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E D I T O R I A L

Novel update of interventional strategies of vascular aging in 
humans

1  | INTRODUC TION

Ischemic vascular disease is the most common cause of death among 
the elderly worldwide, accounting for nearly one-third of all deaths 
at the age of 65 years and almost two-thirds at the age of 85 years 
(World Health Organization).1 With the large proportion of aging 
population and an estimated increase of adults aged >65 years from 
12.6% to 26% in the next 30 years in China, stressing age-related 
ischemic vascular disease is of critical significance due to the huge 
economic burden and mental strain on the whole society.2 Vascular-
aging-induced functional and structural alterations of vessels play a 
key role in the pathogenesis of ischemic vascular disease. Therefore, 
it is critical to elucidate mechanisms underlying vascular aging and 
explore the novel interventions for subclinical dysfunction and man-
ifested disease so as to prevent the occurrence and development of 
ischemic vascular disease associated with old age.

2  | MECHANISMS OF VA SCUL AR AGING

Rapid advances in geriatrics have been achieved in the last 30 years 
and have led to an evolution on the pathogenesis of vascular aging. 
An increasing number of studies have demonstrated that different 
pathophysiological mechanisms, including mitochondrial dysfunc-
tion,3 oxidative stress,4 inflammation,5 loss of proteostasis,6 genomic 
instability,7 increased apoptosis and necroptosis,8,9 epigenetic al-
terations,10 dysregulated nutrient-sensing pathways,11 extracellular 
matrix remodeling,12 and exhaustion of progenitor cells,13 are at-
tributed to the occurrence of vascular aging (Figure 1). The interac-
tion of multiple mechanisms results in the alteration of function and 
structure of vessels during vascular aging.14

Among the above mechanisms, mitochondrial dysfunction plays 
a central role in the regulation of vascular aging processes.15 During 
aging, mitochondria are reduced, reactive oxygen species (ROS) pro-
duction increases, a loss of function occurs in the electron transport 
chain, and there is a reduction in the synthesis of adenosine-5′-tri-
phosphate.16 Recent studies suggested that in aged vasculature, 
the biogenesis of mitochondria was impaired17 and increased mito-
chondrial ROS contributed to loss of efficiency of electron transport 
chain through p66shc-mediated oxidative stress pathways18 and 

injured nuclear factor [erythroid-derived 2]-like 2 (Nrf2)-mediated 
antioxidant defense pathways.19 Treatment targeting the clearance 
of ROS, such as resveratrol, has been shown to attenuate oxidative 
stress and improve endothelial function in aging.20

Chronic inflammation is another hallmark of aging and age-related 
inflammatory response acts as an important role in vascular dysfunc-
tion. Previous research found that there is a proinflammatory shift in the 
gene expression of endothelial cells, including inflammatory cytokines, 
chemokines, and adhesion molecules, which results in cellular metabo-
lism disorder, increased apoptosis, vascular remolding, and finally leads 
to the pathogenesis of various ischemic vascular diseases.21-23

3  | INTERVENTIONAL STR ATEGIES OF 
VA SCUL AR AGING

Classical strategies targeting mechanisms of vascular aging to delay vas-
cular aging and prevent disease, such as exercise, diet, and other lifestyle 
interventions, have far-reaching significance. However, these alone seem 
to be insufficient to prevent the occurrence of geriatric disease and ef-
forts are needed to tackle the underlying processes of vascular aging. At 
present, the most promising novel strategies for delaying vascular aging 
include improving the function of mitochondria, reducing age-related 
inflammation, increasing autophagy, moderately reducing the activity of 
the nutrient-sensing network, especially reducing the activity of mamma-
lian target of rapamycin complex 1 (mTORC1), removing senescent cells, 
and using its own endogenous metabolites to re-energize stem cells, and 
so forth (Figure 1).24 Several potential drugs and natural products have 
been reported to modulate aging.25-27 Shedding light on the mechanisms 
of vascular aging and the development of novel agents will likely reduce 
the risk of age-related disease and extend the human health span.

3.1 | Senolytics

Senolytics is a class of drugs that selectively kill senescent cells, and 
scientists have reported the first senolytics drug combination—da-
satinib + quercetin. Recent studies demonstrated that senolytic 
treatment exerted a positive effect on senescent cell burden, DNA 
damage, vasomotor function, nitric oxide signaling, calcification, and 
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osteogenic signaling in chronologically aged mice.28 Another study 
indicated that this combination selectively cleared senescent cells in 
idiopathic pulmonary fibrosis mice and improved lung function and 
physical health indicators in mice.29 In an open-labeled phase I clini-
cal trial, nine patients with diabetic nephropathy received dasatinib 
and quercetin therapy, which reduced the load of adipose tissue se-
nescent cells.30 The effect of senolytic treatment may be mediated 
by members of the BCL-2 family, PI3K/AKT, p53/FOXO4, HSP90, 
and HIF1α.24 These results proved that senolytics are expected to be 
used to delay vascular aging and prolong the life span of the elderly.

3.2 | Metformin

Metformin is a biguanide drug widely used for type 2 diabetes.31 
A previous study suggested that metformin increases the life span 
of Caenorhabditis elegans by up to 36%, which may be the result of 
AMP kinase (AMPK) activation and metabolic change of the microbi-
ome.32,33 A study on mice found that treatment with metformin mim-
ics some of the benefits of calorie restriction, such as increased insulin 
sensitivity and reduced low-density lipoprotein and cholesterol levels 
and finally improves health span and life span.34 The mechanisms in-
clude anti-inflammatory, inhibiting mTOR, regulating insulin/insulin-
like growth factor 1, reducing the production of ROS, and modulating 
the expression of sirtuins.35,36 Retrospective, epidemiological analy-
ses elucidated that administration of metformin is associated with the 
improvement of vascular function and reductions in the incidence 
and mortality of ischemic disease.37,38 The results of metformin treat-
ment in age-related disease are also encouraging, with a wide range 
of protective roles in cardiovascular disease, cerebrovascular disease, 
cancer, chronic kidney disease, and neurodegeneration.37,39

3.3 | Rapamycin

Rapamycin is a macrolide compound and was found to exert its role 
in immune and anti-proliferation responses.40 Studies showed that 
rapamycin binds to FK-506-binding protein 12 and destabilizes and 
inhibits mTORC1, which is an important molecule regulating various 
cellular processes.41 Scientists discovered that inhibition of mTORC1 
activity showed a favorable effect on increasing the life span and 
health span in different kinds of species.42 It was proposed that ra-
pamycin extended the life span by up to 60% and even reversed the 
changes in vascular function and structure, cognition, cardiac hyper-
trophy, and immune senescence in aged mice, through both genetic 
and pharmacological modulation of mTOR signaling.43,44 The current 
clinical uses of rapamycin may be limited by its adverse effect to 
some extent, including hyperglycemia and hyperlipidaemia.45 As an 
effective anti-vascular aging agent, rapamycin has both advantages 
and disadvantages and it should be balanced for every individual.

3.4 | Nicotinamide adenine dinucleotide and sirtuins

Nicotinamide adenine dinucleotide (NAD+), as a cofactor in many key 
biological processes of cells, is an important mediator of biochemical 
reactions in the body and an essential molecule in many metabolic 
pathways. It has been found that the concentration of NAD+ in human 
tissues gradually decreases with age, and at least decreases by 50%, 
accompanied by a series of pathological processes, such as chronic 
inflammation, oxidative stress, DNA damage, and mitochondrial dys-
function.46 Supplementation of NAD+ and its precursors is beneficial 
to reduce the occurrence of oxidative stress, increase the regenera-
tive capacity of vascular endothelial cells, and prolong cell life.24 At 

F I G U R E  1   Schematic illustrations of mechanisms and interventional strategies of vascular aging in humans. NAD+, nicotinamide adenine 
dinucleotide; NRTIs, nucleoside reverse transcriptase inhibitors; RIPC, remote ischemic preconditioning. [Colour figure can be viewed at 
wileyonlinelibrary.com]
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the same time, sirtuins are a class of NAD+-dependent deacetylases. 
Studies have discovered that members of the sirtuin family can re-
duce mitochondrial oxidative stress, promote angiogenesis, and play 
an important role in vascular disease, such as hypertension.47,48

3.5 | Berberine

Berberine is an isoquinoline alkaloid extracted from various plants, 
which plays an important role in lowering blood pressure,49 regulat-
ing blood lipids,50 and controlling blood glucose.51 It was found that 
berberine could activate the AMPK-signaling pathway, and inhibit the 
activity of mTOR to delay cell senescence caused by DNA replication 
disorder, and also increase antioxidant activity by activating the NRF2-
signaling pathway to achieve the effect of longevity extension.52

3.6 | Nucleoside reverse transcriptase inhibitors

Nucleoside reverse transcriptase inhibitors (NRTIs) are used in 
clinical HIV treatment, but can also inhibit open-reading frame-re-
lated reverse transcriptase activity of long dispersive elements.24 
Recent studies have found that NRTIs, including lamivudine and 
stavudine, can lower the level of DNA damage and prolong the life 
span of Sirtuin6−/− mice, and reduce senescence-related secretory 
phenotypes and inflammatory responses in older mice.53,54 These 
findings make NRTIs a new candidate for delaying aging.

3.7 | Remote ischemic preconditioning

Remote ischemic preconditioning (RIPC) is a safe, noninvasive, sim-
ple, and low-cost non-drug device intervention and has been widely 
used since it was first proposed by Karin Przyklenk in 1999.55 RIPC 
is an intrinsic protective phenomenon to protect the vital organs 
with non-fatal regional ischemia followed by reperfusion, through 
the involvement of SDF-1α, HIF-1α, oxidative stress, and apoptotic 
pathways.56 Short-term RIPC treatment led to increased levels of 
brain-derived neurotrophic factor and vascular endothelial growth 
factor in arterial plasma.57 A recent study has demonstrated that 
1-month RIPC treatment can significantly reduce the blood pressure 
of patients with mild essential hypertension and improve microvas-
cular endothelial function.58 RIPC may be a novel alternative or com-
plementary intervention means to protect against vascular aging and 
endothelial dysfunction.

4  | PERSPEC TIVES

All disease stems from vessels. Vascular aging is a common basis of 
various vascular diseases, and the normal structure and function of 
blood vessels are crucial for maintaining the health of the elderly. 
This review describes the mechanisms of vascular aging, depicts 

the novel interventional strategies of vascular aging, and empha-
sizes the important significance of vascular aging in ischemic dis-
ease. Although significant progress has been achieved in exploring 
age-induced changes in vascular function and age-related disease, 
further research is necessary to deeply study the molecular mecha-
nism of vascular aging, clarify the early characteristics of vascular 
aging and construct a new evaluation system of vascular aging. 
Furthermore, preclinical studies on vascular aging and clinical trials 
of innovative strategies should be of high priority, which may con-
tribute to early detection, early prevention, and early treatment of 
vascular-injury-related disease, effectively improving the quality of 
life and prolonging the healthy life span of the elderly.
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