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Abstract
Hyper-IgE syndromes (HIES) are a group of inborn errors of immunity (IEI) caused by monogenic defects such as in the 
gene STAT3 (STAT3-HIES). Patients suffering from HIES show an increased susceptibility to Staphylococcus aureus (S. 
aureus) including skin abscesses and pulmonary infections. To assess if the underlying immune defect of STAT3-HIES 
patients influences the resistance patterns, pathogenicity factors or strain types of S. aureus. We characterized eleven S. 
aureus strains isolated from STAT3-HIES patients (n = 4) by whole genome sequencing (WGS) to determine presence of 
resistance and virulence genes. Additionally, we used multi-locus sequence typing (MLST) and protein A (spa) typing to 
classify these isolates. Bacterial isolates collected from this cohort of STAT3-HIES patients were identified as common spa 
types in Germany. Only one of the isolates was classified as methicillin-resistant S. aureus (MRSA). For one STAT3 patient 
WGS illustrated that infection and colonization occurred with different S. aureus isolates rather than one particular clone. 
The identified S. aureus carriage profile on a molecular level suggests that S. aureus strain type in STAT3-HIES patients is 
determined by local epidemiology rather than the underlying immune defect highlighting the importance of microbiological 
assessment prior to antibiotic treatment.
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IEC  Immune evasion cluster
IgRT  Immunoglobulin replacement therapy
IEI  Inborn error of immunity
MRSA  Methicillin-resistant S. aureus
MLST  Multi-locus sequence typing
pvl  Panton-Valentine leukocidin
spa  Protein A
scn  Staphylococcal complement inhibitor
sea  Staphylococcal enterotoxins A
sek  Staphylococcal enterotoxins K
seq  Staphylococcal enterotoxins Q
S. aureus  Staphylococcus aureus
sak  Staphylokinase
UPGMA  Unweighted pair group method with arithmetic 

mean
WGS  Whole genome sequencing

Introduction

While Staphylococcus aureus (S. aureus) frequently colo-
nizes skin and mucosa, it is also a major pathogen causing 
harmful infections such as abscesses, pneumonia, and sep-
ticemia [1]. In fact, S. aureus is the leading cause for surgical 
site infections and especially methicillin-resistant S. aureus 
(MRSA) infections are associated with significant costs for 
health care systems [2].

Hyper-IgE syndromes (HIES) are a group of inborn errors 
of immunity (IEI), of which the most frequent form is caused 
by monogenic defects in the gene STAT3 (STAT3-HIES) 
[3–5]. STAT3-HIES is characterized by elevated serum IgE 
levels, eosinophilia, eczema and increased susceptibility to 
S. aureus infections [4–6]. Severe staphylococcal skin and 
lung infections are common in STAT3-HIES patients, most 
likely because of the impairment in the epithelial immune 
response [7–9]. S. aureus can also cause infections in immu-
nocompetent individuals; the predisposition of STAT3-
HIES patients towards this pathogen, however, offers fur-
ther insights into the immune defense against S. aureus. 
STAT3-HIES patients show impaired Th17 cell function and 

diminished memory B cell development [10–13]. Addition-
ally, STAT3-HIES patients fail to raise antibodies against 
S. aureus toxin despite chronic colonization [14]. Impor-
tantly, besides an impaired humoral and cellular immune 
response towards S. aureus, STAT3-HIES patients also suf-
fer from reduced epithelial immunity towards this pathogen 
[15]. STAT3-HIES patients benefit from Immunoglobulin 
replacement therapy (IgRT), most likely because it partly 
compensates the compromised humoral and cellular immune 
response [16, 17]. Nevertheless, new therapeutic strategies 
are needed to improve the clinical outcome of patients.

Although S. aureus colonization and infection are key 
symptoms of STAT3-HIES and patients frequently require 
antibiotic prophylaxis or therapy, little is known about the 
molecular features of S. aureus in these patients. Moreo-
ver, it is unclear if the immunodeficiency of STAT3-HIES 
patients selects S. aureus strains with a specific “genetic 
fingerprint”. A recent study used multi-locus sequence 
typing (MLST) and protein A (spa) typing to analyze the 
genetic background of 13 S. aureus isolates collected from 
STAT3-HIES patients in the USA [8]. Here, most isolates 
resembled highly virulent USA300 strains that are preva-
lent in hospitals in the USA and have been associated with 
MRSA outbreaks. The aim of our study was to analyze the 
S. aureus carriage profile of STAT3-HIES patients in Ger-
many to optimize antibiotic treatment using bacterial whole 
genome sequencing (WGS) and to investigate virulence and 
resistance genes in these isolates.

Methods

Patients

All four STAT3-HIES patients carried a heterozygous 
dominant-negative STAT3 mutation, were unrelated, and 
presented with the characteristic clinical findings of their 
genetically confirmed diagnosis at inclusion of study 
(Table 1). Mutations were reported using the nomenclature 
of den Dunnen and Antonarakis [19].

Table 1  Demographic and clinical information of STAT3-HIES patients

STAT3-HIES
patient 1 (P1)

STAT3-HIES
patient 2 (P2)

STAT3-HIES
patient 3 (P3)

STAT3-HIES
patient 4 (P4)

Age 9 years
of age

29 years
of age

53 years
of age

5 years
of age

Mutation c.1144C > T
p.R382W

c.1145C > A
p.R382Q

c.1144C > T
p.R382W

c.1825A > G
p.R609G

History of skin abscesses/eczema  +  +  +  + 
History of recurrent respiratory infections  −  +  +  + 
Antibiotic prophylaxis Co-Trimoxazole

Cephalexin
Co-Trimoxazole  − Co-Trimoxazole
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S. aureus Isolate Collection, Whole Genome 
Sequencing, and Data Analysis

S. aureus strains were collected and cultured using stand-
ard procedures. In total eleven S. aureus isolates were 
collected including screening isolates (nose/throat n = 4; 
perianal n = 1) isolates collected from skin lesions (n = 5) 
and one clinical isolate from a lymph node abscess (please 
see Table 2 for further isolate and collection site details). 
Genomic DNA of S. aureus isolates was purified using 
the MagAttract HMW DNA kit (Qiagen, Venlo Nether-
lands) following manufacturer’s instructions. Isolates were 
sequenced using Illumina technology and Nextera XT ver-
sion 2 chemistry, with a 250-bp paired-end protocol on a 
MiSeq sequencer (Illumina, San Diego, USA). Quality trim-
ming of fastq files (average base quality of 30, aiming for 
100-fold coverage) and de novo assembly using SKESA [20] 
were performed with SeqSphere + (version 6; Ridom GmbH, 
Münster, Germany) [21]. Only genomes harboring ≥ 95% 
core genome multi-locus sequence typing (cgMLST) targets 
of the S. aureus cgMLST scheme passed quality control; 
otherwise, sequencing was repeated. Target gene sets for 
virulence factors, resistance, and toxin genes as well as spa 
type were analyzed using the SeqSphere + software [21, 22]. 
Presence of enterotoxin genes was confirmed by polymerase 
chain reaction as described previously [23].

Results

Patient Characteristics and S. aureus Isolates

Patients included in our study were between 5 and 53 years 
of age at enrollment. All four patients had a history of pul-
monary and skin infections (Table 1). During the study 
period, patients received prophylactic antibiotic treatment 
as specified in Table 1 and skin treatment with octenidine 
dihydrochloride as well as symptomatic skin care with 

emollients. Eleven S. aureus isolates were collected either 
as screening isolates (nasal carriage) or from different skin 
sites. One clinical isolate (P1.2) was isolated from a lymph 
node abscess.

Epidemiology of S. aureus Strains and spa Typing 
Results

All bacteria were analyzed for MLST, clonal complex (CC) 
and spa type. The collected S. aureus isolates were predomi-
nantly ST5 or ST582 and the most frequent spa types were 
t179 and t084 (Table 2). Only one isolate out of eleven was 
identified as MRSA. In addition, none of the isolates carried 
the Panton-Valentine leukocidin (pvl), staphylococcal entero-
toxins Q (seq), or staphylococcal enterotoxins K (sek) gene 
(Tables 2 and 3). These typing results match the general 
epidemiology of S. aureus in Germany and differ from previ-
ous reports that identified mostly MRSA isolates encoding 
the pvl gene in STAT3-HIES patients from the USA [24].

Clonal Relationship of S. aureus Isolates 
in STAT3‑HIES Patients

Next, the genetic relatedness of S. aureus isolates collected 
from STAT3-HIES patients was analyzed by cgMLST. 
cgMLST combines “classical” typing approaches to classify 
bacteria with the extensive genetic data sets obtained by WGS 
[25]. For S. aureus up to 1861 conserved target genes are com-
pared to discriminate between isolates achieving a sufficient 
resolution for epidemiological and surveillance studies [26]. 
The isolates collected as part of this study were genetically 
unrelated and differed significantly from a reference sequence 
of highly virulent USA300 (NC_007793.1) (Fig. 1a). In one 
STAT3-HIES patient (P3) five S. aureus isolates were isolated 
from skin lesions at different sites yet at the same time point 
(P3.1 − P3.5). WGS showed that these isolates belonged to the 
same ST (ST582) and spa type (t084) but differed by up to 6 
alleles or 6 single nucleotide polymorphisms (SNPs) in their 

Table 2  Typing results of S. 
aureus isolates collected from 
STAT3-HIES patients

Patient Sample MLST ST CC spa type mecA pvl Collection site Collection date

P1 P1.1 5 5 t179  +  − Nose/throat, screening swab 2011
P1.2 7 - t091  −  − Lymph node abscess 2019
P1.3 5 5 t179  −  − Nose/throat, screening swab 2019
P1.4 5 5 t179  −  − Perianal screening swab 2019

P2 P2.1 97 97 t521  −  − Nose/throat, screening swab 2012
P3 P3.1 582 15 t084  −  − Skin lesion (left eyebrow) 2011

P3.2 582 15 t084  −  − Skin lesion (left arm) 2011
P3.3 582 15 t084  −  − Skin lesion (left ear) 2011
P3.4 582 15 t084  −  − Skin lesion (nose) 2011
P3.5 582 15 t084  −  − Skin lesion (right ear) 2011

P4 P4.1 45 45 t015  −  − Nose/throat, screening swab 2019
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core genome (Fig. 1b). In another STAT3-HIES patient (P1) 
WGS illustrated that the S. aureus isolate causing a lymph 
node infection (P1.2) was not genetically related to the clones 
colonizing the patient at other sites and differed from coloniz-
ing isolates in 1401 alleles or 9382 SNPs (Fig. 1c). The colo-
nizing isolates P1.1, P1.3, and P1.4 belong to the same genetic 
family, ST (ST5) and spa type (t179), yet showed significant 
variation in their core genome. Strains P1.1 and P1.3 were both 
isolated from a nose/throat screening swab but were collected 
8 years apart and differed by 30 alleles or 31 SNPs in their core 
genome. Taken together the analyses of these bacterial isolates 
indicate that STAT3-HIES patients are carrying several geneti-
cally diverse S. aureus isolates at a time.

Pathogenicity Factors in Patients’ S. aureus Strains

Several studies have correlated the ability of S. aureus to 
cause soft tissue infection and inflammation with the activ-
ity of pathogenicity factors and bacterial toxin genes [22]. 
Therefore, we analyzed the S. aureus isolates of STAT3-
HIES patients for genes of the accessory regulator (agr), 
hemolysin genes (hl), and genes encoding for enterotoxins, 
adhesion molecules and the immune evasion complex (IEC) 
(Table 3). In addition, we constructed a unweighted pair 
group method with arithmetic mean (UPGMA)-tree based 
on their toxin and virulence gene profile of the S. aureus 
isolates to illustrate the distribution pattern of the 45 patho-
genicity factors analyzed in the study (Fig. 2).

Hemolysin α (hla) was present in all isolates. Two colo-
nizing isolates showed a stop codon in the hl gene (P1.3 and 
P1.4). One colonizing isolate lacked the hemolysin δ (hld) 
gene (P3.4). The IEC consists of the genes coding for staphy-
lokinase (sak), staphylococcal complement inhibitor (scn), 
chemotaxis inhibitory protein (chp), and staphylococcal 
enterotoxins A (sea). IEC genes are well-known pathogenic-
ity factors that aid S. aureus to bypass the human immune 
response by counteracting key steps in innate immunity such 
as complement activation and chemotaxis. Interestingly, 
three of the eleven isolates collected from STAT3-HIES 
patients contained all four IEC genes (isolates P1.1, P1.3 
and P1.4, all isolated from patient P1). As STAT3-HIES 
patients show reduced Th17 and B cell responses towards 
S. aureus, bacterial pathogenicity factors that impair innate 
immunity might result in a more pronounced effect in these 
patients. However, long-term follow-up studies are needed 
to address this research question.

Discussion

Presently, the molecular characteristics and genetic vari-
ability of S. aureus clones in STAT3-HIES patients remain 
largely unknown. The MLST ST and spa types of the eleven Ta
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S. aureus isolates collected during this study differed sig-
nificantly from the typing results described in a previous 
report from the USA [18]. However, the identified ST and 
spa types are common in Germany [22). The ST and spa 
type results imply that the local epidemiology is the main 
factor determining which S. aureus strains colonize STAT3-
HIES patients. Although all patients enrolled in our study 
have received long-time antibiotic prophylaxis and therapy, 
MRSA was not prevalent in our patient cohort (Table 2). In 
fact, MRSA infections in the healthcare setting have been 
decreasing steadily over the recent years in Germany [27, 
28]. In 2018, a surveillance conducted by Germany’s public 

health institution, the Robert Koch-Institute, estimated that 
7.7% of all S. aureus bacteria isolated from patients in the 
community setting are MRSA [29]. Further studies are 
required to investigate if the prevalence of MRSA among 
STAT3-HIES patients equals the prevalence of the gen-
eral population in their home countries. Yet at present, we 
recommend that empirical antibiotic treatment for severe 
infection in STAT3-HIES patients might not have to cover 
MRSA unless a patient is a known carrier or the local MRSA 
prevalence is high. Despite the limitation of relative low 
patient number of patients enrolled, due to STAT3-HIES 
being a rare disease, our study shows first interesting results 

Fig. 1  Minimum spanning trees of S. aureus isolates illustrate their 
genotypic relationship. Minimum spanning trees were based on up to 
1861 cgMLST target genes, pairwise ignoring missing values. Every 
circle represents one genotype while connecting lines represent the 
number of different alleles in a pairwise comparison. a S. aureus 
isolates of different STAT3-HIES patients (P1–P4, using a different 
color for each patient). A reference sequence of a reference USA300 
strain (NC_007793.1) was included as comparison (white). b The 

skin colonizing isolates of STAT3-HIES patient P3 (blue). c The iso-
late causing a lymph node abscess in STAT3-HIES patient P1 (P1.2, 
dark red) in comparison to three other isolates of the same patient. 
Isolates P1.1 and P1.3 are both isolated from a nose/throat screening 
swab (light red) but were collected 8 years apart. Isolate P1.4 (pink, 
perianal screening swab) has been collect at the same time point as 
P1.3
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how WGS can be used to characterize S. aureus isolates col-
lected from STAT3-HIES patients. In our study, we analyzed 
the genetic relatedness of colonizing S. aureus isolates from 
several STAT3-HIES patients based on WGS data. Here, 
we demonstrated that STAT3-HIES patients were colonized 
with genetically diverse S. aureus clones at a time. Similar 
observations have been made in a study analyzing S. aureus 
isolates collected from eczematic lesions of atopic eczema 
patients by WGS. In this publication, a broad genetic diver-
sity of bacterial isolates was detected suggesting that clonal 
expansion of a bacterial population takes place during a dis-
ease flare [30].

The WGS data of S. aureus isolates generated as part 
of this study offer a comprehensive characterization of 
multiple virulence factors. An improved understanding of 
pathogenicity factors may pave the way for new therapeutic 
strategies for STAT3-HIES patients. Currently, long-acting 
monoclonal antibodies that are capable to neutralize S. 
aureus toxins in the respiratory tract are under development 
to treat MRSA lung infections [31, 32]. As STAT3-HIES 
patients show reduced IgG levels for S. aureus toxins, the 
potential of these monoclonal antibodies as treatment for 
severe S. aureus lung infections could be evaluated [14, 33].

Taken together, our study provides a detailed view into 
the molecular characteristics of the S. aureus isolates col-
lected from STAT3-HIES patients, including genetic relat-
edness of isolates, methicillin resistance and presence of 
virulence factors and demonstrates the benefits of using 
molecular approaches to study host–pathogen dynamics in 
IEI.
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