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Abstract 

With ageing populations around the world, there is a rapid rise in the number of people with Alzheimer’s disease (AD) 
and Parkinson’s disease (PD), the two most common types of neurodegenerative disorders. There is an urgent need 
to find new ways of aiding early diagnosis of these conditions. Multimodal learning of clinically accessible data is a 
relatively new approach that holds great potential to support early precise diagnosis. This scoping review follows the 
PRSIMA guidelines and we analysed 46 papers, comprising 11,750 participants, 3569 with AD, 978 with PD, and 2482 
healthy controls; the recency of this topic was highlighted by nearly all papers being published in the last 5 years. It 
highlights the effectiveness of combining different types of data, such as brain scans, cognitive scores, speech and 
language, gait, hand and eye movements, and genetic assessments for the early detection of AD and PD. The review 
also outlines the AI methods and the model used in each study, which includes feature extraction, feature selection, 
feature fusion, and using multi-source discriminative features for classification. The review identifies knowledge gaps 
around the need to validate findings and address limitations such as small sample sizes. Applying multimodal learn-
ing of clinically accessible tests holds strong potential to aid the development of low-cost, reliable, and non-invasive 
methods for early detection of AD and PD.
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Introduction
Neurodegenerative disorders are conditions that pre-
dominantly affect cells in the brain called neurons. When 
neurons ‘degenerate’ (become damaged or die), there is a 
loss of activity and, depending on which part of the brain 
is affected, there are progressive problems with cogni-
tive and movement function. The most common types 
of neurodegenerative disorders are Alzheimer’s disease 
(AD) and Parkinson’s disease (PD), which are predomi-
nantly cognitive and movement disorders respectively, 
but others include motor neuron disease (MND), Lewy 
body dementia (LBD) and frontotemporal dementia 
(FTD). For the most part, it remains unclear why some 
people develop neurodegenerative disorders and others 

do not, but age is the biggest risk factor for nearly all 
cases. There are considerably higher rates of these dis-
orders in older adults; for example, in the population of 
adults aged 60–70 about 1 in 10 have AD [1], and 1 in 
100 have PD [2]; in the population of adults aged over 85, 
these figures are almost 1 in 3, and 4 in 100, for AD and 
PD respectively. As populations are ageing around the 
world, the prevalence of neurodegenerative disorders is 
thus rising, and there are already about 50 million people 
with AD and 10 million with PD [3, 4]. There is an urgent 
and growing need to find new ways of aiding early diag-
nosis of these conditions—to support better care, earlier 
recruitment to drug trials and new drug development.

AD is the most common cause of dementia—a 
progressive degenerative disorder of the brain that 
causes impaired cognition and functioning. It is a 
major health and social issue for all countries around 
the world and has been described by the Lancet 
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Commission as the greatest global challenge for health 
and social care in the twenty-first century [5, 6]. 
Although AD manifests primarily as a cognitive dis-
order, there are also abnormalities of movement, such 
as slowed gait, reduced dexterity and speech and swal-
lowing problems. The assessment and diagnosis of 
AD, and other types of dementia, typically involves a 
comprehensive clinical evaluation comprising gath-
ering information about symptoms from the person, 
their family and/or caregivers, obtaining a detailed 
personal and family medical history, and a physical 
neurological examination. Cognitive assessments are 
required to evaluate various domains such as memory, 
language, perceptual skills, attention, constructive 
abilities, orientation, problem solving, and functional 
abilities [7]. Brain imaging, typically with structural 
magnetic resonance imaging (MRI) brain scans, and 
blood tests are also undertaken to look for evidence of 
degeneration (seen as atrophy, or ‘thinning’ of certain 
areas of the brain) and to rule out reversible causes 
of cognitive decline, such as vitamin deficiencies or 
other pathology [8].

The pathology of AD is characterized by a gradual 
build-up of abnormal amyloid and tau proteins in the 
brain followed by neurodegeneration. This gradual accu-
mulation of proteins occurs over a 10–15 year period 
before any classical cognitive symptoms of memory 
impairment emerge. There is thus a preclinical AD stage 
where pathology is present but there are no significant 
cognitive symptoms or decline in cognitive function. This 
critical stage, when interventions (such as drug trials) 
have the best chance of being effective, is typically only 
identified in research settings using specialist and expen-
sive tests [9]. Figure 1 demonstrates how cognitive func-
tion declines with AD and normal ageing. Most people 
present clinically when they are in the Mild Cognitive 
Impairment (MCI) stage characterized by minor reduc-
tions in performance on cognitive tests without any func-
tional impact on everyday activities [10]. As cognitive 
function gradually declines in AD, it impairs the ability to 
undertake everyday activities and at this advanced stage 
of pathology, is termed ‘dementia’.

Over the last decade, many new biomarkers have 
been developed to help detect AD pathology across the 
continuum, including blood-based biomarkers [11], 
cerebrospinal fluid (CSF) tests [12] and positron emis-
sion tomography (PET) scans [13]. However, these tests 
are invasive, costly and largely clinically inaccessible. 
There is thus increasing interest in how new techniques 
may be applied to data from tests that are already clini-
cally accessible to aid diagnosis; these tests include 
measures of gait [14], speech [15], handwriting [16] and 
MRI [17]. The challenge will be developing automated 

objective methods to analyse this data, ideally in com-
bination, to form accurate efficient tools that can be 
used in standard clinics.

PD is the second most common neurodegenerative 
disorder and is characterized by the build-up of Lewy 
bodies (comprising abnormal proteins such as Alpha-
synuclein and ubiquitin) in the brain and progres-
sive loss of dopamine containing neurons. It typically 
presents with impaired motor (movement) function 
manifesting as tremor, muscle rigidity and slowness 
of movement [18]. Other motor signs include quiet 
speech, reduced facial expression and small handwrit-
ing. However, non-motor symptoms, such as cognitive 
impairment and dementia, are also very common in 
PD. Studies suggest that up to 80% of people with PD 
will develop some form of cognitive impairment, with 
up to 50% eventually developing dementia [19]. Other 
neurological conditions, and even drug side effects, 
may mimic PD. The assessment and diagnosis of PD 
thus typically involves a comprehensive clinical evalu-
ation comprising a detailed medical and drug history 
and a physical neurological examination by a specialist. 
MRI brain scans are usually normal in PD, or just show 
a mild degree of generalized atrophy, that overlaps with 
changes seen in normal ageing. The diagnosis of PD 
largely relies on clinician interpretation of clinical signs 
but about 20% of diagnoses are inaccurate, especially in 
the early stages [20].

Thus, both PD and AD are neurodegenerative dis-
orders that manifest with a combination of progres-
sive cognitive and motor abnormalities, and both rely 
heavily on detailed clinical assessments for diagnosis. 
With the rapidly rising prevalence of these conditions, 
there is a growing need for clinically-accessible tools 

Fig. 1 Model of the cognitive function decline trajectory of Alzhei-
mer’s disease (AD) vs normal ageing. The stage of preclinical AD pre-
cedes with mild cognitive impairment (MCI), graph adapted from [10]



Page 3 of 13Huang et al. Health Information Science and Systems (2023) 11:32

that would aid an early diagnosis—to improve effective 
management, increase access to clinical trials and sup-
port new drug development.

Over recent years, Artificial intelligence (AI) has shown 
promising results in aiding the early detection of demen-
tia [21], such as extracting more features from standard 
cognitive tests and improving the discriminatory sen-
sitivity of MRI scans [22]. Multimodal AI is a new AI 
paradigm that seeks to create models for integrating and 
processing information from multiple modalities [23]. 
This cutting-edge method offers new approaches to aid-
ing detection of neurodegenerative disorders as it allows 
different modal contents (cognitive score data, text data, 
image data, video data, audio data, etc.) that can be ana-
lyzed together [24]. This is a significant development 
for detection of AD and PD, as it means that all the data 
that is already collected in standard clinical assessments 
can be analyzed together to form potentially much more 
accurate models; for example the text data from clini-
cal history, the numerical data from cognitive tests, the 
image data from MRI scans, the audio data from voice 
recordings etc. It is a highly attractive approach for 
healthcare as it does not add any additional costs or time, 
uses data that is already clinically accessible, and holds 
potential for cost savings—though identification of the 
most discriminatory tests as well as though earlier diag-
nosis. Multimodal AI significantly advances previous AI 
methods of ‘single modal’ analysis where a single type of 
diagnostic tool, such as a cognitive test or a brain scan, 
are analyzed to automate a prediction of likelihood for 
AD or PD.

There are no previous reviews specifically examin-
ing the accuracy of multimodal AI techniques applied 
to clinically accessible data to aid early detection of AD 
or PD. This is an important knowledge gap to address as 
it will help inform which data sets and techniques show 
most promise for further development as clinical tools. 
In this study, our objective was to summarise the evi-
dence of how multimodal analysis of clinically accessible 
data aids early detection of AD and PD.

This paper is organized as follows: Sect.  2 introduces 
the method used to construct the scoping review, Sect. 3 
presents the results and the characteristics of the evi-
dence, Sect.  4 provides a narrative synthesis of relevant 
findings and Sect. 5 discusses the conclusions and future 
directions.

Method
Study design and research question
This scoping review followed the guidelines of the Pre-
ferred Reporting Items for Systematic Reviews and Meta-
analyses(PRISMA) [25]. The focus of the scoping review 
was to summarise the evidence on multimodal features in 

the two most common types of neurodegenerative disor-
der: AD and PD, to aid diagnosis and to identify research 
gaps. The research question was: How does multimodal 
learning of clinically accessible data assist in the early 
diagnosis of AD and PD?

Eligibility criteria
Peer-reviewed original research papers, published in 
English between January 2012 and February 2023 were 
included if they comprised: (1) adults aged 18 or over 
with AD or PD, (2) focused on detecting/diagnosing/pre-
dicting AD or PD, and (3) multi modal data which was 
defined as at least 2 different modalities of data. Data 
modalities could include, but was not limited to, mag-
netic resonance imaging (MRI), computed tomography 
(CT), positron emission tomography (PET) image data, 
genetic data, clinical text data, video data, cognitive test 
(numerical, text, image) data, speech/audio data and 
movement (video, sensor, drawing, writing) data. Articles 
were excluded if they related to children or animals, only 
included a single data modality or were a review, system-
atic review, book chapter or single case report.

Information sources and search strategies
We searched for eligible papers in two databases, Pub-
Med and Scopus, with the following three major con-
cepts: ‘neurodegenerative disorder’, ‘multimodal/multiple 
features’ and ‘classification/detection/diagnosis’. Free text 
terms and wild cards were used in the research, such as 
“degenerative”, “neurological”, “Alzheimer”, “Parkinson” 
for concept one, “multimodal”, “multichannel”, “multi-
modal”, “multi features” for concept two, “fus*”, “detect*”, 
“diagnos*” for concept three. The full search query was: 
(TITLE-ABS-KEY (multimodal OR multichannel OR 
multi-modal OR multi AND features) AND TITLE-
ABS-KEY (classification OR classify* OR categor*) AND 
TITLEABS-KEY (dementia OR degenerative OR neuro-
logical OR Alzheimer OR Parkinson) AND TITLE-ABS-
KEY (fus* OR detect* OR diagnos*). The searches were 
limited to title, abstract and keywords.

Selection of sources of evidence and data charting process
Two reviewers (GH plus JA or RL) independently 
screened each paper using the title and abstract accord-
ing to the inclusion and exclusion criteria. Discrepancies 
were discussed between the reviewers until we made a 
consensus decision. A data extraction table was created 
by GH to collect data from each publication including 
year of publication, country, number of participants, neu-
rodegenerative disorder type, data modalities collected, 
data analysis methods used and dataset size. The data 



Page 4 of 13Huang et al. Health Information Science and Systems (2023) 11:32

extraction table was checked and confirmed by another 
reviewer (JA). Data were extracted by one reviewer (GH).

Synthesis of results
The summary of the findings from each article was tabu-
lated by GH and then checked by all the authors. All the 
authors have reviewed and summarised the findings and 
the gaps based on the available evidence through narra-
tive synthesis.

Results
Selection of evidence
The total number of electronic records yielded initially 
was 864 and 167 duplicated records were removed. The 
remaining 697 publications were screened and 575 were 
excluded as they did not meet the eligibility criteria. A 
total number of 46 articles were included in the review. 
The full search and selection process is shown in Fig. 2.

Characteristics of the evidence
Table 1 summarises the characteristics of the 46 research 
papers; these comprised 11,750 participants in total: with 

Fig. 2 PRSIMA flow chart of the scoping review. This diagram shows the processing of scoping review, including identification, screening and the 
number of papers included in our study
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3569 with AD, 978 with PD and 2482 healthy controls. 
All the studies were cross-sectional, 39 focused on AD, 6 
on PD, and all data was collected in clinical settings. The 
vast majority (40/46 studies) were published in the last 5 
years. All studies contained a healthy control (HC) group 
and 15 AD studies also included an MCI group, compris-
ing 4523 MCI participants in total. None of the studies 
included both AD and PD groups, but one AD study 
included another neurodegenerative disorder (LBD) 
group as well as healthy controls. Figure 3 summaries the 
meta-data of the included studies, with most publications 
from China (n = 12), India (n = 8) and the USA (n = 5), 
and most studies involving 100–200 participants. Imag-
ing, speech and cognitive data were the most common 
modalities analysed with 24, 17 and 12 studies respec-
tively including these types of data.

Narrative synthesis of relevant findings 
from the evidence
Biomedical imaging
In general, biomedical imaging data from MRI, PET and 
CT brain scans combined with other types of non-imag-
ing data were effective in improving the performance of 
automated diagnosis of AD and PD. Several studies found 
that using more than one imaging modality performed 
better than single modal analysis [33, 42, 53]. For classi-
fying healthy controls from those with AD, multimodal 
studies using MRI and PET data reported accuracy rang-
ing from 74.3 [33] to 98% [52]. For discriminating MCI, 
AD and HC, the accuracy was generally lower with accu-
racies ranging from about 72–86% [52, 55]. For classify-
ing PD and HC with combined MRI and PET scan data, 
accuracies ranged from 88.57 [44] to 98.17% [31]. The 
most common multimodal combinations of data were 
MRI plus PET (n = 10 studies), followed by MRI plus 
cognitive data (n = 7 studies) and MRI plus genetic data 
(n = 6 studies).

When multimodal imaging data was used in the 
included studies, the workflow of the model usually con-
sisted of feature extraction, feature selection, feature 
fusion and using multi-source discriminative features for 
classification [53]. Convolutional neural network (CNN) 
was the most widely used technique for feature extrac-
tion [17, 42, 43, 53, 57, 68, 71]. After extraction of bio-
medical image features, feature selection was used to 
explore deep common features among different image 
features and gain information sharing among multiple 
modal data [53]. In the feature fusion stage, most stud-
ies used a latent feature representation space to fuse their 
multimodal features [17, 43]. Some also used Depth Poly-
nomial Network (DPN) to add linear constraints on mul-
timodal data for feature fusion [27]. In the classification 
stage, some studies directly used discriminative features 

for classification [42, 53], whereas others used additional 
techniques, such as hierarchical feature representation 
and latent representation, to enlarge the contributions 
of discriminative features across different modalities [17, 
27, 33].

In terms of the AI methods used, a study published 
in 2021 reported an accuracy of 97.95% for the classifi-
cation of controls and PD patients using Support vector 
machines (SVMs) [28]. Rallabandi et  al. [68] prediction 
and achieved an accuracy of 98.81% on prediction of 
MCI-to-AD conversion in 5 years.

Cognitive score
Cognitive scores were used in 11 studies, all  related to 
AD [36, 37, 39, 40, 42, 50, 54, 58, 60, 62, 63]. The most 
common multimodal combinations of data were cogni-
tive scores and MRI (n = 6 studies), followed by cogni-
tive scores plus speech data (n = 5 studies) and cognitive 
scores plus genetic data (n = 3 studies).

In multimodal studies, cognitive scores were derived 
as numerical data from cognitive assessments. These 
scores are typically obtained by administering stand-
ardized cognitive tests that are designed to evaluate an 
individual’s memory, attention, language, visuospatial 
skills, and executive functions. Both Mini Mental Score 
Examination (MMSE) and more detailed neuropsycho-
logical tests assess the cognitive status of the partici-
pants. Song [40] proposed a model for discriminating 
early AD diagnosis and MCI and achieved accuracies of 
94.44%. Rohanian et  al. [50] used the cognitive (MMSE 
score combined with speech data to discriminate MCI 
from AD dementia and achieved an accuracy of 79.2% 
In some of the multimodal studies, cognitive data was 
used as the input of the deep learning model. Sanchez-
Reyna et al. [39] used cognitive scores and other features 
as input and trained a multivariate model, achieving an 
Area Under the Curve (AUC) of 87.63%. Song et al. [40] 
developed a model called Auto-Metric graph neural net-
work (AMGNN) and used cognitive test scores and MRI 
data as inputs to calculate the importance of the modal-
ity in the weight matrix. This work achieved an accuracy 
of 87.50% between sMCI (single-domain MCI) and pMCI 
(amnestic MCI with impairment in multiple domains).

Speech and language
Speech and language deficits are recognized as predict-
able features in the early diagnosis of AD and PD [72]. 
Most multimodal studies focused on natural language 
processing (NLP) and related machine-learning tech-
niques. In the speech and language multimodal studies, 
audio and text features were often extracted by Long 
Short-Term Memory (LSTM) models [37, 38, 50, 54], 
which refers to aligning audio and text data in time so 
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Fig. 3 Meta-data from the review process
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Table 1 Peer-reviewed primary research articles summary

a Dataset size records the number of participants in the study
b HC healthy control, MCI mild cognitive impairment, AD Alzheimer’s disease, PD Parkinson’s disease, DLB dementia with Lewy bodies
c RBD rapid eye movement sleep behavior disorder, EEG electroencephalogram, DTI diffusion tensor imaging, CSF cerebrospinal fluid, DWI diffusion-weighted imaging, 
EMG electromyogram
d A custom dataset refers to a dataset that is specifically created or collected for this particular research project or study

First author Country Type Biomarkers Dataseta,b Year References

Suk USA AD PET, MRI ADNI (AD = 93, MCI = 204, HC = 101) 2014 [17]

Prashanth India PD RBDc,  EEGc, Olfactory function PPMI (HC = 183, PD = 401) 2016 [26]

Shi China AD PET, MRI ADNI (AD = 51, MCI = 99, HC = 52) 2017 [27]

Pahuja India PD MRI, Genetic data PPMI (HC = 82, PD = 82) 2018 [28]

Garcia USA PD Speech, Handwriting, Gait Customd (HC = 41, PD = 49) 2018 [29]

Vasquez Spain PD Speech, Handwriting, Gait Custom (PD = 44, HC = 40) 2018 [30]

Pham Singapore PD Hand movement, Speech Custom (PD = 20, HC = 20) 2019 [31]

Noella India PD Gait, MRI PhysioNet (PD = 93, HC = 73) 2019 [32]

Zhou China AD MRI, PET, Genetic data ADNI (HC = 204, MCI = 362, AD = 171) 2019 [33]

Taleb Lebanon PD Handwriting, Speech, RBD PDMultiMC (PD = 21, HC = 21) 2020 [34]

Dachena Italy AD MRI, Cognitive score ADNI (HC = 36, AD = 33) 2020 [35]

Koo South Korea AD Cognitive score, Speech ADReSS (AD = 78, HC = 78) 2020 [36]

Martinc Slovenia AD Cognitive score, Speech ADReSS (AD = 78, HC = 78) 2020 [37]

Pompili Portugal AD Text, Speech ADReSS (AD = 78, HC = 78) 2020 [38]

Sánchez Mexico AD Cognitive score, Genetic data ADNI (HC = 36, MCI = 52, AD = 18) 2021 [39]

Song China AD MRI, Genetic data, Cognitive score TADPOLE (HC = 413, MCI = 865, AD = 337) 2021 [40]

Pandey India AD Text, Speech ADDreSSo (HC = 79, AD = 87) 2021 [41]

Arco Spain AD MRI, PET, Cognitive score ADNI (HC = 61, AD = 73) 2021 [42]

Dong China AD MRI, PET,  CSFc data ADNI (HC = 229, MCI = 405, AD = 188) 2021 [43]

Bi China PD MRI, Genetic data PPMI (HC = 49, PD = 55) 2021 [44]

Yang China PD MRI,  DTIc, Clinical information PPMI (HC = 36, PD = 65) 2021 [45]

Nasreen UK AD Text, Speech Custom (AD = 15, HC = 15) 2021 [46]

Yamada Japan AD Gait, Speech, Hand-drawing Custom (AD = 26, MCI = 45, HC = 47) 2021 [47]

Nasreen UK AD Speech, Medical history CCC (AD = 15, HC = 15) 2021 [48]

Fukushima Japan AD Speech, EEG Custom (AD = 35, MCI = 18) 2021 [49]

Rohanian UK AD Cognitive score, Speech ADReSS (AD = 78, HC = 78) 2021 [50]

Jang Canada AD Speech, RBD Custom (HC = 83, MCI/AD = 79) 2021 [51]

Sheng China AD MRI, Genetic data ADNI (HC = 25, MCI = 50, AD = 25) 2022 [52]

Jiao China AD MRI, PET ADNI (HC = 79, MCI = 102, AD = 69) 2022 [53]

Ilias Greece AD Cognitive score, Speech ADReSS (AD = 78, HC = 78) 2022 [54]

Min South Korea AD Gait, EEG Custom (HC = 69, MCI = 151) 2022 [55]

Dolci USA AD MRI, Genetic data Custom (HC = 530, AD = 258) 2022 [56]

Hansen Germany AD PET, CT scans Custom (HC = 94, AD = 33) 2022 [57]

El-Sappagh Egypt AD MRI, Cognitive score ADNI (HC = 419, MCI = 613, AD = 339) 2022 [58]

Ying China AD Text, Speech ADReSSo (HC = 79, AD = 87) 2022 [59]

Moguilner USA AD MRI, EEG, Cognitive score Custom (HC = 152, AD = 76) 2022 [60]

Dwivedi India AD MRI, PET ADNI (HC = 100, MCI = 100, AD = 100) 2022 [61]

Habuza UAE AD MRI, Cognitive score ADNI (HC = 287, MCI = 646, AD = 369) 2022 [62]

Velazquez USA AD DTI, Genetic data, Cognitive score ADNI (HC = 335, MCI = 383, AD = 49) 2022 [63]

Shi China AD MRI, PET ADNI (HC = 52, MCI = 99, AD = 51) 2022 [64]

Safai India PD MRI,  DWIc Custom (HC = 34, PD = 74) 2022 [65]

Zhang China PD EEG, Gait,  EMGc Custom (HC = 34, PD = 74) 2022 [66]

Ilias Greece AD Text, Speech ADReSS (HC = 78, AD = 78) 2023 [67]

Rallabandi India AD MRI, PET Custom (HC = 605, AD = 493) 2023 [68]

Goel India AD MRI, PET ADNI (HC = 210, MCI = 210, AD = 210) 2023 [69]

Chai China AD EEG, handwriting Custom (HC = 39, MCI = 40) 2023 [70]
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that the machine learning model can analyze the rela-
tionship between spoken and written words. The most 
common multimodal combinations of data were speech 
plus hand movement features (n = 6 studies), followed by 
speech plus text (n = 5 studies) and speech plus cognitive 
scores (n = 5 studies). Most studies have shown encour-
aging outcomes when utilizing machine learning to dis-
criminate AD from HC by analyzing speech and language 
characteristics, with accuracy rates ranging from 78.7% 
[36] to 97.3% [30]. Only two studies examined speech 
(with clinical data and handwriting data) for discriminat-
ing PD from HC and found a classification accuracy of 
98.8% [31] and 97.62% [34].

In terms of the AI methods used, Martinc et  al. [37] 
employed an Active Data Representation (ADR) tech-
nique for voice processing as a framework for fusion of 
acoustic and textual features at the sentence and word 
level. Nasreen [46] examined the role and contribution 
of interactional features in dialogue to predict whether 
a participant had AD; they achieved 83% accuracy using 
dysfluency features, 83% accuracy using interactional 
features, and 90% accuracy when combining both fea-
ture datasets. Pandey et  al. [41] proposed a multimodal 
fusion-based framework that uses both speech and text 
transcripts to detect AD. They obtained an accuracy of 
81% between AD and HC participants using a simpler 
architecture, reduced computational load, and complex-
ity. To increase the effectiveness of the classification, 
Ying et  al. [59] used fine-tuned Wav2Vec2.0 model and 
deep linguistic features extracted using fine-tuned Bidi-
rectional Encoder Representations from Transformers 
(BERT), to classify AD patients with a support vector 
machine classifier and achieved 89.1% classification rate 
for health control vs AD. Ilias et  al. [67] introduced a 
novel method using the Vision Transformer and cross-
modal attention layers to detect dementia from speech 
and language modality. The results indicated that the 
Vision Transformer outperformed other models, and the 
proposed method achieved an accuracy of 88.83% for AD 
vs HC classification.

Movement data
Motor function is known to decline throughout in both 
AD and PD. Analysis of gait, hand and eye movements 
is readily available in clinics using simple movement sen-
sors [73]. There are 4 studies related to AD and 7 stud-
ies related to PD. The most common combination of data 
was movement data and speech (n = 5 studies) with one 
study focusing on AD [47] and 4 on PD [29–31, 34], fol-
lowed by movement data and EEG signals (n = 3 studies, 
with 1 study in AD and 2 in PD) [26, 55, 66].

Gait
Two AD related studies [47, 55] and 4 PD [29, 30, 32, 66] 
studies used gait (walking) movement data. Generally, 
gait data was collected whilst participants walked at their 
usual pace over nine meters with a marker-based motion 
capture system (camera or sensor-based). This data was 
then extracted and filtered to other numerical movement 
features including gait speed, step/stride length, rhythm 
(e.g., step/stride time), variability (e.g., step/stride time 
variability), left-right asymmetry (e.g., the difference 
between left-right step/stride time), and postural control 
(e.g., maximum toe clearance) etc [47].

For classification of AD and MCI from HC, the gait 
data was often combined with speech and drawing 
modalities with accuracies ranging from 0.73 to 0.93 [47, 
55]. Yamada [47] focused on AD and MCI and used gait, 
speech, and drawing behaviours to classify patients from 
MCI and HC. The study found that combining all three 
modalities led to superior classification accuracy (0.93 for 
AD vs controls, and 0.93 for MCI vs controls) compared 
to using individual modalities (0.81).

For classification of PD from HC, gait data was often 
combined with speech, MRI and EEG modalities with 
accuracies ranging from 0.85 to 0.97 [29, 30]. Garcia et al. 
[29] used i-vectors extracted from speech, handwriting, 
and gait data to classify PD patients and HC and achieved 
an AUC of 0.85. Two fusion strategies were tested: con-
catenating the i-vectors to form a super-i-vector with 
information from all three modalities, and score pooling. 
The study found that the super-i-vector fusion method 
led to better classification results compared to separate 
analysis with each modality. Vasquez et al. [30] suggested 
the need for further experiments with more tasks to 
validate the language independence of the approach and 
used CNNs trained with time-frequency representations 
(TFRs) allow for interpretation of the hidden representa-
tions of the neural network. The proposed method accu-
rately classified PD patients and HC with an AUC of 0.97.

Eye movements
Eye movements are known to change in both AD and PD 
and data can be collected in clinic such as fixations, sac-
cades, and pusuit movement parameters. Fixations refer 
to when a person’s gaze stays in one place for 60ms or 
longer, and saccades refer to quick movements between 
fixations, whereas pursuit describes tracking movements 
[51]. Eye movement data has been used with a wide range 
of modalities, including EEG, olfactory loss, handwriting 
and speed in one study of AD [51] and 2 PD studies [26, 
34].

For AD related studies, Jang et  al. [51] used a deep 
learning method and fused the eye movement and lan-
guage modalities, yielding an overall AUC of 0.83 for AD 
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and MCI classification. In PD related studies, Prashanth 
et al. utilised non-motor data such as sleep EEG (record-
ing Rapid Eye Movement (REM) sleep behaviour disor-
der) and olfactory (sense of smell) data, along with other 
biomarkers, to classify early PD subjects from HCs using 
machine learning algorithms; the results show that the 
Support Vector Machine (SVM) classifier had an AUC of 
0.964 [26].

Hand movements
Research has shown that changes in hand movements 
can occur in individuals with AD and PD and this can be 
used as a tool for early detection [30, 31, 46, 74]. Several 
studies combined handwriting and/or drawing with other 
modalities such as gait and speech data [75]. There was 
one AD study and 4 PD studies using hand movements as 
part of a multimodal feature analysis for the classification 
of neurodegenerative disorders from HCs.

For AD related studies, researchers investigated 
whether combining data from three modalities (hand 
movement, gait and speech) could improve the accuracy 
of AD and MCI diagnoses compared to using individual 
modalities alone. The study found that combining data 
from all three modalities achieved 89.5% accuracy for 
classifying AD, MCI, and HC participants, while using 
gait and speech modalities achieved 88.6% [46].

In PD, Taleb et al. used handwriting and speech modal-
ities for PD classification and achieved 97.62% accuracy 
for discriminating early PD from controls. They proposed 
a combination of CNN-BLSTM (Convolutional Neural 
Network-Bidirectional Long Short-Term Memory) mod-
els trained with jittering and synthetic data augmentation 
approaches [34]. Another study fused three modalities 
(handwriting, speech and gait) to classify PD and HC 
subjects with an accuracy of 97.3%. The study also sug-
gested that the proposed approach can be extended to 
other applications such as detecting prodromal stages of 
the disease [31].

Others
Other types of data has also been shown effective to aid 
the discrimination of AD and PD from controls, such 
as genetic data [76], and other numerical data related to 
electroencephalograms (EEG; a measure of brain electri-
cal activity), sleep and olfactory function and body fluid 
biomarkers.

Genetic data
The presence of a range of genetic mutations can indicate 
an increased risk of developing AD or PD. Compared to 
traditional studies of AD and PD that rely solely on sin-
gle neural imaging data or speech data, the use of genetic 
data in a multimodal approach has been shown to result 

in better classification performance. There were 5 studies 
using genetic data related to AD [33, 40, 52, 56, 63] and 
2 to PD [28, 44]. Genetic data were extracted as normal-
ized numerical data from 0 to 1 indicating the risk [39] 
and the most common multimodal combinations were 
genetic data plus MRI data (n = 6 studies).

In AD, Sheng et  al. [52] used genetic data to aid pre-
diction of AD and MCI and reduce the dimensionality of 
the features and to address the large differences in feature 
scales between genetic and brain imaging data. They then 
used a multimodal multi-task feature selection approach 
to select a set of interrelated features of brain imaging 
phenotypes and genetic factors. By combining imaging 
and genetic data, the method achieved an average classi-
fication accuracy of 98% for HC and AD, 82% for HC and 
Early-MCI, 86% for HC and Late-MCI. Zhou et  al. [33] 
proposed a novel latent representation learning method 
that used genetic data along with other modalities such 
as MRI and PET scans to learn a common latent feature 
representation and modality-specific latent feature repre-
sentation. After adding genetic data, the AUC improved 
from 0.716 to 0.755 for discriminating stable MCI (did 
not convert to AD) from progressive MCI (converted to 
AD within 36 months).

In PD, Bi et al. [44] proposed a novel model called clus-
tering evolutionary random neural network ensemble 
(CERNNE). The CERNNE was applied to form a multi-
task analysis framework that discriminated PD patients 
and predicted PD-associated brain regions and genes. 
The use of genetic data allowed the CERNNE to detect 
altered fusion features of patients with PD, which con-
tributes to the classification of PD from HC with an AUC 
= 0.88.

Brain electrical activity
Electroencephalogram (EEG) signals can assist in the 
diagnosis of neurodegenerative disorders by providing 
information on the neural activity of the brain. There 
were 3 AD studies [55, 60, 70] and 1 for PD [66] related 
to EEG data. EEG signals are collected using a cap-type 
electrode device placed on the participant’s head. The 
electrodes measure the electrical activity produced by the 
brain and transmit the signal to a recording device. EEG 
microstates, specifically using transition probabilities 
and a newly defined time-factor transition probabilities 
feature, can measure the severity of Alzheimer’s disease 
(AD) and mild cognitive impairment (MCI), distinguish 
between AD and MCI, and serve as a neurobiological 
marker for AD [77].

In AD studies, when EEG and gait parameter data 
were combined, Min et  al. improved the ability to dis-
criminate individuals with MCI from HCs from an AUC 
of 0.6711 with gait data to an AUC of 0.7267 with EEG 
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data combined [55]. Moreover, Chai et al. [70] proposed 
an automated, non-invasive detection protocol for MCI 
based on handwriting kinetics and quantitative EEG 
analysis. The study used a classification model based on 
a dual fusion of feature and decision layers and achieved 
a classification result of 96.3% for MCI vs HC by using 
SVM with RBF kernel as the base classifier.

In PD studies, Zhang et al. [66] implemented a proto-
col to detect ‘freezing of gait’ (FOG, a feature of walking 
in PD) to classify PD participants from healthy controls 
with an accuracy of 0.93.

Sleep behaviours and olfactory loss
Studies have indicated that there are changes in the 
sleep-wake cycle, and in sleep behaviours, in both AD 
and PD. Olfactory (sense of smell) loss is also commonly 
observed in individuals with AD and PD. Prashanth et al. 
were able to classify participants into PD and HC groups 
using sleep behaviour and olfactory function data with an 
accuracy of 96.40 % [26].

Cerebroespinal fluid (CSF)
Cerebrospinal Fluid (CSF) is a clear, colourless liquid that 
surrounds the brain and spinal cord, and contains various 
substances that can assist in the diagnosis of brain dis-
orders. For example, the presence of certain proteins in 
the CSF, such as amyloid beta and tau, can indicate the 
presence of AD. CSF tests are invasive (requiring a spinal 
needle to be passed under local anaesthetic into the lower 
spine) but clinically accessible for neurologists, and have 
been used for many decades for investigating a range of 
brain disorders. Dong [43] used a high-order Laplacian 
regularized low-rank representation (hLRR) technique 
to handle the noisy and heterogeneous multimodal data 
from CSF and clinical data and achieved an 85.32% classi-
fication accuracy between MCI and HC. However, it was 
reported that this method requires relatively higher com-
putation cost of using sparse representation technique to 
construct hypergraphs.

Discussion and limitation
This scoping review identified 46 papers comprising 
11,750 participants, with 3569 AD, 978 with PD, 4523 
with MCI and 2482 healthy controls. It demonstrated 
that multimodal analysis of clinically accessible data for 
early detection of AD and PD is a relatively new approach 
that has largely only emerged over the last 5 years, 
with 40 of the 46 articles (86.95%) published from 2019 
onwards. For discriminating AD from healthy controls, 
a combination of MRI and PET scans with cognitive 
scores have been found to be highly effective with a clas-
sification rate of 98%. For AD vs MCI, a combination of 
MRI and PET scans along with cognitive scores achieved 

classification accuracies of 86%. For discriminating PD 
from healthy controls, the most effective combinations 
of data were gait, handwriting/drawing and speech data 
with reported accuracies ranging from 90 to 98%.

In general, MRI and PET brain imaging data was effec-
tive in improving the performance of automated detec-
tion of AD and PD. Most multimodal studies focused on 
computer vision (CV), natural language processing (NLP) 
and related machine-learning techniques. Gait, hand, and 
eye movement data have also been shown to assist in the 
diagnosis of AD and PD, with gait data being used in five 
studies.

In terms of the AI techniques applied to multi-
modal datasets for the early detection of AD and PD, 
the workflow of most models usually consisted of fea-
ture extraction, feature selection, feature fusion, and 
using multi-source discriminative features for classifi-
cation. Convolutional neural network (CNN) was the 
most widely used technique for feature extraction. After 
extraction of biomedical image features, feature selec-
tion was used to explore deep common features among 
different image features and gain information sharing 
among multiple modal data. In the feature fusion stage, 
most studies used a latent feature representation space 
to fuse their multimodal features. In the classification 
stage, some studies directly used discriminative features 
for classification, whereas others used additional tech-
niques to enlarge the contributions of discriminative 
features across different modalities. The accuracy rates 
of using multimodal features to detect AD ranged from 
74.3 to 97.95%, and to detect PD ranged from 78.7% to 
98.8%. The accuracy rates of using multimodal features to 
discriminate MCI (earlier stage AD) from AD dementia 
ranged from 72.67 to 88.57%. The accuracy of deep learn-
ing models for detecting AD and PD varied depending on 
various factors, such as the size and quality of the dataset, 
the complexity of the model architecture, and the specific 
diagnostic task.

The strengths of this study are the widespread search 
of data over the last 10 years, our interdisciplinary team 
approach bringing together the expertise of computer 
scientists and a clinician specializing in neurodegenera-
tive disorders, robust methodologies following PRSISMA 
and the summary of evidence based both on outcomes as 
well as AI approaches used.

However, it is important to also acknowledge the 
limitations. We note that it was challenging to com-
pare results from these studies as there were variations 
in terms of sample sizes with some quite small (n ≤ 200 
participants in 29 (63%) studies, and differences in study 
design. Moreover, the majority of applications were lim-
ited to extracting biomarker information using different 
networks and then using a statistical model to classify 
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HC, MCI and AD or PD, this type of research is limited 
by the inability to fuse distinctive features together and 
the lack of relationship analysis between biomarkers. 
During our scoping review of 46 papers, we discovered 
that none of them had integrated all four types of mul-
timodal data (images, speech, cognitive, and movement 
data) into a single classification model. Due to the com-
plexity of AD or PD diagnosis, most of the experiments 
were done in the clinical setting, which makes it particu-
larly difficult to construct a large multimodal dataset for 
the early detection of these disorders.

Moreover, the challenge with integrating multimodal 
data is that they are often incomplete, contain noise 
information caused by different data collection tools (e.g. 
different MRI scanners) or protocols (e.g. gait assessment 
for 1  min vs 10 min, or for maximal speed vs comfort-
able paced walking), and have missing data. To overcome 
these challenges, researchers have proposed novel meth-
ods for high-order Laplacian regularized low-rank rep-
resentation, latent representation learning, and dataset 
enrichment. Existing multimodal methods have mainly 
focused on classifying cognitive status using different 
neuroimages (MRI and PET) with other non-imaging 
variables [28, 32, 33, 35, 42, 44, 52, 53]. However, collect-
ing neuroimaging data such as MRI and PET scans are 
expensive, and not ideal for a large population.

In this scoping review, we aimed to summarise the 
evidence for multimodal methods that would inform 
the development of low-cost, reliable tests for the early 
detection of AD and PD in clinical settings. Meanwhile, 
detecting diagnostic biomarkers that are non-invasive 
and cost-effective is of great value not only for clinical 
assessments but also for epidemiological studies (that 
may require home tests) and research purposes. Further 
research is needed to validate the findings and determine 
the effectiveness of multimodal learning in aiding diag-
nosis of AD and PD.

Conclusion
In conclusion, our scoping review and study evaluated 
the multimodal analysis of clinically accessible data for 
early detection of AD and PD, the two most common 
neurodegenerative disorders. The multimodal learning 
analysis is a relatively new approach, with 86.95% (40/46) 
studies published in the last 5 years (and 69.57% (32/46) 
studies in the last 2 years), employs data from biomedi-
cal imaging, cognitive, speech and language, gait, hand, 
and eye movement tests, along with EEG and genetic 
assessments.

The studies highlight that the classification rates using 
multimodal data are promisingly high, not only in dis-
tinguishing AD and PD from healthy controls but also 
differentiating between AD and MC. The crucial role 

of MRI and PET brain imaging data in enhancing auto-
mated detection has been underscored, with Convolu-
tional Neural Networks (CNN) frequently employed for 
feature extraction. However, existing multimodal meth-
odologies primarily focus on classifying cognitive status 
using brain scan image data and non-imaging variables, 
which, while effective, are costly and impractical for pop-
ulation-level tests.

Despite the substantial progress, several challenges 
need to be addressed. Comparing outcomes across stud-
ies is difficult due to variations in sample sizes, study 
designs, and limitations of datasets. Furthermore, despite 
extensive utilisation of multimodal data, none of the 
studies integrated all data types into a single classification 
model, marking a critical area for future research. Addi-
tionally, handling issues of incomplete or noisy data calls 
for more advanced techniques such as high-order Lapla-
cian regularized low-rank representation and latent rep-
resentation learning.

With the escalating prevalence of AD and PD, our find-
ings call for more rigorous research, not only to validate 
the current results but also to discover low-cost, reli-
able, and non-invasive methods for early detection in 
both clinical and remote home settings. The overarching 
goal is to integrate different types of multimodal data to 
develop accurate models, thereby contributing to bet-
ter patient care, facilitating new drug development, and 
advancing the promising trajectory of multimodal AI in 
the realm of neurodegenerative disorders.
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