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Evidence for link between modelled trends in
Antarctic sea ice and underestimated westerly
wind changes
Ariaan Purich1,2,3, Wenju Cai1, Matthew H. England2,3 & Tim Cowan1,4

Despite global warming, total Antarctic sea ice coverage increased over 1979–2013. However,

the majority of Coupled Model Intercomparison Project phase 5 models simulate a decline.

Mechanisms causing this discrepancy have so far remained elusive. Here we show that

weaker trends in the intensification of the Southern Hemisphere westerly wind jet simulated

by the models may contribute to this disparity. During austral summer, a strengthened jet

leads to increased upwelling of cooler subsurface water and strengthened equatorward

transport, conducive to increased sea ice. As the majority of models underestimate summer

jet trends, this cooling process is underestimated compared with observations and is

insufficient to offset warming in the models. Through the sea ice-albedo feedback, models

produce a high-latitude surface ocean warming and sea ice decline, contrasting the observed

net cooling and sea ice increase. A realistic simulation of observed wind changes may be

crucial for reproducing the recent observed sea ice increase.
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D
espite regional melting, total Antarctic sea ice has been
expanding over the past 35 years1–3. Such changes have
an impact on surface albedo and deep water formation,

and thus are important to global climate. Spatial analysis of sea
ice concentration (SIC) trends reveals opposing regional changes
since satellite observations began in 1979; decreasing sea ice in the
Amundsen and Bellingshausen Seas is outweighed by increasing
sea ice in the Ross Sea and around eastern Antarctica, leading to
an overall increase4–6 (Fig. 1a). Although the circumpolar ice
increase is statistically significant, it may still be within the range
of natural variability6–11. However, as the most recent years of the
sea ice record are included, the strength and statistical
significance of the trend has increased12.

The sea ice increase has been attributed to regional-scale wind
trends causing both dynamic and thermodynamic changes5,10,13–16.
On the other hand, models have linked hemispheric-scale wind
changes associated with the positive trend in the Southern Annular
Mode17 (SAM), attributed to increasing greenhouse gases and
stratospheric ozone depletion18–20, to Southern Ocean warming
and a sea ice decline21–23. This contrasts interannual variations, in

which a positive SAM intensifies the westerly jet and shifts
it polewards, resulting in cool sea surface temperature (SST)
and increased sea ice extent (SIE) at most longitudes due to
enhanced Ekman drift24–26. An exception is along the Antarctic
Peninsula, where a positive SAM is associated with reduced sea ice,
due to circulation changes associated with the Amundsen Sea
low4,27.

Most Coupled Model Intercomparison Project phase 5
(CMIP5) models fail to simulate the observed SIE increase in
their historical experiments7–9,11,28,29. The vast majority of
models produce a decrease in SIE and simulate considerable
bias in mean-state SIE and its seasonal cycle28. The observed
increase is suggested to lie within the range of modelled natural
variability7,8,29, although modelled Antarctic sea ice variability
tends to be overestimated9,28; in addition, when the spatial
pattern of sea ice trends are considered, the observed changes are
distinguishable from the modelled pattern during austral summer
and autumn30. To date, few studies have proposed physical
mechanisms that may be responsible for the difference between
observed and simulated Antarctic sea ice trends29,31,32.
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Figure 1 | Annual SIC and SST trends over 1979–2013. (a) Observed SIC from the National Snow and Ice Data Center (NSIDC) Bootstrap algorithm,

(b) CMIP5 multi-model mean SIC, (c) observed SST from Hadley Centre Sea Ice and Sea Surface Temperature (HadISST) and (d) CMIP5 multi-model mean

SST. Trends are expressed as a change per degree of global warming (�C� 1 GW). Multi-model means are calculated using the first available ensemble

member for each model. Stippling indicates significance: (a,c) above the 95% level as determined by a two-sided Student’s t-test and (b,d) where 80% of

models agree on the sign of the mean trend33, which corresponds to 33 out of 41 models. The mean-state 15% SIC contour is shown in black. In (a) AS,

Amundsen Sea; BS, Bellingshausen Sea; RS, Ross Sea; WS,Weddell Sea.
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This study compares physical mechanisms affecting Antarctic
sea ice in the CMIP5 models and observations, with the aim of
explaining the difference between the observed increase and the
modelled decline. We analyse monthly mean observations and
output from 41 CMIP5 models with 87 realizations, over
1979–2013, the period for which regular satellite observations
are available. Observed and modelled trends are assessed, and
inter-model relationships used to gain insight into why models
overall generate too great a sea ice loss and what the important
processes behind this are. As the CMIP5 models underestimate
recent changes in the SAM and the westerly wind jet intensifica-
tion7,33–35, we investigate the influence of jet trends on Antarctic
sea ice and Southern Ocean SST. We find that underestimated
changes in wind-induced ocean circulation in the models may
contribute, in part, to their large Antarctic sea ice decline.

Results
Sea ice and SST trends. In contrast to the observed (Fig. 1a),
multi-model mean SIC trends (Fig. 1b) show a decrease in all sea
ice regions. The majority of models show an overall decrease in
sea ice, despite inter-model variations in simulated spatial
patterns, with many models showing small regions of increasing
SIC (Supplementary Fig. 1). The multi-model mean regional
decrease lacks broad coherence, except in the Bellingshausen and
northern Weddell Seas, and in isolated pockets of eastern Ant-
arctica and the Ross Sea. Coincident with the observed increase in

Antarctic sea ice, high-latitude SST has also decreased over 1979–
2013 (Fig. 1c)10,31,36, with cooling strongest in the Ross Sea. In
contrast, the CMIP5 models show Southern Ocean surface
warming over most regions (Fig. 1d), although there is no inter-
model consensus in terms of warming at high latitudes.

Comparing SIC and SST trend patterns in individual models
(Supplementary Figs 1 and 2) reveals that models with stronger
SST warming show a larger SIC decrease, as expected7. A strong
inter-model relationship exists between trends in area-averaged
high-latitude (south of 55�S) SST and in circumpolar SIE: models
that simulate greater warming produce a greater reduction in ice
(Fig. 2). This relationship is highly statistically significant
(Po0.001) and is evident in all seasons (shown for summer
(December–February (DJF)) and winter (June–August (JJA);
Fig. 2a,b, respectively; all seasons in Supplementary Table 1). The
observed trends fit the tail-end of the spread in model trends.
When trends are scaled by global mean temperature trends to
take into account differences in climate sensitivity between
observations and models and between models (Fig. 2), the
observed SIE trend lies outside the 95% confidence interval of
model trends. This is despite that in absolute terms the observed
Antarctic sea ice trend is not statistically distinguishable from the
modelled trends at the 95% confidence level. As such, natural
internal variability remains a possible contributing factor for the
observed trend. However, it is still of interest to investigate
mechanisms that lead to the range in observed and modelled SIE
trends. The SIE–SST relationship (Fig. 2) suggests that ocean
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Figure 2 | Trends in SIE versus trends in high-latitude SST over 1979–2013. (a) DJF and (b) JJA. Trends are expressed as a change per degree of global

warming. All available model ensemble members are shown (87 realizations). Observed SST from HadISST and SIE from NSIDC. Each model is shown by a

marker with the number of runs per model indicated in the legend, the multi-model mean is shown by a black dot and observations are shown by a black

asterisk. The inter-model correlation coefficient and P-value are shown above each panel. For Po0.05, the inter-model regression is shown by a black line.
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changes may influence sea ice trends. As such, to explain why the
majority of CMIP5 models simulate a decrease in Antarctic sea
ice in contrast to the observed increase, we must understand why
modelled high-latitude SST warms too fast.

Sea ice and SST relationships with the westerly jet. Given the
links between the westerly wind jet, sea ice and SST21–26, we next
investigate the influence of jet intensification trends. There is a
significant inter-model relationship between jet strength trends
and SIE trends during summer and autumn (Po0.01;
Supplementary Table 1). During these seasons, there is also a
strong and significant relationship between high-latitude SST and
jet strength (Po0.001; Fig. 3a and Supplementary Table 1). In
contrast, during winter there is no inter-model relationship
between jet strength trends and SIE trends, although the
relationship between jet strength trends and SST trends persists
(Po0.001; Fig. 3b). This relationship shows that models with a
more intensified jet cool, or warm less, whereas models with a
weaker intensification, or weakened jet, warm more. In summer,
significant relationships are also found between trends in jet
position and high-latitude SST, with a stronger poleward shift in
the jet associated with high-latitude SST cooling or weaker
warming (Supplementary Table 1).

Processes embedded in the inter-model trend relationships
appear to also operate in the inter-model relationship in the mean
state: models with stronger mean-state zonal winds south of 55�S
tend to have a larger ice area, in particular during autumn7. On
interannual timescales, an intensified summer and autumn jet is
associated with above-average SIE in the observations (Po0.05;
Supplementary Table 2 and Supplementary Fig. 3). However, the
majority of CMIP5 models do not capture this interannual
relationship (median P40.2), indicating a failure to simulate
wind–ice interactions adequately. This may explain the somewhat
weak inter-model relationship between trends in jet strength and
SIE (Supplementary Table 1).

Within individual CMIP5 models, interannual jet strength is
more strongly correlated with high-latitude SST (Supplementary
Table 2 and Supplementary Fig. 3). An intensified jet is associated
with cooler high-latitude SST24,25. The observed relationship is
significant in summer (Po0.05), whereas for the majority of
CMIP5 models it is statistically significant in both spring and
summer (median Po0.05 and Po0.01, respectively). Thus,
relative to observations, variations in the modelled jet have a

weaker influence on variations in sea ice, yet more influence on
SST. As such, we focus on jet–SST dynamics, noting the strong
relationship between SST and SIE (Fig. 2) that links wind changes
back to sea ice.

Mechanism for wind-induced effects on SST. We hypothesize
that the jet–SST trend relationship in the CMIP5 models is
conducted through a high-latitude Ekman response to changing
winds. There, the wind stress forces equatorward Ekman
transport and the wind stress curl forces upward Ekman
pumping36,37 (see Methods). As such, an intensified jet results in
strengthened equatorward Ekman transport and usually increased
Ekman upwelling at high latitudes.

Ekman upwelling has a strong cooling effect on SST during
summer when warm water resides at the surface forming a cap
over cool Winter Water at depths B20–150 m (Fig. 4a). The
warm surface water results from short-wave radiation being
received by the summer ice-free surface waters as sea ice melts.
Beneath this, the permanent pycnocline with cold, fresh water
overlying warm, salty water is apparent. By contrast, during
winter surface waters are colder than water below (Fig. 4b),
consistent with the typical temperature profile described for the
high-latitude Southern Ocean37, caused by seasonal sea ice
melt/freeze and advection processes that freshen the surface layer.
Because of the seasonal stratification, during summer enhanced
Ekman upwelling brings cooler waters to the surface and this
surface cooling spreads further north due to enhanced
equatorward transport.

Consistently, summer Ekman pumping trends are significantly
correlated with SST trends at high latitudes (Po0.001; Fig. 4c):
models with a strong increase in Ekman upwelling show SST
cooling or weak warming, whereas models with weak trends in
Ekman pumping show strong SST warming. Ekman transport
trends are also significantly correlated with high-latitude SST
trends in summer (Po0.001; Supplementary Fig. 4): models with
a strong increase in equatorward Ekman transport show cooling
or weak warming. Scale analysis38 has suggested that horizontal
Ekman transport should initially dominate over vertical
Ekman upwelling, although here we find that south of B60�S,
both Ekman transport and Ekman pumping are important
(see Methods and Supplementary Fig. 5).

The CMIP5 models underestimate the summer intensification
(Fig. 3a) and poleward shift in the jet7,34, and therefore also
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Figure 3 | Trends in jet strength versus trends in high-latitude SST over 1979–2013. (a) DJF and (b) JJA. Trends are expressed as a change per degree of

global warming. All available model ensemble members are shown. Observed jet strength from European Centre for Medium-Range Weather Forecasts

Interim Reanalysis (ERA-Interim). Figure details as per Fig. 2.
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underestimate the increased upward Ekman pumping (Fig. 4c)
and equatorward Ekman transport (Supplementary Fig. 4c)
compared with observed trends. Many models underestimate
the vertical temperature advection despite overestimating the
surface stratification during summer (Fig. 4a). This contributes to
their high-latitude SST warming trends in contrast to observed
cooling.

There is considerable uncertainty in the observed jet trend,
owing to sparse observations over the high-latitude Southern
Hemisphere19,35. Although only ERA-Interim jet trends are
presented here, stronger jet intensification is also seen in three
other reanalyses (see Methods39). Increased wind speed is also
evident in station-based wind observations40,41. However,
satellite-based wind observations available over the shorter
1988–2011 period may cast some doubt over reanalysis
trends39, although the satellite products themselves contain
uncertainty42. Overall, the analyses presented here depend
on an accurate wind trend estimate over the Southern Ocean,
however the mechanisms described remain robust. Further,
although the observed (ERA-Interim) jet intensification is
stronger than the multi-model mean, it does lie within
the model spread (Fig. 3a). Nevertheless, as discussed above,
the strong inter-model relationship shown here suggests that the
strength of jet intensification is an important process influencing
high-latitude SST in observations and coupled models, and the

majority of models produce a weaker than observed
intensification.

No significant relationship between trends in Ekman pumping
and SST exists during winter (Fig. 4d and Supplementary
Table 1). This is to be expected, given the seasonal variation in
vertical temperature stratification: during winter, increased
upwelling would cause warming, offsetting cooling from
increased equatorward transport (Supplementary Table 1).

Timescales of Ekman response. On interannual timescales, a
positive SAM is associated with cool high-latitude SST24–26,
whereas over longer periods a positive trend in the SAM has been
linked to high-latitude SST warming21–23. The apparent
contradiction between the SAM–SST relationship over inter-
annual versus multidecadal timescales has been explained by a
two-timescale SST response to high-latitude wind changes36,38.
Initially, a positive SAM trend is associated with short-term
cooling, by increasing the northward Ekman transport of cold
surface waters in the prevailing westerly wind regions25,36,38,
consistent with the inter-model trend relationship here
(Supplementary Fig. 4). Over time, however, the cooling is
replaced with a warming, accounted for by prolonged enhanced
upwelling in a region where a temperature inversion occurs21–23.
Our results are consistent with these previous studies in that most
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CMIP5 models simulate a positive SAM trend (that is, jet
intensification; Fig. 3a), increased upwelling and high-latitude
SST warming (upper right quadrant of Fig. 4c). Our results
suggest, however, that over the 35-year period assessed, Ekman
upwelling is not responsible for the surface warming during
summer, because due to the seasonal stratification profile models
that simulate a stronger upwelling trend show a weaker rate of
surface warming. Instead, the inter-model relationship suggests
that cooling due to Ekman upwelling offsets other warming
factors. Importantly, most models underestimate the increase in
Ekman upwelling, resulting in a weaker cooling
effect that is insufficient to offset warming from other
processes, most notably surface heat fluxes.

The seasonal variation in the subsurface temperature profile is
not discussed in previous studies and is key to interpreting
our results: in contrast to previous studies that link initial cooling
to equatorward Ekman transport only36,38, our results suggest
that Ekman pumping during summer is also important. It is
plausible that the cooling associated with summer upwelling may
eventually be replaced by warming, as water from below the
mixed layer is entrained36,38; however, over the timescale assessed
here (1979–2013), this does not appear to be the case. In previous
model experiments, the time required for this temperature-trend
transition varies from an order of years to a couple of decades38.
If the timescale to a complete transition from initial cooling to
later warming was at the longer end of this estimate, then the
surface cooling seen in the observations and in some models
could be consistent with this mechanism. The seasonal variation
in the temperature profile may also contribute to a longer
transitional timescale.

Ekman contribution to observed modelled disparity.
The mechanism identified above is present during summer.
We estimate that 425% of the difference in the CMIP5 SIE
trends can be attributed to their underestimated jet intensification
(see Methods). As such, the underestimation of westerly wind
trends in CMIP5 models probably contributes to the sea ice
decrease simulated by the majority of models.

Owing to the thermal inertia of the ocean, SST anomalies in
summer are likely to persist and exert an influence beyond
this season. Observed spring ice tendencies have been found to
persist until the following winter43,44, and here we find that in
both observations and models summer ice tendencies persist
significantly during autumn and winter. This confirms that the
summer Ekman–SST mechanism can influence trends
throughout much of the year23,38.

Positive feedbacks associated with the wind-induced circulation
changes could also contribute to the difference between observed
and modelled trends. In observations, the magnitude of Ekman
pumping and transport increases such that the associated cooling
more than offsets the high-latitude heat flux increase. Cooler SST
leads to increased sea ice, in particular in the Ross Sea sector.
Through the sea ice-albedo feedback, solar radiation decreases,
conducive to further cooling and increased sea ice43. The
consequence is decreased zonal-mean downward heat flux in the
sea-ice zone (Supplementary Fig. 6c). In the majority of the
models, although the magnitude of Ekman pumping and transport
also increases, it is to a smaller extent such that the associated
cooling is not sufficient to offset the heat flux increase. The above
sea ice-albedo feedback process operates in reverse, leading to an
increased heat flux into the ocean in the sea-ice zone
(Supplementary Fig. 6d). Based on the occurrence of opposite
reinforcing feedback mechanisms occurring in observations and
the majority of CMIP5 models, the difference between observed
and modelled jet strength trends can lead to very different sea ice
changes.

Considering other mechanisms. Further support for the
importance of Ekman upwelling and transport comes from
considering other potential mechanisms. Here we explore other
possible processes and find that none of these contradict or offer
an alternative explanation for the results described above.

It could be hypothesized that models with stronger jet trends
show reduced high-latitude SST warming as a result of changed
cloud cover or evaporative cooling, and that the correlations
presented above between Ekman pumping and SST (Fig. 4c) are
coincidental. No inter-model relationship is found between
trends in SST and trends in overlying cloud cover during
summer (P40.15; Supplementary Table 3), possibly due
to differing cloud–jet relationships present in the models45.
A significant inter-model relationship is found between
high-latitude SST trends and evaporation trends (Po0.001;
Supplementary Table 3), in which models with increasing SST
show an increase in evaporation and vice-versa. This suggests that
SST anomalies are driving evaporation variations, as warmer
waters evaporate more readily, whereas evaporative cooling
would have the opposite effect on SST. Thus, evaporative fluxes
are not the cause of the excessive warming in most CMIP5
models, instead they are a response to this warming. These results
support our hypothesis above; namely, that the relationship
between the westerly wind jet and SST trends occurs due to
changes in ocean circulation.

Outside of the summer sea-ice zone, spatial trends in total
downward heat flux oppose those in SST (Supplementary Fig. 6),
that is, regions of SST cooling are associated with increased heat
flux into the ocean, suggesting that changes in SST are driving
changes in heat flux and not the other way around.
During summer, the inter-model relationship between trends in
SST and surface heat fluxes over these predominantly ice-free
areas (55–65�S) is insignificant, although the sense of the
relationship suggests that models with SST cooling show
increased heat flux into the ocean (Supplementary Fig. 7), again
suggesting that changes in SST are driving changes in heat flux.
Thus, net heat flux trends are of the wrong sign to account for
model SST trends. It is also noted that area-averaged trends in
observed heat fluxes, although uncertain, are comparable to those
in CMIP5 models over this region.

Southern Ocean freshening due to accelerated Antarctic ice
shelf and/or ice sheet melting, not simulated by CMIP5 models,
was proposed as a possible mechanism contributing to the
Antarctic sea ice increase31. However, further model experiments
found the influence of ice sheet melt on sea-ice trends to be
minimal29. As such, this deficiency alone in CMIP5 models
cannot account for the disparity between observed and simulated
Antarctic sea ice trends. Nevertheless, reduced Southern Ocean
convection in CMIP5 models has been linked with surface
freshening46, suggesting that overall changes in freshwater fluxes
may be important for surface temperature trends47.

Inter-model trends in SIE are strongly related with trends in
sea surface salinity (Po0.001; Supplementary Table 3 and
Supplementary Fig. 8a): models with increasing salinity show a
strong decrease in sea ice, whereas models with surface freshening
show an increase, or weaker decrease, in sea ice. The sense of this
relationship suggests that ocean surface salinity is influencing sea
ice, not the other way around, as sea-ice-driven surface salinity
changes would see freshening correspond to higher rates of sea-
ice melt. Instead, greater sea-ice coverage is linked to fresher
surface conditions and increased surface stratification, which
suppresses convective overturning and vice versa for reduced sea-
ice coverage.

Sea-surface salinity trends cannot be explained by trends in
high-latitude precipitation minus evaporation (P�E), as
surprisingly increasing P� E is associated with increasing

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10409

6 NATURE COMMUNICATIONS | 7:10409 | DOI: 10.1038/ncomms10409 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


salinity (P¼ 0.05 during summer; Supplementary Table 3 and
Supplementary Fig. 8b), opposite to what would be expected,
because both P�E and surface salinity trends co-vary with the
jet. Again, changes in wind-induced ocean circulation provide the
probable explanation. Namely, surface salinity trends are weakly
related with Ekman pumping trends (Po0.1 during summer;
Supplementary Table 3 and Supplementary Fig. 8c): models
with a stronger increase in Ekman upwelling show an increase
in surface salinity, whereas models with a weaker increase
(or decrease) in Ekman upwelling show a decrease in surface
salinity, due to the upwelling (or lack thereof) of saltier water
from depth (Supplementary Fig. 8d). The temperature response
associated with the Ekman upwelling of salty subsurface water
(warming due to decreased stability and increased convective
overturning) dampens the direct Ekman–SST response
(upwelling of cool Winter Water) and this may be the reason
why no significant Ekman–SIE relationship is found directly in
the models over the 35-year period assessed.

Discussion
Both the observed and CMIP5 SIE trends are linked to the
westerly wind jet intensification through the influence of SST.
The models underestimate the observed jet intensification during
summer, although we caution that the observed jet trend is
uncertain. This causes a weaker strengthening of high-latitude
Ekman pumping and transport than observed. Although
increased Ekman upwelling of cool Winter Water and the
associated equatorward Ekman transport contribute to the
observed SST cooling, because their trends are underestimated
in the models, these terms are insufficient to offset warming from
increased surface heat fluxes. This leads to faster surface warming
and a decreasing sea-ice trend in most of the models
(summarized in Fig. 5). Once these trends are initiated, the sea
ice-albedo positive feedback ensures the trend is sustained. These
findings demonstrate the importance of accurately simulating
changes in the wind7,48. By contrast, in the observations, the
cooling effect from the wind changes appears to be sufficient to
offset the warming tendency resulting in an initial cooling. The
same sea ice-albedo positive feedback operates in reverse, leading
to further cooling and an increasing sea ice trend. Although

analyses are largely conducted over circumpolar regions, when
repeated for the Ross Sea sector, where observed SIE has
increased most substantially, results remain robust.

Our finding that underestimated wind trends contribute to the
discrepancy between the observed and model sea-ice changes
occurs despite the fact these models do not resolve eddies, although
almost all include a suitable eddy-induced advection scheme to
approximate their effects. In the real world eddy compensation
would partially counteract wind-induced changes38,49, although
Ekman changes still dominate in the surface layer50,51. In the
presence of an eddy compensation effect, the underestimation of the
impact in the models could be even larger. This influence and
others such as the role of deep ocean overturning or convection will
provide fertile ground for further research into the recent Southern
Ocean circulation and sea ice changes.

Methods
Data. CMIP5 data from the historical and Representative Concentration Pathway
8.5 (RCP8.5; high-emission scenario) experiments are concatenated to match the
observational period. The choice of RCP scenario over 2006–2013 has minimal
influence on results, as all forcing scenarios are very similar over this time frame.
We analyse all CMIP5 models that have SIC data available for both the historical
and RCP8.5 experiments. This includes 41 CMIP5 models, with a total of 87
realizations (between one and ten runs are available per model), listed in the legend
of Fig. 2. We also make use of SST, potential temperature, sea surface salinity,
subsurface salinity (historical experiment only), surface air temperature, zonal
wind, surface wind stresses, evaporation, precipitation, total cloud cover, mean sea
level pressure and surface heat fluxes from the CMIP5 archive. At the time of
analysis, potential temperature was not available for Flexible Global Ocean-
Atmosphere-Land System model spectral version 2 and First Institute of Ocea-
nography Earth System Model, and salinity was not available for Hadley Centre
Global Environment Model version 2 Atmosphere-Ocean. Various surface heat
flux terms were not available for Centro Euro-Mediterraneo sui Cambiamenti
Climatici Climate Model with a resolved Stratosphere, First Institute of Oceano-
graphy Earth System Model, Goddard Institute for Space Studies ModelE/Russell
(r1i1p2 only), Hadley Centre Global Environment Model version 2 Atmosphere-
Ocean, Max Planck Institute Earth System Model Low Resolution (r2i1p1 and
r3i1p1 only) and Meteorological Research Institute Earth System Model version 1.

For comparison with observations, we use passive microwave SIC processed
using the NSIDC Bootstrap algorithm2. The possibility for spurious trends in this
SIC data set has been identified52; thus, the results are compared with those
obtained with SIC processed using the National Aeronautics and Space
Administration Team algorithm and are found to be very similar. For area-
averaged SIE, we make use of the pre-calculated NSIDC SIE index53, as this index is
commonly used in other studies11,12. Results calculated using the NSIDC Bootstrap

80°S 70°S 60°S 50°S 40°S

0 m

100 m

Warming atmosphere
(heat fluxes)

Strengthening and poleward shifting jet

Enhanced Ekman response

Mean-state cool layer below surface during summer

1979–2013
Change tendency
Observed change
MMM CMIP5 change

SST cooling, SIE increase
SST warming, SIE decrease 

Figure 5 | Schematic of decadal scale wind induced surface layer changes during summer. Over recent decades, the observed westerly wind jet has

strengthened and shifted poleward during austral summer (circles with dots). This has increased the upward Ekman pumping and equatorward Ekman

transport (large arrows). During summer, increased upwelling at high latitudes brings cooler Winter Water to the surface. Combined with equatorward

transport, this leads to SST cooling in observations. Multi-model mean (MMM) CMIP5 changes (red) are weaker than observed changes (blue). Under

global warming, these weaker Ekman changes are insufficient to offset warming from other factors (curvy arrow). As such, multi-model mean CMIP5 high-

latitude SST has warmed rather than cooled and Antarctic sea ice has declined rather than expanded (small arrows).
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SIC are very similar. We use SST data from the HadISST data set54. For ocean
temperature and salinity, we take an average of the SODA v2.2.4 (ref. 55) and
Ishii56 reanalyses. For atmospheric variables, we use the ERA-Interim reanalysis57,
regarded as the most reliable reanalysis over the Amundsen and Bellingshausen
Seas34, and over Antarctica58,59. Uncertainty exists in ERA-Interim wind trends39;
however, considering the trends evident in the National Centers for Environmental
Prediction (NCEP)/National Center for Atmospheric Research reanalysis,
NCEP/Department of Energy reanalysis and Twentieth Century reanalysis v2,
ERA-Interim winds may modestly underestimate the jet intensification, as this
product yields the weakest trend among these four reanalysis products39. Weaker
jet intensification is seen in National Aeronautics and Space Administration
Modern Era-Retrospective analysis for Research and Applications and NCEP
Climate Forecast System Reanalysis, although these products have previously been
excluded when examining Southern Ocean wind strength trends, due to possible
issues with reanalysis data assimilation35. The overall balance of evidence suggests
that ERA-Interim winds provide one of the best estimates of wind trends over the
Southern Ocean for the full study period of 1979–2013.

All data are bilinearly interpolated to a standard 2�� 2� grid. This resolution is
chosen to avoid overextrapolating low-resolution data from some models to higher
resolutions. Potential temperature is converted from s to z-levels where required
and vertically interpolated to 40-depth levels (matching the SODA reanalysis).
Data are stratified into seasonal and annual mean fields. The year of an austral
summer corresponds to the year of the January–February.

Metrics. A number of metrics are calculated for observations and each model.
Time series of metrics are used to investigate and compare linear trends and
interannual variability between models and observations. For inter-model
relationships, each ensemble member is included in the analysis and weighted
evenly. Linear trends are calculated using the least squares regression method and
are scaled by linear trends in global-mean temperature to take into account the
different climate sensitivity of the models. Statistical significance is determined
using the two-sided Student’s t-test. When assessing the significance of interannual
correlation coefficients, the lag-1 autocorrelation is accounted for by estimating the
effective sample size, Neff, as:

Neff ¼ N
1� r1r2

1þ r1r2

� �
ð1Þ

where N is the sample size, and r1 and r2 are the lag-1 autocorrelations of the time
series of interest60.

SIE in the models is defined as the circumpolar area where SIC exceeds 15% (ref.
28). We focus on SIE as an area-averaged metric, as it is commonly assessed7–9,28,29,
although we also present SIC trends to display regional trend characteristics (Fig. 1).
High-latitude metrics (for example, SST, sea surface salinity and P� E) are defined
as the area-averaged field south of 55�S (except where noted otherwise). The choice
of latitude is assessed and results are found to be robust over a range of high
latitudes. Only ocean grid points are considered in area averages. In HadISST, SST in
grid cells partially covered by sea ice is determined based on a statistical relationship
between SST and SIC54. In the CMIP5 models, SST is defined as the temperature of
the uppermost model layer. Jet strength is defined as the maximum 925-hPa westerly
wind between 35–70�S, where a cubic spline approximation is applied to the zonal–
mean zonal wind34.

Meridional Ekman transport, VE, is calculated from the surface zonal wind
stress ðVE ¼ � tx=rf Þ and Ekman pumping, wE, from the curl of surface wind
stresses ðwE ¼ r�ðs=f Þ=rÞ, where s is the wind stress, r is the density of seawater
and f is the Coriolis parameter. Trends calculated from area-averaged Ekman
transport and pumping time series are sensitive to the choice of latitude band,
owing to variations in the wind fields among models and observations. To allow for
spatial variations among models, we calculate the first empirical orthogonal
function (EOF) of both Ekman transport and pumping over 55–70�S and use the
standardized PCs to represent the Ekman transport and pumping time series,
respectively. During summer, the first EOFs for both Ekman transport and
pumping are well separated61 from subsequent patterns in all models and
observations. The first EOFs are related to the SAM, the leading mode of
atmospheric variability in the extratropical Southern Hemisphere62, and have a
more coherent influence on SST (Supplementary Fig. 9). To account for the effect
that equatorward Ekman transport has on SST, we estimate horizontal temperature
advection by multiplying the Ekman transport PC by the mean-state horizontal
temperature difference between 55–60�S, and 65–70�S, calculated for the zonal–
mean surface layer (0–25 m). Likewise, to account for the effect that Ekman
pumping has on SST, we estimate the vertical temperature advection by
multiplying the Ekman pumping PC by the mean-state vertical temperature
difference between the surface layer (0–25 m) and the layer just below the summer
thermocline (70–80 m), calculated for the zonal–mean over 55–70�S.

Scale analysis. Horizontal temperature advection due to Ekman transport is
compared with vertical temperature advection due to Ekman upwelling
(Supplementary Fig. 5). We use area-averaged terms for calculations so that various
latitude bands can be assessed; as we are interested in mean-state orders of mag-
nitude rather than linear trends, comparing area averages rather than PCs is
reasonable.

Horizontal and vertical advection terms are compared as follows:

a ¼ VETy=h

wETz
ð2Þ

where Ty is the horizontal temperature gradient over the latitude bands assessed,
h is the depth of the surface layer (25 m) and Tz is the vertical temperature gradient
at the base of the summer mixed layer. The inclusion of h in the numerator is
necessary to directly compare terms as Ekman transport is a depth-integrated flow
in the upper h metres, whereas Ekman pumping is a velocity.

Over all latitude bands assessed VE44wE; however, Ty=hooTz . As a result,
we find the numerator and denominator in equation (2) to be of similar orders of
magnitude. Further equatorward, where tx is relatively large and r� s small,
northward Ekman transport is larger and aB5–10, but between 60–75�S, where
the zonal wind transitions from westerly to easterly, aB0.5–2. As such, we
conclude that over these latitude bands, both Ekman transport and Ekman
pumping terms are important in driving variations in SST, and hence sea ice.

Estimating the Ekman contribution to modelled disparity. We use the
difference between the observed (ERA-Interim) and multi-model mean jet strength
trends and the sensitivity of SST trends to jet trends (that is, the inverse of Fig. 3a),
to estimate the Ekman contribution to SST trends. From this, we use the sensitivity
of SIE to SST (Fig. 2a), to further estimate the Ekman contribution to SIE trends.
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