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Abstract
Soil microbial communities play a critical role in nutrient transformation and storage in all

ecosystems. Quantifying the seasonal and long-term temporal extent of genetic and func-

tional variation of soil microorganisms in response to biotic and abiotic changes within and

across ecosystems will inform our understanding of the effect of climate change on these

processes. We examined spatial and seasonal variation in microbial communities based on

16S rRNA gene sequencing and phospholipid fatty acid (PLFA) composition across four

biomes: a tropical broadleaf forest (Hawaii), taiga (Alaska), semiarid grassland-shrubland

(Utah), and a subtropical coniferous forest (Florida). In this study, we used a team-based

instructional approach leveraging the iPlant Collaborative to examine publicly available

National Ecological Observatory Network (NEON) 16S gene and PLFA measurements that

quantify microbial diversity, composition, and growth. Both profiling techniques revealed

that microbial communities grouped strongly by ecosystem and were predominately influ-

enced by three edaphic factors: pH, soil water content, and cation exchange capacity. Tem-

poral variability of microbial communities differed by profiling technique; 16S-based

community measurements showed significant temporal variability only in the subtropical

coniferous forest communities, specifically through changes within subgroups of Acidobac-
teria. Conversely, PLFA-based community measurements showed seasonal shifts in taiga

and tropical broadleaf forest systems. These differences may be due to the premise that

16S-based measurements are predominantly influenced by large shifts in the abiotic soil

environment, while PLFA-based analyses reflect the metabolically active fraction of the

microbial community, which is more sensitive to local disturbances and biotic interactions.
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To address the technical issue of the response of soil microbial communities to sample stor-

age temperature, we compared 16S-based community structure in soils stored at -80°C

and -20°C and found no significant differences in community composition based on storage

temperature. Free, open access datasets and data sharing platforms are powerful tools for

integrating research and teaching in undergraduate and graduate student classrooms.

They are a valuable resource for fostering interdisciplinary collaborations, testing ecological

theory, model development and validation, and generating novel hypotheses. Training in

data analysis and interpretation of large datasets in university classrooms through project-

based learning improves the learning experience for students and enables their use of

these significant resources throughout their careers.

Introduction
Through their predominant roles in carbon (C) and nitrogen (N) cycling, and their positive
and negative feedbacks with plant communities, soil microorganisms drive and influence the
outcome of ecosystem function, services, and successful conservation and restoration strate-
gies. Physical and chemical properties of soil provide niche space for biological inhabitants and
influence community resilience to local disturbances and regional climatic shifts [1]. For exam-
ple, understanding soil microbial resilience and adaptation to environmental change is espe-
cially important considering their role in the stability of soil C storage and in driving rates of
greenhouse gas (CO2 or CH4) release to the atmosphere [2–5], with critical implications for
accurately predicting global change parameters. Specific assemblages of microbes can differen-
tially influence rates of litter decomposition and nitrogen mineralization [6], and the results of
numerous soil warming experiments reveal the importance of microbial community structure
and physiological potential for acclimatization as drivers of C turnover and storage [7–10]. The
resilience and adaptation of soil microbial communities to complex environmental change
thus remains an active area of research.

16S rRNA-based sequencing and metagenomic surveys have been effectively used to con-
duct spatial characterization of soil bacterial communities across environmental gradients [11–
14]. Overwhelmingly, 16S-based bacterial diversity in soil is far greater than in most other envi-
ronments [15], and differences in composition of major bacterial phyla are best explained by
edaphic properties such as pH, soil moisture, and texture [12], [16]. Thus, current evidence
strongly suggests that controls of microbial community distributions differ from those
observed for plants and animals at regional and global scales [17], and highlights the important
need for studies addressing dispersal limitation and specific environmental filters to specific
microbial functional groups and taxa.

Soil bacterial communities characterized by the16S rRNA gene are also temporally stable
compared to other microbial habitats [18], but land use history can impact how seasonal and
other temporal variation influences soil microbial diversity [16], [19]. Though soil microbial
communities might be relatively stable, the population turnover of individual microbial taxa is
dynamic and driven by species-specific responses to common environmental drivers. For
example, alpine dry meadow bacterial communities show strong seasonal changes in both
diversity and relative abundance within taxa in response to snowmelt [20]. Furthermore, com-
parisons of microbial community structure using DNA-based and RNA-based approaches
show that not all taxa present in a microbial community are active at a given point [21], [22].
In fact, accumulating evidence shows that at any snapshot in time, a significant proportion of
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the microorganisms in soils may be dormant or senescent [23], [24]. More studies are needed
to identify conditions where analyses of microbial composition (i.e., DNA-based) and micro-
bial growth and activity (i.e., lipid-based and RNA-based) align, and, perhaps more impor-
tantly, the circumstances under which they do not align. Additionally, while extremely
powerful, 16S-based studies may limit our understanding of soil function because they examine
bacterial communities in isolation from other important soil organisms, such as fungi, which
can directly and indirectly impact bacterial community structure [25]. Knowledge of the pro-
portion of the community that is active and responding to environmental drivers being mea-
sured is needed to make predictions regarding their temporal stability and resilience to pulse
disturbance events, seasonal shifts in energy and water availability, and longer term environ-
mental change.

This study is the result of a multidisciplinary, project-based course using open-access pub-
licly available data and cyber-infrastructure. This undergraduate-graduate course taught con-
currently via videoconferencing at Western Michigan University (Kalamazoo, MI) and the
University of Arizona (Tucson, AZ) focused on exploring the spatial and temporal layers and
drivers of microbial community composition within and across four terrestrial ecosystems over
an annual cycle. With the knowledge that interdisciplinary collaborations foster better science
by uniting different expertise to include a variety of perspectives, modes of formulating ques-
tions, and research approaches [26], [27], this course used a team-based framework [28] to
develop and establish priority research questions, integrate background literature, and analyze
and synthesize microbial 16S rRNA gene sequence, phospholipid fatty acid, fatty acid methyl
ester, and biogeochemical datasets. Course participants used publicly available data from the
National Ecological Observatory Network (NEON; neoninc.org), the data sharing and interac-
tive infrastructure of the iPlant Collaborative (iplantcollaborative.org), and popular online col-
laboration tools to share ideas and educational resources that facilitated peer discussion and
mentoring. Written and video resources created by course participants for data analysis are
located here: https://sites.google.com/site/dochertyetal2015plosone/.

Methods

Soil Sampling
From 2009–2010, 408 soil samples were collected and a subset were analyzed from four biomes
that represent a broad latitudinal gradient with unique soil properties and distinct climates
with different levels of intra-annual variability in temperature and precipitation, as defined by
the NEON design (Fig 1). Soils were collected from taiga (NEON Domain 19; Caribou-Poker
Creek, Alaska), tropical/subtropical moist broadleaf forest (NEON Domain 20; Laupahoehoe,
Hawaii), tropical/sub-tropical coniferous forest (NEON Domain 3; Ordway-Swisher Biological
Station, Florida) and temperate grassland/savanna/shrubland (NEON Domain 15; Onaqui-
Benmore, Utah). Sampling did not require permits and did not involve endangered or pro-
tected species. For more NEON site information see http://www.neoninc.org/science-design/
field-sites. Sampling dates were designated to include the beginning and end of growing sea-
sons, as well as periods representative of annual temperature or precipitation extremes. Sam-
ples for microbial community analysis were collected within a grid measuring 160 × 320 m
divided into eight 80 × 80 m cells. Soil cores (7.5 cm in diameter encompassing the 0–10 cm
depth interval below the litter layer) were collected from three randomly assigned GPS coordi-
nates within each of the eight cells. In addition, sub-sets of the three cores corresponding to
each cell were combined for a composite sample representative of each cell. Cores within each
grid were homogenized, sieved through 2 mmmesh, and subsamples were either air-dried or
frozen at -80°C for specific downstream analyses. Subsamples of sieved soils collected from
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Hawaii were frozen at both -20°C and -80°C to compare the effect of storage temperature on
microbial community composition.

Environmental Metadata and Soil Chemistry Measurements
A suite of abiotic and site characteristics following Minimum Information about any (X)
Sequence (MIxS) descriptions developed by the Genomics Standards Consortium [29] corre-
sponds with each microbial sample. Soil biogeochemistry assays (Fig 1A) were performed at
the University of Wisconsin Soil Testing Laboratories, and specific protocol for each assay,
including pH, soil water content (SWC), and Cation Exchange Capacity (CEC) can be found at
http://uwlab.soils.wisc.edu/lab-procedures/. For Alaska, Florida, and Utah, peak greenness
dates were estimated using a 2001–2009 average from the MODIS Terra Vegetation Indices
enhanced vegetation index (EVI) product [30].

Lipid Analysis
We used a hybrid procedure combining phospholipid fatty acid (PLFA) and fatty acid methyl
ester (FAME) analysis to analyze microbial community composition [31], [32]. The procedure
was based on the extraction of ‘signature’ lipid biomarkers from the microbial cell membrane.
Membrane lipids were extracted, purified, and identified using steps from a modified [33] tech-
nique for lipid extraction, combined with FAME analysis as described by Microbial ID Inc.

Fig 1. Average values for all measured (A) soil environmental variables, (B) dominant 16S rRNA-determined bacterial phyla, and (C) grouped
lipids ± 95% confidence intervals for all soil samples at all time points. Columns in gray indicate time points closest to peak greenness at each site,
which are used for cross-site comparisons. Significant differences over time, within sites, are indicated with * (p < 0.05), ** (p < 0.01), *** (p < 0.001), as
compared to the time point at peak greenness using repeated measures ANOVA. Differences between sites are not indicated here, but are described in Fig
2A.

doi:10.1371/journal.pone.0135352.g001
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(Hayward, CA, USA). Lipids were extracted from 3 g of freeze-dried soil three times using a
chloroform extraction (4 ml) with phosphate buffer (potassium phosphate (3.6 ml) and metha-
nol (8 ml). The phases were then allowed to separate overnight at room temperature, followed
by reduction of the chloroform phase volume (after aspiration to remove the aqueous phase) in
a RapidVap evaporator. The procedure for FAME was then conducted (Microbial ID Inc, Hay-
ward CA, USA); saponification followed by strong acid methanolysis and phase separation to
extract the methyl-esterfied fatty acids. A 2 μl injection of the methyl-esterfied fatty acids was
analyzed using a Hewlett-Packard 6890 Gas Chromatograph equipped with a flame ionization
detector and an Ultra 2 capillary column (25 ml, 0.2 mm diameter, 0.33 μm film thickness; 5%-
phenyl, 95% methyl) (Agilent Technologies Inc., Santa Clara, CA, USA). Lipid peaks were
identified using bacterial fatty acid standards and MIDI peak identification software (“Sherlock
microbial identification system”, MIDI Inc, Newark, DE, USA). Peak areas were converted to
nmol lipid g dry soil-1 using internal standards (9:0 nonanoic methyl ester and 19:0 nonadeca-
noic methyl ester). The total nmol lipid g dry soil-1 (sum of all lipids present, 20 or less carbons
in length) was used as an index of microbial biomass [34–37]. Individual lipids were used as
biomarkers to indicate broad groups within the microbial community: 16: 1 ωc for arbuscular
mycorrhizal fungi (AMF) [31]; an average of 18:1 ω9c and 18: 2 ω6,9c for general fungi exclud-
ing AMF (general fungal, (GF) [31]; an average of monounsaturated and hydroxy fatty acids
for 16: 1 x7c for Gram-negative bacteria [38]; an average of cyclopropyl fatty acids for anaero-
bic bacteria [34], and an average of methyl side-chained fatty acids and 15: 0 iso for Gram-posi-
tive bacteria [38]. The ratio of fungal lipids (average 16: 1 xc5, 18: 1 x9c, and 18: 2 x6,9c) to
bacterial lipids (average 15: 0 iso, 15: 0 anteiso, 16: 0 2OH, 16: 0 iso, 16: 1 x7c, 16: 0 10 methyl,
17: 0 iso, 17: 0 anteiso, 17: 0 cyclo, 18: 1 x5c, and 18: 1 x7c) was used to indicate the fungal to
bacterial ratio [37].

DNA Extraction and 16S rRNA Analysis
DNA from 0.25 g of each of the soil samples was extracted using the MoBio PowerSoil DNA
isolation kit (MoBio Laboratories, Carlsbad, CA) following procedures described in [11]. Uni-
versal primers (515f/806r) [39] were used to amplify the V3-V4 region of the 16S rRNA gene,
which provides optimal community clustering to examine the richness and community com-
position of bacteria and archaea [40–42]. Pooled triplicate PCR amplifications were sequenced
at Engencore (University of South Carolina) using Roche 454 GS-FLX pyrosequencing with
titanium chemistry. Sequences were aligned using the Greengenes core reference alignment
[43] and raw reads from the .sff file provided from Engencore were processed using mothur
v.1.33.3 [44]. Unless otherwise stated, each command used the default parameters. The
sequences were quality filtered using the trim.flows command (flows = 450) and those with
more than 2 base mismatches to the 806R primer sequence or 1 mismatch to the 10 base pair
identification barcode were removed. All reads<200 base pairs were removed using the trim.
seqs command. The remaining sequences were aligned to Silva SSURef database (v102) using
the align.seqs command. Sequences that started before the 806R sequence or that were shorter
than 98% of the sequences were eliminated using the screen.seqs command. Sequences that
were within 1% similarity were clustered together using the pre.cluster command. Chimeras
were removed using a de novo check in uchime [45] and any sequences that were of mitochon-
drial, chloroplast, Archaeal, or Eukaryote origin were removed using the remove.seqs com-
mand. A distance matrix was constructed for the aligned sequences using the dist.seqs
command. Using the make.shared command, the sequences were binned into operational taxo-
nomic units (OTUs) based on 97% sequence similarity. Representative sequences from each
OTU were classified with the RDP Naïve Bayesian Classifier (version 9 training set [46]. All
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sequences, mapping files, and metadata files that include PLFA data (see also S1 Table) gener-
ated in this study are freely available via the iPlant Collaborative and are publicly available to
download. A user account is free and data can be accessed at: https://de.iplantcollaborative.org/
de/?type = data&folder=/iplant/home/shared/NEON_Pilot. Raw sequence data in FASTQ for-
mat are accessible from the NCBI SRA study number SRP061236, accession numbers
SRX1098949-SRX1292693.

Statistical Analysis
To standardize ecosystem-level comparisons, we determined the time point sampled closest to
the highest net primary productivity (i.e., Enhanced Vegetation Index [EVI] peak greenness) at
each site using MODIS data [30], and used this time point to compare environmental and
microbial community variables among the four ecosystems. Cross-site comparisons of 16S
rRNA- and lipid-based soil microbial community composition were conducted at the date
most closely corresponding to peak greenness. Within site, seasonal changes in microbial com-
munity composition were compared. For the 16S-based analyses, we rarefied to 1000 OTUs
per soil sample and excluded samples containing less than 1000 OTUs and then calculated the
relative abundance of each identified phylum and all unclassified taxa. For the lipid-based anal-
yses, we calculated the relative abundance of each unique lipid determined by GC analysis in
each soil sample. At peak greenness, relative abundance data for each type of microbial com-
munity profiling technique were visualized using a nonmetric multidimensional scaling
(NMDS) approach using a Bray-Curtis calculation for the dissimilarity matrix. We determined
whether sample location (site) or the time of sampling (date) had an effect on microbial DNA
or lipid based community composition using analysis of similarity (ANOSIM), with a Bray-
Curtis dissimilarity measure. We also examined the overlap of communities using analysis of
variance (ANOVA) and pairwise Tukey tests on scores from NMDS analyses (JMP software v.
10). We normalized all measured soil environmental variables (Fig 1) using individualized
power transformations and tested for the assumption of normality using a Shapiro-Wilk test.
Following normalization, we performed an ANOVA to determine differences in environmental
factors by site at peak greenness, as well as with the grouped lipids (Fig 1) and all 16S-based
phyla and unclassified sequences (Fig 1). Then we performed permutational multivariate anal-
ysis of variance (permanova) to determine which environmental variables best explained 16S
rRNA gene- and lipid-based community dissimilarity. Again, we used a Bray-Curtis dissimilar-
ity measure for permanova analysis. Finally, we used stepwise multiple linear regression analy-
sis to examine which environmental factors had the greatest influence in variation of MDS1
(the x axis) and MDS2 (the y axis) of each NMDS plot.

We combined data from all dates, visualized data using NMDS, and tested for the effect of
site and time among all sites with both microbial community-profiling methods. Again, we
performed ANOSIM and permanova analyses to test for the effect of site, time, and the envi-
ronmental variables listed in Fig 1. We repeated these analyses using time-series community
data from each individual site. When the effect of time was significant, we further examined
variation at the Order level for 16S-based data from the five most abundant phyla and with cat-
egorized lipids for the lipid-based data.

We used 16S data collected from Hawaiian soils only to examine the effect of storage tem-
perature (-20°C vs. -80°C) on microbial community structure. We visualized 16S-based com-
munities using NMDS and performed ANOSIM to determine the effect of temperature on
community composition. All statistical analyses were performed in the R (version 3.0.1) statis-
tical environment using R studio (version 0.97.551). We used the vegan package to perform all
multivariate analyses [47].
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Results

Differences Among Sites at Peak Greenness
We determined the time point sampled closest to the peak greenness at each site using MODIS
data and used these time points to characterize environmental and microbial community vari-
ables (16S rRNA gene and PLFA) among the four ecosystems. Overall, soil chemistry and
microbial communities differed significantly between the sites. In general, the sites can be
divided based on two groups of environmental variables (Fig 2A). The soils from sites in taiga
(Alaska) and tropical moist broadleaf forest (Hawaii) biomes contained higher soil water con-
tent (SWC), organic matter (OM), total carbon (TC), total nitrogen (TN) and sulfate (SO4

−)
than soils collected in sub-tropical coniferous forest (Florida) and temperate grassland/
savanna/shrubland (Utah). Soils from Utah were distinctive based on higher pH, cation
exchange capacity (CEC), and cation concentrations (K+, Ca+, Mg+) than soils from the other
three sites (Figs 1 and 2A). Conversely, soils collected from the Florida site contained the lowest
cation concentrations and lowest CEC, distinguishing them from the Utah soils (Figs 1 and
2A). Total microbial biomass (TMB) differed significantly between each of the four sites and
was highest in soils from Hawaii, then Alaska, then Utah, and lowest in Florida soils (Figs 1
and 2A). Shifts in microbial biomass were inversely related to the fungal:bacterial ratios of the
four soils, such that Florida soils contained the highest fungal:bacterial ratio of lipids while
Hawaiian soils contained the lowest ratio (Figs 1 and 2A).

We examined the soil microbial communities at peak greenness by comparing 16S rRNA
sequences obtained via a high throughput pyrosequencing from eight replicate soil cores at
each site. One replicate from the Alaska site and two replicates from the Utah site were lost
during processing. The 16S-based communities differed significantly by site (ANOSIM
R = 0.7751, significance = 0.001, Fig 2B). In general soil communities were separated by MDS1.
Soil microbial community profiles from Utah differed completely from soils collected in
Alaska, Hawaii, and Florida (p< 0.05, Table 1, Fig 2B). Microbial communities from Florida
soils were also distinctive, but overlapped with communities in Alaskan soils on MDS1, and
with both Alaska and Hawaii soils on MDS2 (Table 1, Fig 2B).

The measured environmental variables that best explained the differences in 16S-based
community structure were soil pH (R2 = 0.30809, p = 0.001), SWC (R2 = 0.27591, p = 0.001)
and CEC (R2 = 0.11292, p = 0.006). All other variables listed as edaphic properties in Figs 1 and
2A were included in the permanova, but did not explain a significant portion of 16S-based
community dissimilarity. We excluded two environmental variables from the analysis (Cl− and
NO3

− concentrations) because there were too few successful replicates of these values. Using
stepwise multiple linear regression analysis, we examined which environmental variables
explained the variation of each MDS axis. SWC and CEC explained a combined 90.4% (F2,25 =
118.041, p< 0.001) of the variation in MDS2, while pH and Ca2+ concentration explained a
combined 32.8% (F2,25 = 3.936, p = 0.03) of variation in MDS1 (Fig 2A).

The four sites were dominated by the same Bacterial phyla: Proteobacteria, Acidobacteria,
Actinobacteria, Planctomycetes, and Verrucomicrobia (Fig 2C). Additionally, all communities
contained a significant proportion of unclassified 16S rRNA sequences ranging from 13% in
Hawaii soils to a maximum of 25% in Utah soils (Fig 2A). We visualized the communities
using only the sequences representing unclassified taxa, Proteobacteria, Acidobacteria, and
Actinobacteria using NMDS (not shown), and the same pattern of community similarity was
obtained as shown in Fig 2B, indicating that variations in these top four groups can be used to
explain broad community differences among sites. Taxa classified as Proteobacteria comprised
the highest proportion of the total community in soils from Hawaii, but were lowest in soils
from Utah, and equivalent in Alaska and Florida (Fig 2A and 2C). Taxa classified as
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Acidobacteria represented equivalent proportions of the total community in soils from Alaska,
Hawaii and Florida, but were lower in Utah (Fig 2A and 2C). Taxa classified as Actinobacteria
comprised the greatest proportion of the communities from Utah soils, were an intermediate
proportion of Florida soil communities, and were lowest in soils from Alaska and Hawaii (Fig
2A and 2C). The shift in the ratio of Proteobacteria + Acidobacteria to Actinobacteria is the
main factor driving the dissimilarity of Utah soils from the other three sites (Fig 2B and 2C).

In addition to examining soil communities using a 16S-based genetic approach, we also
examined communities using a functional lipid-based approach. As with the 16S-based analy-
sis, lipid profiles from eight replicate soils collected from each site at peak greenness were
examined. Two replicate samples from the Utah site were lost during processing. As with the
16S-based communities, lipid-based communities differed significantly by site (ANOSIM
R = 0.8758, p = 0.001, Fig 2D) and differed significantly on both NMDS axes (p< 0.001).

Fig 2. Microbial community variation across sites at the time point closest to peak greenness for the site. (A) Heatmap representing significant
differences (α = 0.05) between soil environmental variables, the most abundant 16S-based phyla and grouped lipids. Changes in color represent a significant
difference, where red is the highest average value and yellow is the average value. (B) NMDS ordination of 16S rRNA-based communities at the phylum level
indicates significant differences in community composition by site (ANOSIM R = 0.7751, significance = 0.001). pH and Ca2+ explaining 32.8% of the variation
in MDS1; SWC and CEC explain 90.4% of the variation in MDS2. (C) Percent relative abundance of all unclassified taxa and identified phyla using 16S rRNA
data. (D) NMDS ordination of lipid-based communities indicates significant differences in community composition by site (ANOSIM R = 0.8758,
significance = 0.001). pH, Ca2+ and Na+ explain 54.1% of the variation in MDS1; SWC, Ca2+ and K+ explain 80.3% of the variation in MDS2. (E) Relative
abundance of nonspecific and diagnostic lipids for Gram Negative Bacteria (GN), Gram Positive Bacteria (GP), Actinobacteria (ACT), Anaerobic Bacteria
(ANA), Arbuscular Mycorrhizal Fungi (AMF) and Saprophytic Fungi (SF).

doi:10.1371/journal.pone.0135352.g002
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Lipid-based soil community composition in the Utah soils differed significantly from the com-
position of communities in the Hawaii, Alaska and Florida soils (p< 0.05 on MDS1 and
MDS2 Table 1, Fig 2D). Alaska soils were also distinct on MDS2, but had some overlap with
Hawaii and Florida soils on MDS1 (Table 1, Fig 2D). Community composition in Florida soils
varied more among the four sites, while replicates from Alaska, Hawaii and Utah soils varied
less (Table 1), indicating lower spatial variability at these sites. Florida and Hawaii soils con-
tained the highest amount of overlapping lipid composition, but soils from Alaska, Hawaii,
and Florida still differed significantly in composition either on MDS1 or MDS2 (p< 0.0001 for
overall ANOVA to test site effects, Table 1, Fig 2D).

As with the 16S-based communities, the environmental variables that best explained the dis-
similarity in lipid-based community composition were soil pH (R2 = 0.14715, p = 0.001), SWC
(R2 = 0.15539, p = 0.001) and CEC (R2 = 0.18690, p = 0.001). Additionally, Ca2+ ion concentra-
tions (R2 = 0.06469, p = 0.004) and soil C:N (R2 = 0.07477, p = 0.003) explained significant
amounts of the variation in lipid-based community composition between sites. All other vari-
ables listed as soil environmental measurements in Figs 1 and 2A were included in the perma-
nova, but did not explain a significant portion of community dissimilarity. Again, we excluded
Cl− and NO3

− concentrations from this analysis. We also excluded TMB and the fungal:bacte-
rial ratio because they are not independent from lipid data. Using stepwise multiple linear
regression analysis, we examined which environmental variables explained the variation of
each NMDS axis. SWC, Ca2+ and K+ ion concentrations explained a combined 80.3% (F3,24 =
32.672, p< 0.001) of the variation in MDS2, while pH, Ca2+ and Na+ ion concentrations
explained a combined 54.1% of the variation in MDS1 (Fig 2D).

Examining among-site differences in lipid-based community composition, the four sites all
contained higher proportions of nonspecific lipids than of any defined groups of lipids (Fig
2E). Nonspecific lipid proportions ranged from 33% in Utah soils to 64% in Florida soils. All
soils contained equivalent amounts of lipids diagnostic for Gram Positive Bacteria (GP), but
soils from Hawaii had a higher proportion of Gram Negative (GN) and Anaerobic (ANA) bac-
terial lipids than the other sites (Fig 2A and 2E). Utah soils contained the highest proportion of
lipids that are diagnostic for Actinobacteria (ACT), reflecting results seen with 16S-based com-
munities. Utah soils also contained the highest proportion of lipids diagnostic for arbuscular
mycorrhizal fungi (AMF), while Alaska and Florida soils contained equally low amounts of
AMF and Hawaiian soils were intermediate. Finally, the proportion of Saprophytic Fungi (SF)
was highest in Florida soils, but equally lower in soils from the other three sites (Fig 2A and
2E).

Table 1. ANOVA and pairwise Tukey’s analysis to determine differences between sites at peak greenness, based on PLFA and 16S analysis (corre-
sponds to Fig 2).

16S PLFA

Site MDS1 SD1 MDS2 SD2 MDS1 SD1 MDS2 SD2

Alaska -0.066 0.069bc -0.074 0.065b -0.057 0.051bc -0.121 0.054c

Hawaii -0.144 0.026c 0.010 0.076ab -0.003 0.040b 0.070 0.057a

Florida -0.021 0.058b 0.035 0.040a -0.119 0.119c 0.074 0.069a

Utah 0.242 0.097a 0.014 0.057ab 0.239 0.018a -0.031 0.068b

P-value <0.0001 0.0199 <0.0001 <0.0001

Superscript letter values indicate statistical differences between clusters of communities associated with MDS1 (x-axis) and MDS2 (y-axis). SD indicates

standard deviation.

doi:10.1371/journal.pone.0135352.t001
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We observed similar differences among soil microbial communities at the four sites using
both 16S- and lipid-based approaches. Communities in Utah soils were most distinctive from
the other three sites and communities from Hawaii and Florida tended to overlap more than
any other two sites, regardless of the technique used to assess community composition (Fig 2B
and 2D). Similar environmental factors explained significant proportions of variation in com-
munity composition. Soil pH, SWC, and CEC explained the majority of community dissimilar-
ity using both methods. Further, SWC explained a large proportion of variation in MDS2 and
pH explained a large proportion of variation in MDS1 using both methods, indicating that sim-
ilar community profiles, controlled by the same environmental variables, were obtained by
both 16S- and lipid-based approaches when comparing across sites at peak greenness.

Temporal Differences Among Sites
We examined changes in soil environmental variables and microbial communities over time.
At the Alaska site, soils from only two dates (June 28, 2009 and August 8, 2009) were included
in the analyses. For the remaining sites, 3–4 dates spanning a longer time scale from July 2009
–March 2010 were included in the analyses. Fig 1 indicates the exact dates when soils were col-
lected from each site, average values for all data, and significant differences over time. The mea-
sured environmental variables of soils collected from Alaska, Hawaii, and Utah exhibited little
variation, while soils collected from Florida were variable over time. In soils collected from
Alaska, soil pH increased significantly from June to August (F1, 13 = 20.877, p = 0.001). Addi-
tionally, soil K+ and SO4

− concentrations decreased significantly over time (F1,13 = 10.119,
p = 0.007 for K+; F1,13 = 5.44, p = 0.036 for SO4

−), and the fungal:bacterial ratio also decreased
over time (F1,13 = 10.774, p = 0.006). At the Hawaiian site, soils exhibited a significant change
in TMB over time due to a decrease in biomass in the October 2009 samples, as compared to
the July 2009, August 2009 and February 2010 samples (F3,23 = 5.259, p = 0.007). Soils collected
from Utah exhibited a significant increase in pH in March 2010 (F 2,15 = 16.808, p< 0.001) as
compared to samples collected in July and October 2009. Additionally, SWC in Utah soils
increased from July to October 2009 (F2,15 = 91.719, p< 0.001), and soil NO3

− concentrations
increased from July 2009 to October 2009 and March 2010 (F2,11 = 6.139, p = 0.016). The mea-
sured environmental variables in soils collected from Florida were more variable over time. Soil
pH decreased in October 2009, compared to higher pH levels in July 2009 and February 2010
(F2,20 = 22.132, p< 0.001). SWC varied at each date (F2,20 = 31.123, p< 0.001) and CEC
increased incrementally over the three sample dates (F2,20 = 12.722, p< 0.001). Ca2+ ion con-
centrations were significantly higher in February 2010 than the other two dates (F2,20 = 11.55,
p< 0.001) and Mg+ ion concentrations were significantly lower in July 2009 than the other
two dates (F2,20 = 534.969, p< 0.001). Finally, SO4

− concentrations were lower in October
2009 than in July 2009 or February 2010 (F2,20 = 6.654, p = 0.006, Fig 1).

As with the peak greenness time points, we examined microbial communities from all sites
at each time point using 16S- (Fig 3A) and lipid-based (Fig 3B) approaches and visualized com-
munity composition using NMDS. Both techniques yielded very similar patterns of community
relatedness compared to the peak greenness data alone (Fig 2 vs. Fig 3). While including addi-
tional time points in the analysis increased the variability of communities at each site, commu-
nities still tended to group by sampling location rather than by time of sampling. In the 16S-
based analysis, sampling site explained 72.3% (F = 69.003, p = 0.001) of community dissimilar-
ity, while sampling time point (i.e., July, August, October, Feb/March) did not explain any sig-
nificant portion of community dissimilarity (F = 1.003, p = 0.332). In lipid-based communities,
sampling site explained 56.2% (F = 38.964, p = 0.001) of community dissimilarity; sampling
time point also explained a small but significant portion of lipid-based community dissimilarity
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(3.5%, F = 7.381, p = 0.001). This result was also supported by pairwise and ANOVA analysis
of NMDS scores, where some dates had distinct communities on one of the two NMDS axes,
such as the July 10th sampling date in Florida. But for the most part, especially with regard to
Utah soils, the sites clustered together regardless of the sample date (Table 2 and Fig 3).

Fig 3. Microbial community variation across sites at all time points using NMDS ordination. A)
Variation in 16S rRNA based communities was only significant by site (F = 69.003, p = 0.001) and not by time
(F = 1.003, p = 0.332). The environmental variables that explained significant variation in 16S-based
communities were pH, SWC, CEC, Na+, Mg+ and Ca2+. B) Variation in lipid-based communities was
significant by site (F = 38.964, p = 0.001) and over time (F = 7.381, p = 0.001). The environmental variables
that explained significant variation in the lipid-based communities were SWC, pH, CEC, OM, Ca2+, Na+, K+,
C:N, TN and Mg+.

doi:10.1371/journal.pone.0135352.g003
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We examined which environmental variables best explained the variation in 16S-based
communities over time across all dates. Soil pH, SWC, CEC, Na+, Mg+, and Ca2+ ion concen-
trations explained significant portions of 16S-based community dissimilarity (Table 3). Simi-
larly, we examined which environmental variables best explained lipid-based community
dissimilarity and found that all measured environmental variables, with the exception of TC
and SO4

− ion concentrations, explained a significant portion of community dissimilarity.
SWC, pH, and CEC explained the highest proportions of dissimilarity, but soil OM, Ca2+, Na+,
K+, C:N, TN, and Mg+ also explained smaller, but significant, portions of lipid-based commu-
nity dissimilarity (Table 3). TMB and fungal:bacterial ratios were not included as explanatory
variables for the lipid-based community because they are not independent of the response
data. We performed stepwise multiple linear regression analysis to determine which factors

Table 2. ANOVA and pairwise Tukey analysis to determine differences between sites and sample dates, based on PLFA and 16S analysis all dates
and all sites (corresponds to Fig 3).

16S PLFA

Site MDS1 SD1 MDS2 SD2 MDS1 SD1 MDS2 SD2

AK 6/28/09 -0.075 0.077cd -0.052 0.056abc -0.073 0.051bc -0.148 0.057fg

AK 8/8/09 -0.019 0.042bc -0.099 0.034c -0.140 0.023c -0.219 0.073g

HI 7/2/09 -0.137 0.019d 0.021 0.062ab -0.084 0.042bc 0.095 0.049ab

HI 8/13/09 -0.155 0.034d 0.029 0.055ab -0.104 0.072bc 0.072 0.053abcd

HI 10/20/09 -0.159 0.033d 0.034 0.103ab -0.074 0.053bc 0.147 0.083a

HI 2/11/10 -0.148 0.034d -0.053 0.059bc -0.129 0.030c 0.075 0.031abc

FL 7/10/09 0.005 0.031bc 0.045 0.042a -0.082 0.1485bc 0.022 0.102bcde

FL 10/15/09 0.009 0.035b 0.038 0.025ab -0.017 0.0542b 0.029 0.076bcde

FL 2/15/10 0.013 0.082b 0.041 0.083ab 0.020 0.0046b 0.075 0.039abcde

UT 7/15/09 0.251 0.049a 0.014 0.044ab 0.252 0.017a -0.047 0.057ef

UT 10/3/09 0.231 0.041a -0.032 0.036abc 0.253 0.017a -0.030 0.058cde

UT 3/2/10 0.267 0.026a 0.023 0.050ab 0.254 0.020a -0.035 0.026de

P-value <0.0001 <0.0001 <0.0001 <0.0001

Superscript letter values indicate statistical differences between clusters of communities associated with MDS1 (x-axis) and MDS2 (y-axis). SD indicates

standard deviation.

doi:10.1371/journal.pone.0135352.t002

Table 3. Factors explaining the variation in 16S-based and lipid-based communities across seasons
at four ecosystem sites, as described by PERMANOVA analysis. NS indicates not significant.

16S PLFA

Soil Properties R2 p R2 p

pH 0.3246 0.001 0.1303 0.001

SWC 0.2185 0.001 0.2022 0.001

CEC 0.0869 0.001 0.1092 0.001

OM 0.0475 0.001 0.0274 0.001

Na+ 0.0186 0.009 0.0499 0.001

Mg+ 0.0159 0.020 0.0147 0.013

Ca2+ 0.0131 0.041 0.0454 0.001

K+ NS NS 0.0311 0.001

C:N NS NS 0.0549 0.001

TN NS NS 0.0180 0.008

doi:10.1371/journal.pone.0135352.t003
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best explained the variation in each NMDS axis. However, because a large number of environ-
mental variables combined to explain small portions of overall community dissimilarity using
both 16S- and lipid-based approaches, no one environmental variable explained a large portion
of any NMDS axis.

Temporal Differences Within Sites
We examined the extent of 16S- and lipid-based microbial community variation over time at
each site. 16S-based communities did not vary over the collection time points in soils from
Alaska (ANOSIM R = 0.1735, p = 0.051), Hawaii (ANOSIM R = 0.09179, p = 0.094) or Utah
(ANOSIM R = 0.05885, p = 0.164). However, 16S-based communities in Florida did vary tem-
porally (ANOSIM R = 0.133, p = 0.013). Lipid-based communities did not change over time in
Florida soils (ANOSIM R = 0.07567, p = 0.175) or Utah soils (ANOSIM R = 0.04049,
p = 0.228), but did vary in soils collected from Alaska (ANOSIM R = 0.2065, p = 0.03) and
Hawaii (ANOSIM R = 0.09045, p = 0.02).

We investigated the underlying factors driving changes in soil microbial community compo-
sition over time in the 16S-based communities from Florida soils and in the lipid-based commu-
nities from Alaska and Hawaii soils. In Florida, none of the relative proportions of the top phyla
identified using 16S sequencing changed significantly over time (Fig 4A). We reclassified all
sequences within each of the dominant phyla and examined shifts in within-phyla community
composition at the order level. Within Proteobacteria and Actinobacteria, there were no shifts in
order-level community composition over time (Fig 4B and 4C). However, within Acidobacteria,
the order-level communities in Florida soils shifted significantly over time (Fig 4D). We tested
whether any of the measured environmental variables explained the dissimilarity within Acido-
bacteria in Florida soils using a permanova; no variables were significant, though CEC explained
11.6% of the dissimilarity (p = 0.059). In Alaskan soils, all categorized lipids remained propor-
tionally the same over time (Fig 1), with the exception of SF, which decreased significantly from
June to August (F 1,13 = 11.235, p = 0.005). Nonspecific lipids, or those that were not diagnostic
for a particular bacterial or fungal group, increased over time (F1,13 = 7.609, p = 0.016). In
Hawaiian soils, all the categorized and nonspecific lipids remained at the same proportion over
time (Fig 1), with only the lipids diagnostic for GN increasing incrementally between October
and February (F 3,23 = 3.49, p = 0.032). These results suggest that, while 16S and lipid-based
approaches provide similar results when comparing broad differences among dissimilar com-
munities (i.e., across sites), they provide distinctly different information when examining how
highly similar communities (i.e., within sites) vary over time.

Effect of Soil Storage Temperature on 16S-Community Composition
We examined the effect of the soil storage temperature on 16S rRNA gene-based community
composition using soils collected from the Hawaiian site across five time points. Soils were
stored for at least six months at either -80°C or -20°C prior to DNA extraction and analysis.
16S-communities did not differ by storage temperature (ANOSIM R = -0.01003, p = 0.786),
indicating that the difference between -80°C and -20°C storage temperature has no effect on
broad DNA-based indicators of soil microbial community composition (Fig 5).

Discussion

Differences Among Sites
Examining edaphic influences at peak plant productivity across four biomes results in three
distinct groupings or variables that predominately influence microbial community
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composition: (1) tropical/subtropical moist broadleaf and taiga soils with high SWC and OM
(Laupahoehoe, Hawaii and Caribou-Poker Creek, Alaska), (2) temperate, semiarid grassland/
savanna/shrubland soils with more alkaline pH (Onaqui Benmore, Utah), and (3) tropical/sub-
tropical coniferous forest soils with low CEC and cation concentrations (Ordway Swisher, Flor-
ida). We hypothesized that a few ecologically meaningful environmental filters could charac-
terize the variation in soil microbial communities across broad environmental gradients. Our
results corroborate other studies indicating that site-specific edaphic factors explain the major-
ity of variation among soil microbial communities, and suggest that at broad-scales, inferences

Fig 4. Changes in 16S rRNA-based community composition in Florida soils over time. (A) Relative abundances of all taxa classified at the phylum level
and unclassified taxa over time. (B) NMDS ordination of all order-level taxa classified within the phylum Proteobacteria, which did not vary over time
(ANOSIM R = 0.03968, p = 0.148). (C) NMDS ordination of all order-level taxa classified within the phylum Actinobacteria, which did not vary over time
(ANOSIM R = 0.04861, p = 0.171). (D) NMDS ordination of all order level taxa classified within the phylum Acidobacteria, which varied significantly over time
(ANOSIM R = 0.2057, p = 0.003).

doi:10.1371/journal.pone.0135352.g004
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of microbial composition might be made from knowledge of soil biogeochemistry [16]. Exclu-
sive bacterial 16S rRNA techniques and more inclusive lipid-based profiling techniques that
include fungi, archaea, and other lipids that are non-bacterial, were both strongly driven by soil
pH, SWC, and CEC. More specifically, soil pH explained the majority of community dissimi-
larity along MDS1 (Figs 2B and 3D, X-axis) using both analyses, while SWC explained the
majority of community dissimilarity along MDS2 (Figs 2B and 3D, Y-axis) regardless of the
technique used to examine microbial community composition. CEC, or concentrations of vari-
ous measured cations (i.e., Ca2+, Na+, K+) explained some portion of the variation on both
axes, indicating that CEC is a global variable that explains community dissimilarity along mul-
tiple vectors. A recent study of soil bacterial and fungal communities across soil and land-use
types in France shows that pH, trophic resources, texture, and land use predominantly explain
community composition [16]. In previous studies that examined 16S rRNA-based soil micro-
bial community variation over nine biomes, pH was shown to be the single edaphic factor
explaining community composition at the phylum level [11], [12], and no other environmental
variables added to an explanation of community dissimilarity. In both our study and these pre-
vious studies, soil pH ranged from< 4 to> 8. However, previous studies measured soil mois-
ture deficit instead of SWC, and did not measure CEC [11], [12], so these variables were not

ANOSIM statistic R: -0.01003    
Significance: 0.786  

-80oC storage
-20oC storage

Fig 5. Comparison of the effect of soil storage temperature (-80°C vs. -20°C) on the 16S rRNA-based
communities generated from soils collected from Hawaii. There was no significant effect of storage
temperature on the communities examined at the phylum level (ANOSIM R = -0.01003, p = 0.786).

doi:10.1371/journal.pone.0135352.g005
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tested as explanatory factors driving soil microbial dissimilarity. Since soil moisture deficit is a
potential measurement (i.e., the amount of water soil can hold against gravity) and not a field-
level measurement of the actual water availability in soil at a particular time point, this could
explain the discrepancy among studies and account for the high explanatory power that SWC
exhibited in this study.

Temporal Variation Within Sites
Seasonal and diel wetting and drying cycles are important natural disturbances to microbial
communities that can have a significant impact on microbial diversity and function [48]. Low
pH at a time point when SWC is low may result in a low CEC (i.e., tropical/sub-tropical conif-
erous forest, Florida), while soil with an inherently higher pH at a time point of low soil water
content may have a high CEC (i.e., temperate grassland/savanna/shrubland, Utah). Combined
changes in pH, SWC, and CEC could be linked to direct physiological constraints on soil
microorganisms, and soils that exhibit frequent shifts in these local environmental variables
may select for more resilient taxa that are physiologically able to tolerate stress caused by fluc-
tuating conditions and disturbance [21]. As such, soils that exhibit the greatest variability in
pH, SWC, and CEC may harbor soil microbial communities that are more resilient to future
disturbances caused by climate change, while more stable soil environments may contain com-
munities that are at higher risk of disrupted structure and function. Growing evidence from a
range of studies and ecosystems suggests these overarching variables can be used to guide
hypotheses of soil microbial diversity and hotspots of activity and serve as a metric by which to
measure and predict change.

As the myriad of microbial community profiling techniques continues to grow with rapid
advancement in sequencing technology, it is becoming possible to compare analyses of gene-
independent microbial composition (i.e., DNA-based shotgun metagenome) and growth (i.e.,
lipid-based and RNA-based). DNA-based studies that examine temporal changes in soil micro-
bial communities have demonstrated that they are fairly stable over time [1], [18], and that
shifts in community composition are usually associated with a direct disturbance [12], [49]
rather than time alone. For instance, soil exposed to heavy metals [50], enrichment of organic
matter [51] or land use change [19], [52], all result in clear changes in the structure of soil
microbial communities over time, whereas undisturbed communities typically remain stable
[18], [53]. A meta-analysis of 16S rRNA gene sequencing across a range of environments
revealed soil microbial communities to be among the least variable over time [18]. The authors
suggest that longer-term seasonal and annual observations may reveal temporal changes in soil
bacterial communities. In our 1-year survey, we still do not find strong temporal 16S rRNA-
based patterns of community variability in three of the four ecosystems studied. As suggested
in [18], high small-scale spatial heterogeneity may mask these community turnover signatures.
For the purposes of future studies, these results provide a baseline of data to examine shifts in
soil microbial communities though surveys spanning decades or more, which is a more rele-
vant time scale for examining soil microbial community response to climate change.

Differences Among Sites Over Time
When communities from all sites were examined over time, our results indicate that 16S
rRNA-based community composition did not vary significantly over time, and that sample
provenance was the main factor influencing dissimilarity among soil microbial communities.
Lipid-based analysis also indicates that the majority of the variation in community composi-
tion was explained by sample provenance (56.2%), but that a small but significant percentage
of variation was also explained by sample date (3.5%). Changes in lipid biomass indicate a
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direct response of soil microbial communities to plant growth and exudates over shorter time-
frames, which provide key energy resources for soil microbial communities [54]. Plant exu-
dates trigger a change in soil microbial communities, potentially leading to enhanced SOM
mineralization, known as the priming effect [55], [56]. The variation in lipid-based community
composition described here may reflect plant community-soil interactions as it relates to
unique biomes. For example, in this study, the microbial biomass of the tropical broadleaf for-
est site (Hawaii) was over four times greater than that of the other ecosystems. This reflects the
high plant productivity, and thus high levels of both labile carbon input into soils and of stable
SOM, that is characteristic of tropical and subtropical ecosystems [57], [58]. A comparison of
neotropical forests that differ in plant species diversity along a precipitation gradient showed
microbial biomass (measured using the same PLFA technique) to be significantly correlated
with mean annual precipitation but not with plant diversity [59].

When we examined each site individually, we observed some differences in the soil charac-
teristics that explained the majority of between-site community variability (i.e., pH, SWC,
CEC). In Alaska, pH increased from June to August; in Utah, pH increased in March above pH
levels that were recorded in July and October; in Florida, pH increased in October and then
returned to the pH recorded at peak greenness in February. SWC increased in October in both
Florida and Utah above the levels recorded at peak greenness. Finally, CEC only changed in
Florida soils, increasing incrementally over time. Of the four ecosystems, Florida was the only
one that experienced shifts in soil pH, SWC, and CEC over time. Sites other than Hawaii,
where variability was comparably low, experienced shifts in only 1–2 of these descriptive vari-
ables, but not all three of them.

When sites were examined independently, we only observed a significant shift in 16S
rRNA-based community composition over time in the Florida soils, and none of the other sites
exhibited a significant temporal shift. The cause of this shift might be attributed to the observa-
tion that taxa within Proteobacteria and Actinobacteria were relatively stable in Florida soils,
but that taxa within Acidobacteria changed over time. Acidobacteria are ubiquitous members
of soil microbial communities and high abundances of Acidobacteria tend to correlate with low
soil pH [60], [61], and different subgroups of Acidobacteria dominate forested versus grassland
soils [62]. However, within subgroups of Acidobacteria, other environmental factors (such as
soil N) are related to shifts in community composition [62]. In our study, none of the measured
environmental variables explained the observed shift in Acidobacteria, but CEC explained the
greatest proportion of dissimilarity (11.6%). It is possible that greater replication at each time
point would yield further explanatory power. However, our study, coupled with evidence from
previous studies mentioned above, suggests that Acidobacteria subgroups are more useful indi-
cators of fine-scale changes than the 16S rRNA-based bacterial community as a whole. As
such, it may be useful to consider Acidobacteria as “sentinel microbial taxa” since they might
act as early indicators of the effects of climate change within the soil environment.

Lipid-based community composition did not fully reflect our observations with DNA-based
data. When we examined temporal variation within each site using lipid-based community
analyses, we observed significant temporal changes in soils collected in taiga and tropical for-
ests (Alaska and Hawaii), but not in the grassland/shrubland and conifer sites (Utah and Flor-
ida). The shift in lipid-based communities in Alaska correlated with a significant increase in
soil pH and was accompanied by a decrease in the fungal:bacterial ratio from June to August,
as well as an increase in SF lipids and nonspecific lipids. However, in Hawaii, none of the mea-
sured environmental variables changed over time, but TMB and GN bacterial lipids both
decreased in October.
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Comparison of Analytical Techniques
While broad comparisons across distinct ecosystems and biomes yields similar results with
DNA- and lipid-based approaches, the unique benefits of each technique are evident when
examining highly similar communities over time. It is likely that DNA-based approaches for
sampling bacterial diversity are more sensitive to changes in the soil abiotic microenvironment,
namely pH, SWC, and CEC, as seen in Florida soils. DNA-based methods use small amounts
of soil and examine tiny fractions of the microbial community in great detail, with high enough
resolution to examine changes within specific bacterial taxonomic groups, such as Acidobac-
teria. Thus, in a subtropical conifer forest/grassland system in Florida with low variability in
MAT but distinct rainfall patterns, only 16S rRNA community composition varied. However,
lipid-based approaches appear more sensitive to microbial community changes that correlate
with the soil biotic environment, and are more linked to the aboveground plant community.
The Alaskan taiga, even in the short time period sampled in this study, experienced seasonal
changes in temperature and soil moisture, which influenced plant phenological responses.
These factors likely influenced the rapidly responding, metabolically active microbial commu-
nity captured by our lipid-based methods, particularly soil fungi [63]. Similarly, the substantial
plant community and microbial biomass levels in the Hawaiian tropical broadleaf forest likely
influenced the active lipid-based community. For example, lipid-based community composi-
tion has been shown to respond drastically to invasive plant encroachment in this system, par-
ticularly affecting the relative abundance of saprophytic fungi [64]. Together these studies
highlight the important role of fungal diversity in lipid-based community analyses, and the
addition of fungal gene sequence data (i.e., ITS, 18S rRNA) could elucidate the fungal contribu-
tion to lipid-based data. Furthermore, the addition of RNA-sequence data might allow for a
better nucleic-acid based estimate of the active microbiota [21] and hence a clearer comparison
with the lipid-based data.

Comparison of Soil Sample Storage
Given the diverse insights to be gained from combining a myriad of analyses, investments in
soil sample archives that scale from microns across ecosystems will provide a powerful tool for
understanding the mechanisms that govern microbial ecology, and the microbial role in sus-
tainable ecosystem function. One challenge with sample archive is determining a feasible, con-
sistent procedure that ensures sample integrity and allows for decadal comparisons. We
examined the effect of storage temperature on tropical Hawaiian soils for at least six months
prior to analysis and found that storage at -80°C versus -20°C does not impact 16S rRNA-
based community structure. In a similar investigation, soil storage temperature (-20°C and
-80°C) and time (14 days) did not alter 16S rRNA pyrosequence-based community composi-
tion [65]. However, using Illumina iTAGs, significant differences in community structure due
to variation in storage time and temperature were observed [66], suggesting that the limited
sampling depth from 454 pyrosequencing technology is insufficient to capture this change.
Furthermore, the provenance of the sample may strongly influence its sensitivity to storage.
For example, microbial communities from lowland tropical forests and tundra are acclimatized
to different soil moisture and temperature regimes and it is reasonable to expect that cold stor-
age will have significantly different effects. Furthermore, RNA and protein-based studies are
even more sensitive than relatively recalcitrant DNA molecules and require even more strin-
gent preservation conditions. This highlights a number of ongoing issues that could limit com-
parisons across studies and systems that can be partially alleviated by community-driven
standardization of sample collection, preservation, and metadata information as promoted by
the Genomics Standards Consortium.
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Conclusion
Free, open access datasets are powerful tools for integrating research and teaching in under-
graduate and graduate student classrooms. They can be a useful resource for fostering interdis-
ciplinary collaborations, testing the relevance of ecological theory and models, and developing
novel hypotheses, particularly when communities of sentinel organisms such as microorgan-
isms corroborate or contrast patterns, processes, and behaviors of macro-organisms. The com-
bination of sequencing advances that characterize the taxonomic and physiological attributes
of microscopic communities and the investment in ecological observatory infrastructure that
incorporates whole-ecosystem monitoring will provide unprecedented spatial and temporal
resolution for testing ecological hypotheses in soil microbial communities, for example: How is
the structure of soil microbial communities generated and maintained? How stable is commu-
nity composition and the relative abundance of taxa over space and time? What proportion of
community variation is driven by dominant, common, or rare taxa and how do these abun-
dance distinctions correlate with microbial functional groups? How resilient are microbial
communities to punctuated disturbance or gradual environmental change? The accumulation
of these extensive datasets allows not only monitoring, but provides a powerful resource of
baseline data from which new hypotheses about the response of community and ecosystem
change to disturbance events can be developed. These resources will be especially useful to
early career investigators who may be limited in their ability to generate preliminary data. It is
therefore critical that current students across disciplines gain exposure to use and interpreta-
tion of these data streams.

Supporting Information
S1 Table. NEONmetadata, including PLFA data, for SRA study SPRP061236. These meta-
data follow the guidelines of the Genomics Standards Consortium (GSC) minimum informa-
tion about a marker gene sequence (MIMARKS) [29] and also include PLFA data for each
sample.
(XLSX)
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