sampling process
five times produced very similar, albeit not identical, PPL profiles
across chromosome 4. The marker log likelihood for chromosome
4 from the single long MCMC run still showed some upward con-
vergence up to about 14,000 iterations, at which point it remained
essentially flat. Comparing the final (post-convergence) 5,000 iter-
ations with the original results (Figure 6B) again supported the
accuracy of the original analysis in terms of the PPLs themselves.
Again, however, the results are not identical. Figure 6C shows
PPLs based on each of the component shorter sampling runs (as
averaged over to obtain the original results) considered indepen-
dently. There is considerable variation, particularly at positions
further away from the true casual SNP. This strongly suggests, not
surprisingly, that shorter runs of this length are not individually
sufficient.

However, averaging across this set of shorter runs did enable
us to achieve accurate results. Compared to a single, extremely
long run, this is also a highly cost-effective approach insofar as it
enables us to distribute the MCMC iterations to run concurrently
on separate processors. On our hardware, the pooled-iteration
process (using 10 servers with 2.5 GHz CPUs and 8 G memory)
required 4 h, 40 min to complete chromosome 4, while the sin-
gle long run (using one server) required 3 days, 5.5 h. Additional
simulation studies are needed to further compare averaging across
shorter sampling runs with use of single long sampling runs, espe-
cially across different pedigree structures with different patterns
of missing data.

DISCUSSION
We have illustrated an approach to gene discovery based on a single,
highly informative family. This approach involves narrowing the
genomic region(s) of interest using linkage analysis, followed by
fine-mapping based on targeted LD (association) analysis in the
same family. We have additionally illustrated how not just primary
but even modifier genes can in principle be detected within a single
pedigree.

FIGURE 6 | (A) Five replicates of chromosome 4 analysis; (B) original analysis compared to single long sampling run; (C) original (averaged) analysis compared
to individual component short runs.
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Of course, we“cheated”by including the two causal SNPs in our
association panel. In general, we might expect to have data from a
standard SNP chip available on most family members for purposes
of linkage and association mapping, together with sequence on a
subset of individuals. In this case, the association analyses could
be conducted on every observed sequence variant in the regions
of interest, ensuring that the true mutation would be included
(assuming that the relevant disease-causing element is a SNP). Of
course to do this, the sequence variants would need to be mea-
sured in many family members, but at least in principle this could
be done in part through imputation of sequence using sequenc-
ing in a subset of individuals combined with SNP data on the
remaining individuals.

We chose our 2L generating model to be moderately mappable
at the primary locus but with a modifier locus that was much
harder to find. Of course in practice, realistic models may present
more difficult challenges at all component loci, and this illustration
is in no way to be construed as an estimate of any kind of power
to find the genes. However, one salient feature of this approach
is that it is not dependent on bioinformatic “filtering” approaches
to prioritizing sequence variants as likely candidates. Instead, fol-
lowing the now classical reverse genetic paradigm, we rely entirely
on positional mapping even at the variant-selection stage. Again,
in practice this is likely to still leave a number of variants as can-
didates, since highly correlated variants under a peak may still be
difficult to resolve statistically. Nevertheless, the number of such
variants likely to be left on the list of candidates is greatly reduced
by focusing on the linked and associated regions.

As noted above, the PPL framework is designed to measure
strength of evidence, and not to test hypothesis or serve as a
decision making algorithm. Thus at no point in the discussion
did we consider “significance levels” or decide whether the evi-
dence was “strong enough” to declare success. Rather, we relied
on the accuracy of the framework overall as an evidence mea-
surement technique, and simply followed up on the strongest
evidence wherever that occurred. In this particular case, doing so
led us to find both genes and both causal SNPs, without any “false
positive” results. In practice, of course, difficult decisions would
need to be made before, e.g., expending substantial resources fol-
lowing up functionally on the locus 2 SNP, given the very low
PPLD. Nevertheless, had we set very stringent significance criteria
from the outset and refused to follow-up on the strongest evi-
dence regardless of the absolute numbers involved, we would have
missed the modifier locus entirely. We note too that in consortium
settings, Kelvin’s use of Bayesian sequential updating to accumu-
late evidence across data sets provides an alternative to traditional
meta-analysis. Access to primary data, and not just summary mea-
sures such as p-values, is required for this. However, Kelvin outputs
posterior marginal distributions, which can be used to sequentially

update results across data sets without the need to actually pool
the data themselves across sites.

The study design utilized here presented us with one salient
computational challenge: how to compute the (parametric) like-
lihood for so large a pedigree. For this purpose we engineered a
hybrid version of Kelvin using MCMC for the marker data and a
non-stochastic method for integration over the trait parameters.
This method proved to be quite accurate and computationally fea-
sible, at least for data of this type. Of course the method can also
be applied to sets of large pedigrees, and as noted, combined with
ES- or LG-based analyses of smaller pedigrees or pedigrees with
sparser marker maps for greater computational efficiency when
analyzing data sets with variable family sizes.

Further studies in additional pedigree structures are needed
to make specific recommendations regarding burn-in lengths and
number of iterations needed to maximize the chances of accurate
results for the MCMC portion of the calculation. In this regard,
our new method is no better and no worse than McSample itself.
However, we have some reason to think that the PPL and PPLD
themselves may be relatively robust to some level of sampling
variability in the underlying marker likelihood, possibly in part
because integration over the trait model protects against modest
amounts of imprecision at the marker level. This remains a subject
for further investigation.

In this particular application, however, 2,000 samples derived
from pooling the results of 10 independent sampling processes,
each with 200 iterations following a 1,000-sample burn-in, appears
to have been highly accurate. Still, this approach remains out of
reach for genome-wide analysis on a typical desktop machine,
requiring instead a distributed cluster environment to make
real-time completion of results feasible. As high performance
computing environments become more common for purposes
of whole-genome sequence analysis and other “-omics” appli-
cations, we hope that this will become less of an impediment
to analyses of the sort proposed here. Given the costs of data
collection, we would argue that the additional computational
demands are worth while if the methods are effective. The most
definitive demonstration that they were effective in the current
application is in the final results: successful mapping of two inter-
acting disease loci down to the level of the individual causal
variants.
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